首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Due to our previous research, mainly the thermostable mutants Q307D, Y311K, and I427L, we conjectured that Escherichia coli AppA phytase’s C-terminal plays an important role in its thermostability, and AppA begins to collapse from the C-terminal when at a higher temperature. So here we constructed C-lose mutant to prove it. The residual activities of the wild-type AppA phytase and C-lose were 31.42 and 70.49 %, respectively, after being heated at 80 °C for 10 min. The C-terminal deletion mutant C-lose showed 39.07 % thermostability enhancement than the wild-type both without the pH and temperature optimum changed. It proved the C-lose plays a key role in E. coli AppA phytase’s thermostability.  相似文献   

2.
Aspergillus niger phytase (PhyA) has been used as a feed supplement to reduce manure phosphorus excretion of swine and poultry but lacks sufficient thermostability for feed pelleting and appropriate pH-activity profile for phytate hydrolysis in the stomach of animals. Previously, a thermostable mutant PhyA18 and two pH-activity profile-improved mutants E228K and K300E were developed. In this study, the mutations were combined to determine if both improvements were cumulative. Four substitutions (S149P, F131L, K112R, and K195R) identified from random mutagenesis were added sequentially to the combined mutants to further improve their thermostability. Mutant E228K shifted the optimum pH of the parent one from 5.5 to 4.0 and increased (P < 0.05) its specific activity at pH 3.5, whereas mutant K300E eliminated the activity dip at pH 3.5 shown in the wild type. Mutant S149P further improved thermostability over PhyA18. Our results illustrate the feasibility and structural basis to improve thermostability and pH-activity profile of PhyA phytase by assembling mutations derived from rational design and random mutagenesis.  相似文献   

3.
In order to improve the thermostability of Escherichia coli AppA phytase, Error-prone PCR was used to randomize mutagenesis appA gene, and a gene mutation library was constructed. A mutant I408L was selected from the library by the method of high-throughput screening with 4-methyl-umbelliferylphosphate (4-MUP). The appA gene of the mutant was cloned and expressed in E. coli Origami (DE3). The recombinant protein was purified by Ni-affinity chromatography, and the enzymatic features were analyzed. The results indicated that AppA phytase activities of mutant I408L and wild-type (WT) strain remained at 51.3 and 28%, respectively, after treatment at 85°C for 5 min. It means that the thermostability enhancement of AppA phytase I408L was 23.3% more as compared with WT. The K m of both phytase were 0.18 and 0.25 mM, respectively, which indicated that the catalyzing efficiency of I408L was improved. AppA phytase of mutant I408L showed a significant enhancement against trypsin, which was nearly three times compared with WT. In addition, AppA phytase of mutant could be activated by Mg2+ and Mn2+; in contrast, it could be inhibited by Ca2+, Co2+, Cu2+, and K+ in varying degrees, and the enzymatic activity was almost lost the presence of Fe3+ and Zn2+. It appears that screening thermotolerant phytase of E. coli by high throughput screening with a fluorescence substrate is a fast, simple, and effective method. The mutant I408L obtained in this study could be used for the large-scale commercial production of phytase.  相似文献   

4.
Phytases are used to improve phosphorus nutrition of food animals and reduce their phosphorus excretion to the environment. Due to favorable properties, Escherichia coli AppA2 phytase is of particular interest for biotechnological applications. Directed evolution was applied in the present study to improve AppA2 phytase thermostability for lowering its heat inactivation during feed pelleting (60–80°C). After a mutant library of AppA2 was generated by error-prone polymerase chain reaction, variants were expressed initially in Saccharomyces cerevisiae for screening and then in Pichia pastoris for characterizing thermostability. Compared with the wild-type enzyme, two variants (K46E and K65E/K97M/S209G) showed over 20% improvement in thermostability (80°C for 10 min), and 6–7°C increases in melting temperatures (T m). Structural predictions suggest that substitutions of K46E and K65E might introduce additional hydrogen bonds with adjacent residues, improving the enzyme thermostability by stabilizing local interactions. Overall catalytic efficiency (k cat / K m) of K46E and K65E/K97M/S209G was improved by 56% and 152% than that of wild type at pH 3.5, respectively. Thus, the catalytic efficiency of these enzymes was not inversely related to their thermostability.  相似文献   

