首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A computer program is developed that permits simulation of the dynamic behaviour of cells in intestinal crypts (Meinzer & Sandblad, 1985). Here we present the simulation of FLM data which is compared with the experimental findings of Al-Dewachi et al. (1974). The phase durations and total cycle times of cells in the jejunal crypts of rats were calculated. Additionally, the influence of various control parameters on the simulation output is discussed, e.g. the standard errors of phase times and the grain dilution at mitosis.  相似文献   

2.
Keratinocyte growth factor (KGF) administered on a daily basis for 3 or more days can result in dramatic changes in tissue architecture, particularly the thickness in oral epithelia, and can afford protection against the cytotoxic effects of radiation on the clonogenic stem cells in the crypts. This protection of intestinal stem cells (increased numbers of surviving crypts) is reflected in an increased survival of animals exposed to a lethal dose of irradiation. The mechanisms underlying these effects are not clear. The present experiments were designed to investigate the nature of any proliferative changes induced in the crypts of the small intestine by protracted exposure to KGF. Tritiated thymidine or bromodeoxyuridine labeling showed statistically significant increases in labeling in the stem cell zone of the crypt, with a concomitant reduction in labeling in the upper regions of the crypt corresponding to the late-dividing transit population. The increase in labeling in the lower regions of the crypt was also observed with Ki-67 staining, but the reduction in the upper regions of the crypt seen with tritiated thymidine was not observed with Ki-67. Metaphase arrest data suggest that the rate of progression through the cell cycle is essentially the same in KGF-treated animals as in controls, but there is a statistically significant increase in the number of mitotic events per crypt. Double labeling studies suggest that, at certain times of the day, there is a greater influx into S phase than efflux. The data overall indicate that KGF induces some complex proliferative changes in the intestinal crypts and are consistent with the hypothesis that the radioprotection may be afforded, at least in part, by a KGF-induced increase in stem cell numbers and/or increases in the number of stem cells in the S phase of the cell cycle. This alteration in the homeostasis of the crypt is compensated for by a foreshortening of the dividing transit lineage.  相似文献   

3.
3H-thymidine labelling studies and a computer simulation have been employed to assess proliferative status and cellular organisation in colonic explants maintained in culture for 5 to 7 days. The one-hour flash labelling index (Is) for crypts within the middle region of explants (5.2%) was considerably lower than that observed in vivo (8.8%). Crypt length and the distribution of labelled cells appeared similar for both situations. A computer simulation program for crypt-cell proliferation was devised, facilitating the modulation of a number of parameters including the cell-cycle time (Tc) and its component phases, the cut-off position, and cell loss at mitosis. This simulation was employed to model continuous labelling (72 h) data obtained in vitro and provided an estimate of various kinetic parameters. Data for the middle region of explants was fitted with a Tc of 62 h, an S phase of 8 h and a cell loss factor (20%) which was consistent with histological findings. A fit to the experimental data obtained in vitro could be achieved by a model based upon a mode of cellular organisation known to occur within crypts in vivo. Therefore in vitro, the dynamic processes of crypt-cell proliferation and migration appear to be organised in the same manner as seen in vivo.  相似文献   

4.
The stathmokinetics and radiobiology of intestinal crypts directly adjoining the lymphoid patches of Peyer, have been compared with those of non-patch-associated crypts. Patch crypts contain an additional one to two rings of cells, the Mitotic Index for the whole crypt is higher than in non-patch crypts, and the apparent cell cycle time is insignificantly lower. Using single and split doses of gamma-rays, dose-survival curves were obtained for whole intestinal crypts, from which single-cell survival curves were derived for the clonogenic cells of the crypt. For a single-hit, multitarget, model, the extrapolation numbers of the cell survival curves for patch and non-patch crypts were the same (approximately 35) but the final D0 for cells of the patch crypts was significantly higher (2.1 versus 1.7 Gy). A linear-quadratic fit gave a similar ratio of alpha/beta (approximately 10) for the two curves. For a given level of crypt depletion, the number of clonogenic cells per crypt derived by the use of equal split doses of radiation, was the same for patch and non-patch crypts. This number is a function of the dose regime employed: the higher the level of crypt depletion, the higher the derived number of cells (range 10 to 45, for non-patch crypts).  相似文献   

