首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
人体肠道内定植了约1014个微生物,种类有1 000多种,它们作为"人体的第十三个生理系统",直接参与了机体的各种代谢活动,与人体健康密切相关。研究显示,肠道菌群的构成和稳定受到诸多宿主和环境因素的影响,其中饮食因素起着至关重要的作用。因此,本文用膳食金字塔将食物进行分类,介绍了膳食中谷类、果蔬类、豆类、奶类、鱼肉类、油脂类和糖类对肠道菌群的调节作用,以期为相关研究的开展、相应疾病的防治提供参考。  相似文献   

3.
Trillions of microbes inhabit the human gut, not only providing nutrients and energy to the host from the ingested food, but also producing metabolic bioactive signaling molecules to maintain health and elicit disease, such as cardiovascular disease (CVD). CVD is the leading cause of mortality worldwide. In this review, we presented gut microbiota derived metabolites involved in cardiovascular health and disease, including trimethylamine-N-oxide (TMAO), uremic toxins, short chain fatty acids (SCFAs), phytoestrogens, anthocyanins, bile acids and lipopolysaccharide. These gut microbiota derived metabolites play critical roles in maintaining a healthy cardiovascular function, and if dysregulated, potentially causally linked to CVD. A better understanding of the function and dynamics of gut microbiota derived metabolites holds great promise toward mechanistic predicative CVD biomarker discoveries and precise interventions.  相似文献   

4.
The objective of this review is to assess the current state of knowledge of pathogens, general faecal indicators and human-specific microbial source tracking markers in sewage. Most of the microbes present in sewage are from the microbiota of the human gut, including pathogens. Bacteria and viruses are the most abundant groups of microbes in the human gut microbiota. Most reports on this topic show that raw sewage microbiological profiles reflect the human gut microbiota. Human and animal faeces share many commensal microbes as well as pathogens. Faecal-orally transmitted pathogens constitute a serious public health problem that can be minimized through sanitation. Assessing both the sanitation processes and the contribution of sewage to the faecal contamination of water bodies requires knowledge of the content of pathogens in sewage, microbes indicating general faecal contamination and microbes that are only present in human faecal remains, which are known as the human-specific microbial source-tracking (MST) markers. Detection of pathogens would be the ideal option for managing sanitation and determining the microbiological quality of waters contaminated by sewage; but at present, this is neither practical nor feasible in routine testing. Traditionally, faecal indicator bacteria have been used as surrogate indicators of general faecal residues. However, in many water management circumstances, it becomes necessary to detect both the origin of faecal contamination, for which MST is paramount, and live micro-organisms, for which molecular methods are not suitable. The presence and concentrations of pathogens, general faecal indicators and human-specific MST markers most frequently reported in different areas of the world are summarized in this review.  相似文献   

5.
The dynamics of all ecosystems are dictated by intrinsic, density‐dependent mechanisms and by density‐independent environmental forcing. In spite of the importance of the gastrointestinal microbiota in health and disease, the ecology of this system remains largely unknown. Here, we take an ecological approach to gut microbial community analysis, with statistical modelling of time series data from chemostats. This approach removes effects of host forcing, allowing us to describe a network of intrinsic interactions determining the dynamic structure of an experimental gut microbiota. Surprisingly, the main colonization pattern in this simplified model system resembled that of the human infant gut, suggesting a potentially important role of density‐dependent interactions in the early gut microbiota. Knowledge of ecological structures in microbial systems may provide us with a means of controlling such systems by modifying the strength and nature of interactions among microbes and between the microbes and their environment.  相似文献   

6.
Trillions of microbes reside in the human body and participate in multiple physiological and pathophysiological processes that affect host health throughout the life cycle. The microbiome is hallmarked by distinctive compositional and functional features across different life periods.Accumulating evidence has shown that microbes residing in the human body may play fundamental roles in infant development and the maturation of the immune system. Gut microbes are thought to be essential for the facilitation of infantile and childhood development and immunity by assisting in breaking down food substances to liberate nutrients, protecting against pathogens, stimulating or modulating the immune system, and exerting control over the hypothalamic–pituitary–adrenal axis.This review aims to summarize the current understanding of the colonization and development of the gut microbiota in early life, highlighting the recent findings regarding the role of intestinal microbes in pediatric diseases. Furthermore, we also discuss the microbiota-mediated therapeutics that can reconfigure bacterial communities to treat dysbiosis.  相似文献   