5.
Good protein thermostability is very important for the protein application. In this report, we propose a strategy which contained a prediction method to select residues related to protein thermal stability, but not related to protein function, and an experiment method to screen the mutants with enhanced thermostability. The prediction strategy was based on the calculated site evolutionary entropy and unfolding free energy difference between the mutant and wild-type (WT) methyl parathion hydrolase enzyme from Ochrobactrum sp. M231 [Ochr-methyl parathion hydrolase (MPH)]. As a result, seven amino acid sites within Ochr-MPH were selected and used to construct seven saturation mutagenesis libraries. The results of screening these libraries indicated that six sites could result in mutated enzymes exhibiting better thermal stability than the WT enzyme. A stepwise evolutionary approach was designed to combine these selected mutants and a mutant with four point mutations (S274Q/T183E/K197L/S192M) was selected. The T m and T 50 of the mutant enzyme were 11.7 and 10.2 °C higher, respectively, than that of the WT enzyme. The success of this design methodology for Ochr-MPH suggests that it was an efficient strategy for enhancing protein thermostability and suitable for protein engineering.  相似文献   

6.
This study aimed to improve the thermostability of alkaline α-amylase from Alkalimonas amylolytica through structure-based rational design and systems engineering of its catalytic domain. Separate engineering strategies were used to increase alkaline α-amylase thermostability: (1) replace histidine residues with leucine to stabilize the least similar region in domain B, (2) change residues (glycine, proline, and glutamine) to stabilize the highly conserved α-helices in domain A, and (3) decrease the free energy of folding predicted by the PoPMuSiC program to stabilize the overall protein structure. A total of 15 single-site mutants were obtained, and four mutants — H209L, Q226V, N302W, and P477V — showed enhanced thermostability. Combinational mutations were subsequently introduced, and the best mutant was triple mutant H209L/Q226V/P477V. Its half-life at 60 °C was 3.8-fold of that of the wild type and displayed a 3.2 °C increase in melting temperature compared with that of the wild type. Interestingly, other biochemical properties of this mutant also improved: the optimum temperature increased from 50 °C to 55 °C, the optimum pH shifted from 9.5 to 10.0, the stable pH range expanded from 7.0–11.0 to 6.0–12.0, the specific activity increased by 24 %, and the catalytic efficiency (k cat/K m) increased from 1.8×104 to 3.5?×?104 l/(g min). Finally, the mechanisms responsible for the increased thermostability were analyzed through comparative analysis of structure models. The structure-based rational design and systems engineering strategies in this study may also improve the thermostability of other industrial enzymes.  相似文献   

7.
Although it has been widely used as a feed supplement to reduce manure phosphorus pollution of swine and poultry, Aspergillus niger PhyA phytase is unable to withstand heat inactivation during feed pelleting. Crystal structure comparisons with its close homolog, the thermostable Aspergillus fumigatus phytase (Afp), suggest associations of thermostability with several key residues (E35, S42, R168, and R248) that form a hydrogen bond network in the E35-to-S42 region and ionic interactions between R168 and D161 and between R248 and D244. In this study, loss-of-function mutations (E35A, R168A, and R248A) were introduced singularly or in combination into seven mutants of Afp. All seven mutants displayed decreases in thermostability, with the highest loss (25% [P<0.05]) in the triple mutant (E35A R168A R248A). Subsequently, a set of corresponding substitutions were introduced into nine mutants of PhyA to strengthen the hydrogen bonding and ionic interactions. While four mutants showed improved thermostability, the best response came from the quadruple mutant (A58E P65S Q191R T271R), which retained 20% greater (P<0.05) activity after being heated at 80 degrees C for 10 min and had a 7 degrees C higher melting temperature than that of wild-type PhyA. This study demonstrates the functional importance of the hydrogen bond network and ionic interaction in supporting the high thermostability of Afp and the feasibility of adopting these structural units to improve the thermostability of a homologous PhyA phytase.  相似文献   