5.
The frequency distribution of cells through the mitotic cycle in lower and upper portions of jejunal crypts of the rat was examined by the 3H-14C-thymidine double labelling technique. Isolated crypts were cut perpendicular to the longitudinal axis so that the percentage of cells in the lower portion varied from 16 to 74%. The lower and upper portion of the same crypt were squashed separately on one microscope slide and the number of 3H- and 14C-only labelled cells were scored to determine the flow rate into and out of S for the two portions. The mitotic cycle and its phases of the crypt epithelial cells were also determined. For lower portions of crypts which contained less than 40% of the total cell number in that crypt the flow rate into S was about 1-7 times that of the flow rate out of S indicating that nearly every mitosis in this region produced two proliferative daughter cells. As the proportion of cells in the lower part of the crypt increased the quotient of the flow rate into S divided by the flow rate out of S decreased, and approached the steady state value of 1-0 in lower portions containing 60-74% of the cells. For upper portions of crypts which contained less than 40% of the total crypt cells the flow rate into S was about 0-2 times that of the flow rate out of S, indicating that in this region mitoses predominantly produced non-proliferative daughter cells. The results obtained were in good agreement with the model of crypt cell proliferation proposed by Cairnie, Lamerton & Steel (1965b).  相似文献   

6.
The frequency distribution of cells through the mitotic cycle in lower and upper portions of jejunal crypts of the rat was examined by the 3H-14C-thymidine double labelling technique. Isolated crypts were cut perpendicular to the longitudinal axis so that the percentage of cells in the lower portion varied from 16 to 74 %. The lower and upper portion of the same crypt were squashed separately on one microscope slide and the number of 3H- and 14C-only labelled cells were scored to determine the flow rate into and out of S for the two portions. The mitotic cycle and its phases of the crypt epithelial cells were also determined. For lower portions of crypts which contained less than 40 % of the total cell number in that crypt the flow rate into S was about 1–7 times that of the flow rate out of S indicating that nearly every mitosis in this region produced two proliferative daughter cells. As the proportion of cells in the lower part of the crypt increased the quotient of the flow rate into S divided by the flow rate out of S decreased, and approached the steady state value of 1 0 in lower portions containing 60–74 % of the cells. For upper portions of crypts which contained less than 40% of the total crypt cells the flow rate into S was about 0 2 times that of the flow rate out of S, indicating that in this region mitoses predominantly produced non-proliferative daughter cells. The results obtained were in good agreement with the model of crypt cell proliferation proposed by Cairnie, Lamerton & Steel (1965b).  相似文献   

7.
Within 3-6 h of small doses of radiation (gamma-rays) the number of dead cells (apoptotic cells) in the crypts of the small intestine reaches peak values. These return to normal levels only after times later than 1 day. After higher doses elevated levels of cell death persist for longer times. The dead cells first occur most frequently at the lower positions of the crypt (median value for the distribution of apoptotic fragments is about cell position 6). At later times more dead cells are observed at higher positions. Two doses of radiation separated by various time intervals have been used to investigate when after irradiation the cell population susceptible to acute cell death is re-established. Dead cells were scored 3 or 6 h after the second dose. The yield of dead cells after two doses represents the sum of the dead cells produced by, and persisting from, the first dose and new apoptotic cells induced by the second dose. Since the temporal and dose-dependence aspects of the dead-cell yield after the first dose alone is known, the additional dead cells attributable to the second dose alone can be determined by subtraction. Within 1-2 days of small doses (0.5 Gy) the sensitive cells, recognized histologically as apoptotic cells, are re-established at the base of the crypt (around cell position 6). After higher doses (9.0 Gy) they are not re-established until about the fourth day after irradiation. Even in the enlarged regenerating crypts the sensitive cells are found at the same position at the crypt base. It has been estimated that the crypt contains five or six cells that are susceptible to low doses (0.5 Gy) (hypersensitive cells) and up to a total of only seven or eight susceptible cells that can be induced by any dose to enter the sequence of changes implicit in apoptosis. Between 4 and 10 days after an initial irradiation of 9.0 Gy the total number of susceptible cells increased from seven to eight to about 10 to 13 per crypt.  相似文献   