7.
王娟  高泽中  蒋一婷  万冬梅 《生态学报》2021,41(20):7939-7945
肠道微生物是庞大而多样的微生物群落,通过促进营养摄取、宿主防御、免疫调节等,在维持机体健康方面起着至关重要的作用。宿主外部或内部环境的任何变化都会影响肠道微生物的组成,鸟类具有复杂的生活史和多样化的食性,飞翔生活使它们的生理活动面临更大的选择性压力,导致肠道微生物菌群的变化更加复杂。近年来,随着基因测序技术的发展以及对鸟类肠道微生物研究的日益重视,导致了鸟类肠道微生物研究呈指数增长。但目前的研究主要以家禽为主,野生鸟类肠道微生物报道则相对较少。野生鸟类肠道微生物结构变化及其维持机制等的研究仍处于起步阶段,有较大的研究空间。从植食性、肉食性、杂食性三种食性的鸟类肠道微生物组成及特点、影响因素等方面对前人的文献进行了全面梳理,以期为野生鸟类肠道微生物研究提供参考。总的来说,植食性鸟类肠道微生物多样性最低,以高丰度的变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)为主;而杂食性鸟类肠道微生物多样性最高。遗传、生活史特征、人类活动、城市化、圈养行为等对鸟类肠道微生物的组成具有显著性的影响。  相似文献   

8.
Xiao  Mingming  Yang  Junjun  Feng  Yuxin  Zhu  Yan  Chai  Xin  Wang  Yuefei 《Applied microbiology and biotechnology》2017,101(8):3077-3088

The human intestine hosts various complex microbial communities that are closely associated with multiple health and disease processes. Determining the composition and function of these microbial communities is critical to unveil disease mechanisms and promote human health. Recently, meta-omic strategies have been developed that use high-throughput techniques to provide a wealth of information, thus accelerating the study of gut microbes. Metaproteomics is a newly emerged analytical approach that aims to identify proteins on a large scale in complex environmental microbial communities (e.g., the gut microbiota). This review introduces the recent analytical strategies and applications of metaproteomics, with a focus on advances in gut microbiota research, including a discussion of the limitations and challenges of these approaches.

  相似文献   

9.
肠道菌群是人体重要的代谢"器官",对人体的健康和疾病起着至关重要的作用.肠道菌群参与人体消化、免疫、神经系统调节机能的分子机理是特异性物质代谢通路在微生物与人体之间的协同耦合.酶是代谢通路中参与物质转化的基本功能单元,深入理解肠道菌群编码酶的分子催化机理将为以肠道菌群(或肠道酶)作为靶点的精准营养/医疗干预研究提供重要理论依据.特异性底物酶解研究表明,肠道菌群编码的酶系统不仅包含全部已知的碳水化合物活性酶(carbohydrateactive enzymes, CAZYmes)类,同时蕴含诸多潜在的新型CAZYmes.本文阐述CAZYmes的分类原则及催化机理,并主要从结构生物学方面综述人体肠道菌群来源的新型CAZYmes.  相似文献   

10.
The trillions of microbes that inhabit the human gut (the microbiota) together with the host comprise a complex ecosystem, and like any ecosystem, health relies on stability and balance. Some of the most important members of the human microbiota are those that help maintain this balance via modulation of the host immune system. Gut microbes, through both molecular factors (such as capsular components) and by-products of their metabolism (such as Short Chain Fatty Acids (SCFAs)), can influence both innate and adaptive components of the immune system, in ways that can drive both effector, and regulatory responses. Here we review how commensal microbes can specifically promote a dynamic balance of these immune responses in the mammalian gut.  相似文献   