8.
The thermostability of the conger eel galectin, congerin II, was improved by in vitro evolutionary protein engineering. Two rounds of random PCR mutagenesis and selection experiments increased the congerin II thermostability to a level comparative to its naturally thermostable isoform, congerin I. The crystal structures of the most thermostable double mutant, Y16S/T88I, and the related single mutants, Y16S and T88I, were determined at 2.0 angstroms, 1.8 angstroms, and 1.6 angstroms resolution, respectively. The exclusion of two interior water molecules by the Thr88Ile mutation, and the relief of adjacent conformational stress by the Tyr16Ser mutation were the major contributions to the thermostability. These features in the congerin II mutants are similar to those observed in congerin I. The natural evolution of congerin genes, with the K(A)/K(S) ratio of 2.6, was accelerated under natural selection pressures. The thermostabilizing selection pressure artificially applied to congerin II mimicked the implied natural pressure on congerin I. The results showed that the artificial pressure made congerin II partially reproduce the natural evolution of congerin I.  相似文献   

9.
To investigate the roles of the active site residues in the catalysis of Bacillus thuringiensis WB7 chitinase, twelve mutants, F201L, F201Y, G203A, G203D, D205E, D205N, D207E, D207N, W208C, W208R, E209D and E209Q were constructed by site-directed mutagenesis. The results showed that the mutants F201L, G203D, D205N, D207E, D207N, W208C and E209D were devoid of activity, and the loss of the enzymatic activities for F201Y, G203A, D205E, W208R and E209Q were 72, 70, 48, 31 and 29%, respectively. The pH-activity profiles indicated that the optimum pH for the mutants as well as for the wildtype enzyme was 8.0. E209Q exhibited a broader active pH range while D205E, G203A and F201Y resulted in a narrower active pH range. The pH range of activity reduced 1 unit for D205E, and 2 units for G203A and F201Y. The temperature-activity profiles showed that the optimum temperature for other mutants as well as wildtype enzyme was 60°C, but 50°C for G203A, which suggested that G203A resulted in a reduction of thermostability. The study indicated that the six active site residues involving in mutagenesis played an important part in WB7 chitinase. In addition, the catalytic mechanisms of the six active site residues in WB7 chitinase were discussed.  相似文献   

10.
A thermostable glucose dehydrogenase (GlcDH) mutant of Bacillus megaterium IWG3 harboring the Q252L substitution (Y. Makino, S. Negoro, I. Urabe, and H. Okada, J. Biol. Chem. 264:6381-6385, 1989) is stable at pH values above 9, but only in the presence of 2 M NaCl. Another GlcDH mutant exhibiting increased stability at an alkaline pH in the absence of NaCl has been isolated previously (S.-H. Baik, T. Ide, H. Yoshida, O. Kagami, and S. Harayama, Appl. Microbiol. Biotechnol. 61:329-335, 2003). This mutant had two amino acid substitutions, Q252L and E170K. In the present study, we characterized three GlcDH mutants harboring the substitutions Q252L, E170K, and Q252L/E170K under low-salt conditions. The GlcDH mutant harboring two substitutions, Q252L/E170K, was stable, but mutants harboring a single substitution, either Q252L or E170K, were unstable at an alkaline pH. Gel filtration chromatography analyses demonstrated that the oligomeric state of the Q252/E170K enzyme was stable, while the tetramers of the enzymes harboring a single substitution (Q252L or E170K) dissociated into dimers at an alkaline pH. These results indicated that the Q252L and E170K substitutions synergistically strengthened the interaction at the dimer-dimer interface. The crystal structure of the E170K/Q252L mutant, determined at 2.0-Å resolution, showed that residues 170 and 252 are located in a hydrophobic cavity at the subunit-subunit interface. We concluded that these residues in the wild-type enzyme have thermodynamically unfavorable effects, while the Q252L and E170K substitutions increase the subunit-subunit interactions by stabilizing the hydrophobic cavity.  相似文献   