8.
The Authors refer the presence of epithelial crypts in the epididymis of chamois, previously described only in the bull by Nicander, in the camel by Singh, in the cat by Arrighi and in the roe-buck by Gentile et al. These crypts consist of cavities bored into the epithelium lining the epididymis and are rounded by the epithelial cells which are, sometimes, squamous and thin. Some crypts open into the lumen of the epididymis, some others crypt are filled with floccular, gelatinous material and, at times, with spermatozoa. The Authors think to undertake other morphological researches to find out the physiologic meaning of crypts, which could have an important role in the seasonal reproductive biology of wild ruminants.  相似文献   

9.
Mathematical modeling of cell differentiated in colonic crypts can contribute to a better understanding of basic mechanisms underlying colonic tissue organization, but also its deregulation during carcinogenesis and tumor progression. Here, we combined bifurcation analysis to assess the effect that time delay has in the complex interplay of stem cells and semi-differentiated cells at the niche of colonic crypts, and systematic model perturbation and simulation to find model-based phenotypes linked to cancer progression. The models suggest that stem cell and semi-differentiated cell population dynamics in colonic crypts can display chaotic behavior. In addition, we found that clinical profiling of colorectal cancer correlates with the in silico phenotypes proposed by the mathematical model. Further, potential therapeutic targets for chemotherapy resistant phenotypes are proposed, which in any case will require experimental validation.  相似文献   

10.
Potten CS 《Radiation research》2004,161(2):123-136
Epithelial tissues are highly polarized, with the proliferative compartment subdivided into units of proliferation in many instances. My interests have been in trying to understand how many cellular constituents exist, what their function is, and what the intercommunicants are that ensure appropriate steady-state cell replacement rates. Radiation has proven to be a valuable tool to induce cell death, reproductive sterilization, and regenerative proliferation in these systems, the responses to which can provide information on the number of regenerative cells (a function associated with stem cells). Such studies have helped define the epidermal proliferative units and the structurally similar units on the dorsal surface of the tongue. The radiation responses considered in conjunction with a wide range of cell kinetic, lineage tracking and somatic mutation studies together with complex mathematical modeling provide insights into the functioning of the proliferative units (crypts) of the small intestine. Comparative studies have then been undertaken with the crypts in the large bowel. In the small intestine, in which cancer rarely develops, various protective mechanisms have evolved to ensure the genetic integrity of the stem cell compartment. Stem cells in the small intestinal crypts are intolerant of genotoxic damage (including that induced by very low doses of radiation); they do not undergo cell cycle arrest and repair but commit an altruistic TP53-dependent cell suicide (apoptosis). This process is compromised in the large bowel by BCL2 expression. Recent studies have suggested a second genome protection mechanism operating in the stem cells of the small intestinal crypts that may also have a TP53 dependence. Such studies have allowed the cell lineages and genome protection mechanisms operating the small intestinal crypts to be defined.  相似文献   

11.
The weekly administration of 1,2-dimethyl-hydrazine (DMH) by subcutaneous injection for a period of 16-20 weeks is a well known procedure for producing colonic tumors in mice and rats. Quantitative histomorphological, histochemical and kinetic studies, as well as investigation of the significance of epithelial cell density were carried out in mice between the 7th and the 91st day after the first DMH injection. These studies showed that between the 28th and the 35th day, several simultaneous alterations in the colonic epithelium involving modification of glandular form, decreased mucus secretion, an increase in epithelial cell density and an increase in the number of S phase cells (BrdU labeling index: LI). Around the 35th day, the glands tended to expand and from the 35th to the 63rd day, they were stretched and displayed compartments of dedifferentiated and non-mucinous crypts (DNMC). In these crypts the cell density became very high, reaching twice the control value on the 91st day. This feature was accompanied by alteration in cell morphology and by an increase in the available basement membrane area. A decrease in mucus secretion was apparent from the 14th day and by the 63rd day, mucus secretion was only about 60% of the control value in all crypts. The LI was increased until the 35th day following which a paradoxical and progressive decrease occurred in all glandular compartments.  相似文献   