11.
人体肠道共生着数以万亿计的微生物,肠道微生物在维持宿主正常生理功能中发挥重要作用,其成分和功能变化可导致严重的肠道和全身性疾病。以新一代测序技术和生物信息学分析为基础的元基因组学研究不仅极大地推动了对人类肠道微生物的整体认识,还加深了对肠道微生物代谢产物促进人类健康机理的理解,为肠道炎症、代谢性疾病和癌症等人类疾病的诊断与治疗提供了新思路。就肠道微生物元基因组学与肠道相关疾病的研究进展作一综述。  相似文献   

12.
The gut microbiota affects many aspects of human health, and research, especially over the past decade, is demonstrating that the brain is no exception. This review summarizes existing human observational studies of the microbiota in brain health and neurological conditions at all ages, as well as animal studies that are advancing the field beyond correlation and into causality. Potential mechanisms by which the brain and the gut microbiota are connected are explored, including inflammation, bacterially-produced metabolites and neurotransmitters and specific roles for individual microbes. Finally, important challenges and potential mitigation strategies are discussed, as well as ways in which some of these same challenges can be harnessed to advance our understanding of this complex, exciting and rapidly evolving field.  相似文献   

13.
Gut bacteria play an important role in several metabolic processes and human diseases, such as obesity and accompanying co-morbidities, such as fatty liver disease, insulin resistance/diabetes, and cardiovascular events. Among other factors, dietary patterns, probiotics, prebiotics, synbiotics, antibiotics, and non-dietary factors, such as stress, age, exercise, and climatic conditions, can dramatically impact the human gut microbiota equilibrium and diversity. However, the effect of minor food constituents, including food additives and trace contaminants, on human gut microbiota has received less attention. Consequently, the present review aimed to provide an objective perspective of the current knowledge regarding the impacts of minor food constituents on human gut microbiota and consequently, on human health.  相似文献   

14.
Humans are colonized by a diverse collection of microbes, the largest numbers of which reside in the distal gut. The vast majority of humans coexist in a beneficial equilibrium with these microbes. However, disruption of this mutualistic relationship can manifest itself in human diseases such as inflammatory bowel disease. Thus the study of inflammatory bowel disease and its genetics can provide insight into host pathways that mediate host-microbiota symbiosis. Bacteria of the human intestinal ecosystem face numerous challenges imposed by human dietary intake, the mucosal immune system, competition from fellow members of the gut microbiota, transient ingested microbes and invading pathogens. Considering features of human resident gut bacteria provides the opportunity to understand how microbes have achieved their symbiont status. While model symbionts have provided perspective into host-microbial homeostasis, high-throughput approaches are becoming increasingly practical for functionally characterizing the gut microbiota as a community.  相似文献   

15.
肠道微生物在肠道稳态和大脑健康中发挥着举足轻重的作用.血清素是大脑的一种重要的单胺类神经递质,90%以上在结肠肠嗜铬细胞中由色氨酸代谢转化而来,在机体发挥广泛作用.近年来的研究表明,血清素对机体发挥的作用可能受到肠道微生物影响.肠道中某些微生物具有产生血清素的能力,同时,微生物群及其代谢产物(如丁酸)能通过影响色氨酸羟...  相似文献   

16.
Over the last few decades it has been established that the complex interaction between the host and the multitude of organisms that compose the intestinal microbiota plays an important role in human metabolic health and disease. Whilst there is no defined consensus on the composition of a healthy microbiome due to confounding factors such as ethnicity, geographical locations, age and sex, there are undoubtably populations of microbes that are consistently dysregulated in gut diseases including colorectal cancer (CRC). In this review, we discuss the most recent advances in the application of the gut microbiota, not just bacteria, and derived microbial compounds in the diagnosis of CRC and the potential to exploit microbes as novel agents in the management and treatment of CRC. We highlight examples of the microbiota, and their derivatives, that have the potential to become standalone diagnostic tools or be used in combination with current screening techniques to improve sensitivity and specificity for earlier CRC diagnoses and provide a perspective on their potential as biotherapeutics with translatability to clinical trials.  相似文献   

