共查询到20条相似文献,搜索用时 15 毫秒
1.
A method is described for generating proline ring structures by successive addition of atoms, wherein ring closure is achieved by optimizing the fit to known ring bond-angles and one closing bond-length ("bond-optimized ring closure"). Two ring torsion angles are fixed independently within broad, allowed ranges, and the remaining torsion angles are determined uniquely in most cases. The independent torsion angles are chosen as phi and chi 2, and ring closure is achieved without prohibitive strain through most of the ranges -130 degrees less than phi less than -20 degrees and -60 degrees less than chi 2 less than 60 degrees. Comparisons of predicted ring structures to 191 X-ray diffraction structures from the literature, starting with the known values of phi and chi 2, yielded root-mean-square deviations of 4.8 degrees in chi 1, 4.7 degrees in chi 3, 8.3 degrees in chi 4, and 0.3-2% in the ring bond angles and the N-C delta distance. Semiempirical energies were calculated for the optimized structures using three sets of energy parameters from the literature. The energy surfaces show broad minima coinciding with the torsion angle regions in which the highest concentrations of observed structures are found. Two of the sets of energy parameters produce double minima corresponding to the "up" and "down" puckered conformations. 相似文献
2.
随着同步辐射装置的建设与发展及各种建模方法的产生与完善,小角X-射线散射(small angle X-ray scattering,SAXS)法已经逐渐成为结构生物学中的一种重要的工具。SAXS可以用于研究溶液中生物大分子的结构及构象变化,蛋白质的组装、折叠等动态过程。本文对SAXS的基本原理、常用的研究技术和建模方法及其应用进行了综述。 相似文献
3.
Small heat shock proteins (sHsps) are ubiquitous low-molecular-weight chaperones that prevent protein aggregation under cellular stresses. sHsps contain a structurally conserved α-crystallin domain (ACD) of about 100 amino acid residues flanked by varied N- and C-terminal extensions and usually exist as oligomers. Oligomerization is important for the biological functions of most sHsps. However, the active oligomeric states of sHsps are not defined yet. We present here crystal structures (up to 1.65 Å resolution) of the sHspA from the plant pathogen Xanthomonas (XaHspA). XaHspA forms closed or open trimers of dimers (hexamers) in crystals but exists predominantly as 36mers in solution as estimated by size-exclusion chromatography. The XaHspA monomer structures mainly consist of α-crystallin domain with disordered N- and C-terminal extensions, indicating that the extensions are flexible and not essential for the formation of dimers and 36mers. Under reducing conditions where α-lactalbumin (LA) unfolds and aggregates, XaHspA 36mers formed complexes with one LA per XaHspA dimer. Based on XaHspA dimer-dimer interactions observed in crystals, we propose that XaHspA 36mers have four possible conformations, but only XaHspA 36merB, which is formed by open hexamers in 12mer-6mer-6mer-12mer with protruding dimers accessible for substrate (unfolding protein) binding, can bind to 18 reduced LA molecules. Together, our results unravel the structural basis of an active sHsp oligomer. 相似文献
4.
5.
L-Threonine acetaldehyde-lyase (threonine aldolase, TA) is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes conversion of L-threonine or L-allo-threonine to glycine and acetaldehyde in a secondary glycine biosynthetic pathway. X-ray structures of Thermatoga maritima TA have been determined as the apo-enzyme at 1.8 A resolution and bound to substrate L-allo-threonine and product glycine at 1.9 and 2.0 A resolution, respectively. Despite low pairwise sequence identities, TA is a member of aspartate aminotransferase (AATase) fold family of PLP enzymes. The enzyme forms a 222 homotetramer with the PLP cofactor bound via a Schiff-base linkage to Lys199 within a domain interface. The structure reveals bound calcium and chloride ions that appear to contribute to catalysis and oligomerization, respectively. Although L-threonine and L-allo-threonine are substrates for T. maritima TA, enzymatic assays revealed a strong preference for L-allo-threonine. Structures of the external aldimines with substrate/product reveal a pair of histidines that may provide flexibility in substrate recognition. Variation in the threonine binding pocket may explain preferences for L-allo-threonine versus L-threonine among TA family members. 相似文献
6.
Yang C van der Woerd MJ Muthurajan UM Hansen JC Luger K 《Nucleic acids research》2011,39(10):4122-4135
MeCP2 is a highly abundant chromatin architectural protein with key roles in post-natal brain development in humans. Mutations in MeCP2 are associated with Rett syndrome, the main cause of mental retardation in girls. Structural information on the intrinsically disordered MeCP2 protein is restricted to the methyl-CpG binding domain; however, at least four regions capable of DNA and chromatin binding are distributed over its entire length. Here we use small angle X-ray scattering (SAXS) and other solution-state approaches to investigate the interaction of MeCP2 and a truncated, disease-causing version of MeCP2 with nucleosomes. We demonstrate that MeCP2 forms defined complexes with nucleosomes, in which all four histones are present. MeCP2 retains an extended conformation when binding nucleosomes without extra-nucleosomal DNA. In contrast, nucleosomes with extra-nucleosomal DNA engage additional DNA binding sites in MeCP2, resulting in a rather compact higher-order complex. We present ab initio envelope reconstructions of nucleosomes and their complexes with MeCP2 from SAXS data. SAXS studies also revealed unexpected sequence-dependent conformational variability in the nucleosomes themselves. 相似文献
7.