12.
The influence of 400 R X-irradiation on the localization and the number of mature and immature goblet cells and Paneth cells in rat duodenal epithelium has been studied. At short times after irradiation, when the total proliferative activity in the crypts of Lieberkuhn is reduced, the proportion of mature and immature goblet cells of the total number of crypt cells was increased; also an absolute increase in the number of goblet cells in the crypts was found. The immature goblet cells were localized in the lower half of the crypt as in control animals, whereas the number of the mature cells increased over the whole crypt length. When the proliferative activity of the crypt cells increases again from 12 to 48 hr after irradiation the number of both types of goblet cells decreases. Between 48 and 72 hr, when the whole crypt is involved in proliferation, a second increase of both types of goblet cells was found. However, the localization of the immature goblet cells is no longer restricted to the lower half of the crypt but they also appear at the higher cell positions. On the villus no immature goblet cells were found and the changes in the numbers of mature goblet cells do reflect the changes induced by irradiation in the goblet cell population in the crypt. The absolute number and localization of Paneth cells did not change under the experimental conditions. The findings are discussed in relation to cell proliferation and differentiation processes in intestinal crypts.  相似文献   

13.
The standard model of epithelial cell renewal in the intestine proposes a gradual transition between the region of the crypt containing actively proliferating cells and that containing solely terminally differentiating cells (Cairnie, Lamerton and Steel, 1965 a, b). The experimental justification for this conclusion was the gradual decrease towards the crypt top of the measured labeling and mitotic indices. Recently, however, we have proposed that intestinal crypts normally undergo a replicative cycle so that at any time in any region of the intestine, crypts will be found to have a wide range of sizes. We show here that if this intrinsic size variation is taken into account, then a sharp transition between the proliferative and nonproliferative compartments of individual intestinal crypts is consistent with the labeling and mitotic index distributions of mouse and rat jejunal crypts. Thus there is no need to invoke the region of gradual transition from proliferating to nonproliferating cells as is done in the standard model. The position of this sharp transition is estimated for both the mouse and rat. Experiments to further test our model are suggested and the significance of the results discussed.  相似文献   

14.
The influence of 400 R X-irradiation on the localization and the number of mature and immature goblet cells and Paneth cells in rat duodenal epithelium has been studied. At short times after irradiation, when the total proliferative activity in the crypts of Lieberkiihn is reduced, the proportion of mature and immature goblet cells of the total number of crypt cells was increased; also an absolute increase in the number of goblet cells in the crypts was found. The immature goblet cells were localized in the lower half of the crypt as in control animals, whereas the number of the mature cells increased over the whole crypt length. When the proliferative activity of the crypt cells increases again from 12 to 48 hr after irradiation the number of both types of goblet cells decreases. Between 48 and 72 hr, when the whole crypt is involved in proliferation, a second increase of both types of goblet cells was found. However, the localization of the immature goblet cells is no longer restricted to the lower half of the crypt but they also appear at the higher cell positions. On the villus no immature goblet cells were found and the changes in the numbers of mature goblet cells do reflect the changes induced by irradiation in the goblet cell population in the crypt. The absolute number and localization of Paneth cells did not change under the experimental conditions. The findings are discussed in relation to cell proliferation and differentiation processes in intestinal crypts.  相似文献   