17.
The gut microbiota is increasingly considered as a symbiotic partner for the maintenance of health. The homeostasis of the gut microbiota is dependent on host characteristics (age, gender, genetic background...), environmental conditions (stress, drugs, gastrointestinal surgery, infectious and toxic agents...). Moreover, it is dependent on the day-to-day dietary changes. Experimental data in animals, but also observational studies in obese patients, suggest that the composition of the gut microbiota is a factor characterizing obese versus lean individuals, diabetic versus non diabetic patients, or patients presenting hepatic diseases such as non alcoholic steatohepatitis. Interestingly, the changes in the gut microbes can be reversed by dieting and related weight loss. The qualitative and quantitative changes in the intake of specific food components (fatty acids, carbohydrates, micronutrients, prebiotics, probiotics), have not only consequences on the gut microbiota composition, but may modulate the expression of genes in host tissues such as the liver, adipose tissue, intestine, muscle. This in turn may drive or lessen the development of fat mass and metabolic disturbances associated with the gut barrier function and the systemic immunity. The relevance of the prebiotic or probiotic approaches in the management of obesity in humans is supported by few intervention studies in humans up to now, but the experimental data obtained with those compounds help to elucidate novel potential molecular targets relating diet with gut microbes. The metagenomic and integrative metabolomic approaches could help elucidate which bacteria, among the trillions in human gut, or more specifically which activities/genes, could participate to the control of host energy metabolism, and could be relevant for future therapeutic developments.  相似文献   

18.
《Journal of molecular biology》2014,426(23):3866-3876
The human gut is home to trillions of microbes that form a symbiotic relationship with the human host. During health, the intestinal microbiota provides many benefits to the host and is generally resistant to colonization by new species; however, disruption of this complex community can lead to pathogen invasion, inflammation, and disease. Restoration and maintenance of a healthy gut microbiota composition requires effective therapies to reduce and prevent colonization of harmful bacteria (pathogens) while simultaneously promoting growth of beneficial bacteria (probiotics). Here we review the mechanisms by which the host modulates the gut community composition during health and disease, and we discuss prospects for antibiotic and probiotic therapy for restoration of a healthy intestinal community following disruption.  相似文献   

19.
The human gut microbiota is involved in multiple health-influencing host interactions during the host’s entire life span. Microbes colonize the infant gut instantaneously after birth and subsequently the founding and interactive progress of this early gut microbiota is considered to be driven and modulated by different host- and microbe-associated forces. A rising number of studies propose that the composition of the human gut microbiota in the early stages of life impact on the human health conditions at later stages of life. This notion has powered research aimed at detailed investigations of the infant gut microbiota composition. Nevertheless, the molecular mechanisms supporting the gut microbiome functionality and the interaction of the early gut microbes with the human host remain largely unknown.  相似文献   

20.
The human gut is colonized by a wide diversity of micro-organisms, which are now known to play a key role in the human host by regulating metabolic functions and immune homeostasis. Many studies have indicated that the genomes of our gut microbiota, known as the gut microbiome or our “other genome” could play an important role in immune-related, complex diseases, and growing evidence supports a causal role for gut microbiota in regulating predisposition to diseases. A comprehensive analysis of the human gut microbiome is thus important to unravel the exact mechanisms by which the gut microbiota are involved in health and disease. Recent advances in next-generation sequencing technology, along with the development of metagenomics and bioinformatics tools, have provided opportunities to characterize the microbial communities. Furthermore, studies using germ-free animals have shed light on how the gut microbiota are involved in autoimmunity. In this review we describe the different approaches used to characterize the human microbiome, review current knowledge about the gut microbiome, and discuss the role of gut microbiota in immune homeostasis and autoimmunity. Finally, we indicate how this knowledge could be used to improve human health by manipulating the gut microbiota. This article is part of a Special Issue entitled: From Genome to Function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号