8.
Lountos GT Jobson AG Tropea JE Self CR Zhang G Pommier Y Shoemaker RH Waugh DS 《FEBS letters》2011,585(20):3245-3249
The serine/threonine checkpoint kinase 2 (Chk2) is an attractive molecular target for the development of small molecule inhibitors to treat cancer. Here, we report the rational design of Chk2 inhibitors that target the gatekeeper-dependent hydrophobic pocket located behind the adenine-binding region of the ATP-binding site. These compounds exhibit IC(50) values in the low nanomolar range and are highly selective for Chk2 over Chk1. X-ray crystallography was used to determine the structures of the inhibitors in complex with the catalytic kinase domain of Chk2 to verify their modes of binding. 相似文献
9.
Comparison of the structures of three carboxypeptidase A-phosphonate complexes determined by X-ray crystallography 总被引:2,自引:0,他引:2
The structures of the complexes of carboxypeptidase A (CPA) with two tight-binding phosphonate inhibitors have been determined by X-ray crystallography. The inhibitors, Cbz-Phe-ValP-(O)-Phe[ZFVP(O)F] and Cbz-Ala-GlyP-(O)-Phe[ZAGP(O)F], bind noncovalently to CPA with dissociation constants (Ki's) of 11 fM and 710 pM, respectively. The CPA-ZFVP(O)F complex crystallizes in the space group P2(1)2(1)2(1) with unit cell parameters a = 65.3 A, b = 63.4 A, and c = 76.0 A, and the CPA-ZAGP(O)F complex crystallizes in the space group P2(1)2(1)2(1) with unit cell parameters a = 63.4 A, b = 65.9 A, and c = 74.4 A. Both structures were determined by molecular replacement to a resolution of 2.0 A. The final crystallographic residuals are 0.189 for the CPA-ZFVP(O)F complex and 0.191 for the CPA-ZAGP(O)F complex. The CPA-ZFVP(O)F complex exhibits the lowest Ki yet determined for an enzyme-inhibitor interaction. Comparison of the CPA-ZFVP(O)F structure with that of the CPA-ZAAP(O)F complex [Kim, H., & Lipscomb, W.N. (1990) Biochemistry 29, 5546-5555] indicates the likely important contributions of hydrophobic and weakly polar enzyme-inhibitor interactions to the exceptional stability of the CPA-ZFVP(O)F complex. Among these interactions is a network of four aromatic rings of CPA and ZFVP(O)F in a configuration that allows stabilizing aromatic-aromatic edge-to-face interactions from one ring to the next. A comparison of the structures of the CPA-ZFVP(O)F, CPA-ZAAP(O)F and CPA-ZAGP(O)F complexes shows that all three phosphonates assume a similar binding mode in the active-site binding groove of CPA. For ZAGP(O)F, the glycyl P1 residue does not lead to an anomalous or a partially disordered binding mode as seen in some previous complexes of CPA involving dipeptide analogue inhibitors with glycyl P1 residues. The additional enzyme-inhibitor interactions for these tripeptide phosphonates secure a binding mode in which a Pi portion of the inhibitor is clearly bound by the corresponding Si binding subsite. These three phosphonates have been implicated as transition-state analogues of the CPA-catalyzed reaction. The phosphinyl groups of these phosphonates coordinate to the active-site zinc in a manner that has been proposed as a characteristic feature of the general-base (Zn-hydroxyl or Zn-water) mechanism for the CPA-catalyzed reaction. Further mechanistic proposals are made for Arg-127, whose probable role in binding substrates is apparent in these CPA-phosphonate complexes. 相似文献
10.
The X-ray structures of red yeast Sporobolomyces salmonicolor carbonyl reductase (SSCR) and its complex with a coenzyme, NADPH, have been determined at a resolution of 1.8A and 1.6A, respectively. SSCR was crystallized in an orthorhombic system with the space group P2(1)2(1)2(1) and cell dimensions of a=54.86 A, b=83.49 A, and c=148.72 A. On its cocrystallization with NADPH, isomorphous crystals of the SSCR/NADPH complex were obtained. The structure of SSCR was solved by a single wavelength anomalous diffraction measurement using a selenomethionine-substituted enzyme, and that of the SSCR/NADPH complex was solved by a molecular replacement method using the solved structure of SSCR. The structures of SSCR and the SSCR/NADPH complex were refined to an R-factor of 0.193 (R(free)=0.233) and 0.211 (R(free)=0.238), respectively. SSCR has two domains, an NADPH-binding domain and a substrate-binding domain, and belongs to the short-chain dehydrogenases/reductases family. The structure of the NADPH-binding domain and the interaction between the enzyme and NADPH are very similar to those found in other structure-solved enzymes belonging to the short-chain dehydrogenases/reductases family, while the structure of the substrate-binding domain is unique. SSCR has stereoselectivity in its catalytic reaction, giving rise to excessive production of (S)-alcohols from ethyl 4-chloro-3-oxobutanoate. The X-ray structure of the SSCR/NADPH complex and preliminary modeling show that the formation of the hydrophobic channel induced by the binding of NADPH is closely related to the stereoselective reduction by SSCR. 相似文献
11.