15.
A technique is presented which yields single cells and intact crypts in suspension from unfixed rat intestinal mucosal epithelium. Everted lengths of intestine were digested by 27 mM sodium citrate in phosphate-buffered saline (pH = 7.3) at 37 degrees C. Mucosal cells were dislodged by vibratory stress (hand vortexing) following incubation for prescribed intervals at 37 degrees C in 1.5 mM ethylenediamine tetraacetic acid (EDTA) and 0.5 mM dithiothreitol (dtt). Alkaline phosphatase determinations, phase microscopy, and in vivo and in vitro evaluations of tritiated thymidine ([3H]TdR) incorporation were performed on isolated intestinal cells. Data indicate that cells were sequentially derived from villus tip to crypt base as judged by cellular morphology, alkaline phosphatase activity/mg protein and radioactivity per microgram protein. Upon completion of the intestinal cell isolation assay, scanning electron microscopy of the remaining intestine revealed that approximately 95% of the crypt openings were vacant; the villi were totally denuded; the supporting structures, including the lamina propria, appeared intact. In vitro radiolabelling of intestinal cell fractions enriched with crypts revealed a linear incorporation of [3H]TdR from 0-60 min which was strongly influenced by the presence of foetal calf serum (FCS). Measurements of the compensatory response of the mucosa to resection of 70% of the small bowel indicated that the mucosal cell separation is capable of detecting alterations in crypt cell proliferation. Previously, such alterations were monitored by other methods utilizing microdissection procedures or stathmokinetic agents.  相似文献   

16.
Abstract. A statistical analysis of the distribution of [3H]TdR-labelled cells in longitudinal and transverse sections of crypts from the ileum of the mouse, indicated that there was a strong tendency for labelled or unlabelled cells to be associated in short vertical runs and lateral clumps, suggesting the presence of clusters of labelled cells on the sides of the crypts. A model is discussed for the cellular spatial organization of the crypt that proposes a vertical alignment of the cells within branches of the proliferative cell lineage. The model would predict vertical alignment of partially synchronized cells as well as some lateral clumping.
In the present studies mitoses were not observed at higher levels in the crypt than labelled (S phase) cells. This observation would be predicted by the non-random spatial organization suggested by the model.
The model would also make certain predictions concerning cell migration. These are discussed in relation to cell migration studies which include evidence that migration continues in the absence of mitotic activity.  相似文献   

17.
The intestinal epithelium is one of the most rapidly regenerating tissues in mammals. Cell production takes place in the intestinal crypts which contain about 250 cells. Only a minority of 1-60 proliferating cells are able to maintain a crypt over a long period of time. However, so far attempts to identify these stem cells were unsuccessful. Therefore, little is known about their cellular growth and selfmaintenance properties. On the other hand, the crypts appear to exhibit a life cycle which starts by fission of existing crypts and ends by fission or extinction. Data on these processes have recently become available. Here, we demonstrate how these data on the life cycle of the macroscopic crypt structure can be used to derive a quantitative model of the microscopic process of stem cell growth. The model assumptions are: (1) stem cells undergo a time independent supracritical Markovian branching process (Galton-Watson process); (2) a crypt divides if the number of stem cells exceeds a given threshold and the stem cells are distributed to both daughter crypts according to binomial statistics; (3) the size of the crypt is proportional to the stem cell number. This model combining two different stochastic branching processes describes a new class of processes whose stationary stability and asymptotic behavior are examined. This model should be applicable to various growth processes with formation of subunits (e.g. population growth with formation of colonies in biology, ecology and sociology). Comparison with crypt data shows that intestinal stem cells have a probability of over 0.8 of dividing asymmetrically and that the threshold number should be 8 or larger.  相似文献   