11.
We have obtained two types of thermostable mutant lactate oxidase - one that exhibited an E-to-G point mutation at position 160 (E160G) through error-prone PCR-based random mutagenesis, and another that exhibited an E-to-G mutation at position 160 and a V-to-I mutation at position 198 (E160G/V198I) through DNA shuffling-based random mutagenesis - both of which we have previously reported. Our molecular modeling of lactate oxidase suggests that the substitution of G for E at position 160 reduces the electrostatic repulsion between the negative charges of E160 and E130 in the (beta/alpha)8 barrel structure, but a thermal-inactivation experiment on the five kinds of single-mutant lactate oxidase at position 160 (E160A, E160Q, E160H, E160R, and E160K) showed that the side-chain volume of the amino acid at position 160 mainly contributes to the thermostability of lactate oxidase. We also produced V198I single-mutant lactate oxidase through site-directed mutagenesis, and analysed the thermostability of wild-type, V198I, E160G, and E160G/V198I lactate oxidase enzymes. The half-life of E160G/V198I lactate oxidase at 70 degrees C was about three times longer than that of E160G lactate oxidase, and was about 20 times longer than that of wild-type lactate oxidase. In contrast, the thermostability of the V198I lactate oxidase was almost identical to that of wild-type lactate oxidase. This indicates that the V198I mutation alone does not affect lactate oxidase thermostability, but does affect it when combined with the E160G mutation.  相似文献   

12.
A thermostable glucose dehydrogenase (GlcDH) mutant of Bacillus megaterium IWG3 harboring the Q252L substitution (Y. Makino, S. Negoro, I. Urabe, and H. Okada, J. Biol. Chem. 264:6381-6385, 1989) is stable at pH values above 9, but only in the presence of 2 M NaCl. Another GlcDH mutant exhibiting increased stability at an alkaline pH in the absence of NaCl has been isolated previously (S.-H. Baik, T. Ide, H. Yoshida, O. Kagami, and S. Harayama, Appl. Microbiol. Biotechnol. 61:329-335, 2003). This mutant had two amino acid substitutions, Q252L and E170K. In the present study, we characterized three GlcDH mutants harboring the substitutions Q252L, E170K, and Q252L/E170K under low-salt conditions. The GlcDH mutant harboring two substitutions, Q252L/E170K, was stable, but mutants harboring a single substitution, either Q252L or E170K, were unstable at an alkaline pH. Gel filtration chromatography analyses demonstrated that the oligomeric state of the Q252/E170K enzyme was stable, while the tetramers of the enzymes harboring a single substitution (Q252L or E170K) dissociated into dimers at an alkaline pH. These results indicated that the Q252L and E170K substitutions synergistically strengthened the interaction at the dimer-dimer interface. The crystal structure of the E170K/Q252L mutant, determined at 2.0-angstroms resolution, showed that residues 170 and 252 are located in a hydrophobic cavity at the subunit-subunit interface. We concluded that these residues in the wild-type enzyme have thermodynamically unfavorable effects, while the Q252L and E170K substitutions increase the subunit-subunit interactions by stabilizing the hydrophobic cavity.  相似文献   

13.
Although it has been widely used as a feed supplement to reduce manure phosphorus pollution of swine and poultry, Aspergillus niger PhyA phytase is unable to withstand heat inactivation during feed pelleting. Crystal structure comparisons with its close homolog, the thermostable Aspergillus fumigatus phytase (Afp), suggest associations of thermostability with several key residues (E35, S42, R168, and R248) that form a hydrogen bond network in the E35-to-S42 region and ionic interactions between R168 and D161 and between R248 and D244. In this study, loss-of-function mutations (E35A, R168A, and R248A) were introduced singularly or in combination into seven mutants of Afp. All seven mutants displayed decreases in thermostability, with the highest loss (25% [P < 0.05]) in the triple mutant (E35A R168A R248A). Subsequently, a set of corresponding substitutions were introduced into nine mutants of PhyA to strengthen the hydrogen bonding and ionic interactions. While four mutants showed improved thermostability, the best response came from the quadruple mutant (A58E P65S Q191R T271R), which retained 20% greater (P < 0.05) activity after being heated at 80°C for 10 min and had a 7°C higher melting temperature than that of wild-type PhyA. This study demonstrates the functional importance of the hydrogen bond network and ionic interaction in supporting the high thermostability of Afp and the feasibility of adopting these structural units to improve the thermostability of a homologous PhyA phytase.  相似文献   