18.
Isolation of rat intestinal crypt cells   总被引:1,自引:0,他引:1  
Abstract. A technique is presented which yields single cells and intact crypts in suspension from unfixed rat intestinal mucosal epithelium. Everted lengths of intestine were digested by 27 mM sodium citrate in phosphate-buffered saline (pH = 7.3) at 37°C. Mucosal cells were dislodged by vibratory stress (hand vortexing) following incubation for prescribed intervals at 37°C in 1.5 mM ethylenediamine tetraacetic acid (EDTA) and 0.5 mM dithiothreitol (dtt). Alkaline phosphatase determinations, phase microscopy, and in vivo and in vitro evaluations of tritiated thymidine ([3H]TdR) incorporation were performed on isolated intestinal cells. Data indicate that cells were sequentially derived from villus tip to crypt base as judged by cellular morphology, alkaline phosphatase activity/mg protein and radioactivity per μg protein. Upon completion of the intestinal cell isolation assay, scanning electron microscopy of the remaining intestine revealed that approximately 95% of the crypt openings were vacant; the villi were totally denuded; the supporting structures, including the lamina propria, appeared intact. In vitro radiolabelling of intestinal cell fractions enriched with crypts revealed a linear incorporation of [3H]TdR from 0–60 min which was strongly influenced by the presence of foetal calf serum (FCS). Measurements of the compensatory response of the mucosa to resection of 70% of the small bowel indicated that the mucosal cell separation is capable of detecting alterations in crypt cell proliferation. Previously, such alterations were monitored by other methods utilizing microdissection procedures or stathmokinetic agents.  相似文献   

19.
The development of ACF (aberrant crypt foci), adenoma and cancer following intrarectal administration of the alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) has been described. However, microscopic lesions not previously reported were observed as soon as two weeks following carcinogen treatment. These lesions protrude slightly over the epithelial lining of the colon, with a micropolyp-like appearance. Oriented sections show that the centre of these lesions present pseudo-“cystic” appearance, with disorganized crypts made of normal cells. The chorion of the lesion is invaded by numerous inflammatory cells and some ACF may be present nearby. The epithelium lining the cysts and the distorted crypts shows expression of gastric mucin M1/MUC5AC, an early marker of colonic carcinogenesis which is not present in normal colon. This mucin is retained within the “cysts” together with some inflammatory cells.The micropolyps observed contain in a minute form some histological elements described in ulcerative colitis or short-term radiotherapy (distortion of crypts, crypt abscesses, increase of chorion cellularity, infiltration by immune cells). In addition, the presence of bifid crypts nearby suggests mucosal regeneration.Our hypothesis is that these modifications are steps in a normal healing pathway that may in some cases degenerate into precancerous lesions and cancer.  相似文献   

20.
Some features of the proliferative cells at the bottom of the ileal crypts in BDF1 mice have been studied in relation to the distribution of Paneth cells (PC) in an attempt to clarify the nature and function of these crypt base columnar cells (BCC) and to elucidate some aspects of the role of the microenvironment created by the PC. Longitudinal sections of crypts have shown that the ratio of PC to the BCC, which are scattered amongst the PC, is 2.7:1 in sections or approximately 29 PC and 9 BCC per whole crypt, i.e., a ratio of 3.2:1. The labelling index of BCC is about 35%, which is comparable to that of mid-crypt columnar cells. Although the BCC do become labeled, it is concluded that they cannot create vertical pairs or runs of several adjacent BCC since this would seriously disturb the distribution of Paneth cells. Only in dividing crypts are such runs (consisting of 3 to 5 cells) observed. The ability of BCC to synthesize DNA is not dependent on their position in the Paneth cell zone. In 95% of the crypts, the highest Paneth cell is below the 7th cell position from the bottom of the crypt, and the positions of the highest PC on either side of a given crypt are similar. The secreted granules or the cytoplasm of PC specifically bind pokeweed lectin, and this can be used for identification. Tracer doses of 3HTdR (37 kBq/gm body weight) result in the histological death of some BCC, and these damaged cells are evenly distributed throughout the Paneth cell zone. These tracer doses are somewhat selectively incorporated into BCC, i.e., the BCC have a higher grain count in autoradiographs, probably because they possess more thymidine kinase enzyme activity. This ability is very sensitive to the withdrawal of food, because 24 hr of fasting abolished the observed gradient in the intensity of labelling, which is very well correlated with the distribution of BCC. Regeneration of the crypts following cytotoxic exposure to Ara-C is initiated at the base of the crypt and hence may involve the BCC with possible help from the Paneth cells. The latter are insensitive to cytotoxic (S phase specific) agents and may help in the regeneration by preserving the architecture of the base of the crypt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号