14.
The substitutions of the amino acid at the predetermined critical point at the C-terminal of L2 lipase may increase its thermostability and enzymatic activity, or even otherwise speed up the unfolding of the protein structure. The C-terminal of most proteins is often flexible and disordered. However, some protein functions are directly related to flexibility and play significant role in enzyme reaction. The critical point for mutation of L2 lipase structure was predicted at the position 385 of the L2 sequence, and the best three mutants were determined based on I-Mutant2.0 software. The best three mutants were S385E, S385I and S385V. The effects of the substitution of the amino acids at the critical point were analysed with molecular dynamics simulation by using Yet Another Scientific Artificial Reality Application software. The predicted mutant L2 lipases were found to have lower root mean square deviation value as compared to L2 lipase. It was indicated that all the three mutants had higher compactness in the structure, consequently enhanced the stability. Root mean square fluctuation analysis showed that the flexibility of L2 lipase was reduced by mutations. Purified S385E lipase had an optimum temperature of 80 °C in Tris–HCl pH 8. The highest enzymatic activity of purified S385E lipase was obtained at 80 °C temperature in Tris–HCl pH 8, while for L2 lipase it was at 70 °C in Glycine–NaOH pH 9. The thermal stability of S385V lipase was enhanced as compared to other protein since that the melting point (T m) value was at 85.96 °C. S385I lipase was more thermostable compared to recombinant L2 lipase and other mutants at temperature 60 °C within 16 h preincubation.  相似文献   

15.
NAD+-dependent formate dehydrogenase (FDH-EC 1.2.1.2) is an important enzyme to regenerate valuable NADH required by NAD+-dependent oxidoreductases in enzyme catalysis. The limitation in the thermostability of FDH enzyme is a crucial problem for development of biotechnological and industrial processes, despite of its advantages. In this study, to investigate the contribution of surface electrostatic interaction to the thermostability of FDH from Candida methylica (cmFDH) N187E, H13E, Q105R, N300E, N147R N300E/N147R, N187E/Q105R, N187E/N147R,Y160R, Y302R, Y160E and Y302E mutants were designed using a homology model of cmFDH based on Candida boidinii (cb) by considering electrostatic interactions on the protein surface. The effects of site-specific engineering on the stability of this molecule was analyzed according to minimal model of folding and assembly reaction and deduced equilibrium properties of the native system with respect to its thermal and denaturant sensitivities. It was observed that mutations did not change the unfolding pattern of native cmFDH and increased numbers of electrostatic interactions can cause either stabilizing or destabilizing effect on the thermostability of this protein. The thermodynamic and kinetic results suggested that except relatively improved mutants, three out of the nine single mutations increased the melting temperature of cmFDH enzyme.  相似文献   

16.
Bacillus aryabhattai RS1 isolated from rhizosphere produced an extracellular, low temperature active phytase. The cultural conditions for enzyme production were optimized to obtain 35 U mL?1 of activity. Purified phytase had specific activity and molecular weight of 72.97 U mg?1 and ~40 kDa, respectively. The enzyme was optimally active at pH 6.5 and 40°C and was highly specific to phytate. It exhibited higher catalytic activity at low temperature, retaining over 40% activity at 10°C. Phytase was more thermostable in presence of Ca2+ ion and retained 100% residual activity on preincubation at 20–50°C for 30 min. Partial phytase encoding gene, phyB (816 bp) was cloned and sequenced. The encoded amino acid sequence (272 aa) contained two conserved motifs, DA[A/T/E]DDPA[I/L/V]W and NN[V/I]D[I/L/V]R[Y/D/Q] of β‐propellar phytase and had lower sequence homology with other Bacillus phytases, indicating its novelty. Phytase and the bacterial inoculum were effective in improving germination and growth of chickpea seedlings under phosphate limiting condition. Moreover, the potential applications of the enzyme with relatively high activity at lower temperatures (20–30°C) could also be extended to aquaculture and food processing. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:633–641, 2017  相似文献   

17.
18.
Random mutagenesis was performed on β-agarase, AgaB, from Zobellia galactanivorans to improve its catalytic activity and thermostability. The activities of three mutants E99K, T307I and E99K–T307I were approx. 140, 190 and 200%, respectively, of wild type β-agarase (661 U/mg) at 40°C. All three mutant enzymes were stable up to 50°C and E99K–T307I had the highest thermostability. The melting temperature (T m) of E99K–T307I, determined by CD spectra, was increased by 5.2°C over that of the wild-type enzyme (54.6°C). Activities of both the wild-type and E99K–T307I enzymes, as well as their overall thermostabilities, increased in 1 mM CaCl2. The E99K–T307I enzyme was stable at 55°C with 1 mM CaCl2, reaching 260% of the activity the wild-type enzyme held at 40°C without CaCl2.  相似文献   

19.
The crystal structures of two thermally stabilized subtilisin BPN' variants, S63 and S88, are reported here at 1.8 and 1.9 A resolution, respectively. The micromolar affinity calcium binding site (site A) has been deleted (Delta75-83) in these variants, enabling the activity and thermostability measurements in chelating conditions. Each of the variants includes mutations known previously to increase the thermostability of calcium-independent subtilisin in addition to new stabilizing mutations. S63 has eight amino acid replacements: D41A, M50F, A73L, Q206W, Y217K, N218S, S221C, and Q271E. S63 has 75-fold greater stability than wild type subtilisin in chelating conditions (10 mm EDTA). The other variant, S88, has ten site-specific changes: Q2K, S3C, P5S, K43N, M50F, A73L, Q206C, Y217K, N218S, and Q271E. The two new cysteines form a disulfide bond, and S88 has 1000 times greater stability than wild type subtilisin in chelating conditions. Comparisons of the two new crystal structures (S63 in space group P2(1) with A cell constants 41.2, 78.1, 36.7, and beta = 114.6 degrees and S88 in space group P2(1)2(1)2(1) with cell constants 54.2, 60.4, and 82.7) with previous structures of subtilisin BPN' reveal that the principal changes are in the N-terminal region. The structural bases of the stabilization effects of the new mutations Q2K, S3C, P5S, D41A, Q206C, and Q206W are generally apparent. The effects are attributed to the new disulfide cross-link and to improved hydrophobic packing, new hydrogen bonds, and other rearrangements in the N-terminal region.  相似文献   

20.
Conformational thermostabilisation of G-protein-coupled receptors is a successful strategy for their structure determination. The thermostable mutants tolerate short-chain detergents, such as octylglucoside and nonylglucoside, which are ideal for crystallography, and in addition, the receptors are preferentially in a single conformational state. The first thermostabilised receptor to have its structure determined was the β1-adrenoceptor mutant β1AR-m23 bound to the antagonist cyanopindolol, and recently, additional structures have been determined with agonist bound. Here, we describe further stabilisation of β1AR-m23 by the addition of three thermostabilising mutations (I129V, D322K, and Y343L) to make a mutant receptor that is 31 °C more thermostable than the wild-type receptor in dodecylmaltoside and is 13 °C more thermostable than β1AR-m23 in nonylglucoside. Although a number of thermostabilisation methods were tried, including rational design of disulfide bonds and engineered zinc bridges, the two most successful strategies to improve the thermostability of β1AR-m23 were an engineered salt bridge and leucine scanning mutagenesis. The three additional thermostabilising mutations did not significantly affect the pharmacological properties of β1AR-m23, but the new mutant receptor was significantly more stable in short-chain detergents such as heptylthioglucoside and denaturing detergents such as SDS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号