Cationic porphyrins form ground state electrostatically associated complexes with anionic oligo-electrolytes such as those formed by a series of glutamic acid (E) residues. Temperature dependencies were measured of the rate constants for intra-complex electron transfer to the triplet state of Pd(II)TMPyP4+ from a tyrosine (tyr, Y) or tryptophan (trp, W) moiety connected to a glutamic acid tetramer. In complexes such as YE4, E2YE2, YE4G10E (G, glycine), and WE4 these data were used to estimate the reorganization energy (lambda) and electronic interaction energy (HDA) relevant to the process. For all tyr-peptide complexes, lambda values were found to be large (lambda approximately 1.60 +/- 0.06 eV), reflecting a relatively high medium polarity in the vicinity of tyr residues. It further indicates that the tyr residues in all oligo-peptides are exposed to the aqueous medium in a similar way irrespective of the position of the aromatic moiety in the peptide chain. A significantly lower lambda value (lambda = 1.08 eV) was derived for the tryptophan-containing peptide complex, indicating a relatively higher hydrophobic character of trp compared to tyr. The electronic coupling matrix elements (HDA) derived for tyr-peptide complexes (5.1 meV for YE4, 5.4 meV for YE4G10E and 7.5 meV for E2YE2) were larger than that found for WE4 (1.1 meV). Molecular dynamics calculations were employed to obtain structural features of the porphyrin-peptide complexes. These showed average distances between the center of mass (COM) of the porphyrin ring and the center of mass of the amino acid aromatic ring of 816 +/- 140 pm (YE4), 800 +/- 80 pm (E2YE2), 900 +/- 130 pm (YE4G10E) and 970 +/- 160 pm (WE4). The molecular dynamics calculations were shown to be in good agreement with the experimentally determined electronic interaction energies, strongly suggesting that HDA is primarily responsible for the dependence of the electron-transfer rate constant (KET) on the donor-acceptor separation distance and relative orientation. The higher HDA (7.55 meV) derived for tyr incorporated into the middle of the peptide backbone (E2YE2) was presumed to be associated with a higher degree of orbital overlap due to a more favorable ring-ring orientation. Overlap parameters (beta derived for all peptide-porphyrin complexes were similar (approximately 0.95 +/- 0.06 A-1), being in good agreement with most literature values for similar systems. Finally, the intra-complex electron-transfer ratio (ktrp/ktyr) derived from flash photolysis experiments and the corresponding ratio derived from Marcus' theory combined with experimental data from the temperature-dependence investigations and electrochemical measurements were found to be in excellent agreement. This same consistency was found for the couple E4Y and E2YE2. The empirical expression (Moser and Dutton) governing the intraprotein electron-transfer rate constant in native systems combined with our experimental data (kET, lambda, delta G0) yielded tunneling pathway distances in excellent agreement with those arising from the molecular modeling studies. The exception was for the long peptide YE4G10E, for which the Quenched Molecular Dynamic (QMD) sampling technique was complicated and is probably inadequate. 相似文献
12.
To address the contribution of hydrophobic interaction to the stability of molten globule (MG) of proteins, the effects of various polyols (ethylene glycol, glycerol, erythritol, xylitol, sorbitol, and inositol) on the structure of acid-unfolded horse cytochrome c were examined at pH 2, by means of circular dichroism (CD), partial specific volume, adiabatic compressibility, and differential scanning calorimetry (DSC). Addition of polyols induced the characteristic CD spectra of MG, the effect being enhanced with an increase in their concentration and chain length (the number of OH groups) of polyols except for ethylene glycol. The free energy change of MG formation by sorbitol was comparable with those for the salt-induced MG formation but the heat capacity change was negligibly small. The partial specific volume did not change within the experimental error but the adiabatic compressibility largely increased by MG formation. The sorbitol-induced MG showed a highly cooperative DSC thermogram with a large heat capacity change in comparison with the salt-induced one. These results demonstrate that polyols can stabilize the MG state of this protein through the enhanced hydrophobic interaction overcoming the electrostatic repulsion between charged residues. The stabilizing mechanism and structure of MG state induced by polyols were discussed in terms of the preferential solvent interactions and osmotic pressure of the medium, in comparison with the salt-induced one. 相似文献
13.
Manuel Volpe 《Inorganica chimica acta》2007,360(1):273-280
The use of a Schiff-base calixpyrrole (L) as a dinucleating ligand for early transition metals is described. Salt elimination reactions between the crystallographically-characterised [K4(THF)3(PhMe)(L)] and titanium(III) and vanadium(III) halides form the new dinuclear complexes [(MCl)2(L)] (M = Ti, V). Adventitious, and partial, oxidation of [(VCl)2(L)] resulted in the formation of the unusual mixed-valence vanadyl complexes [(VO)(S)(VCl)(L)] (S = THF or pyridine), which both adopt desired Pacman geometries in the solid state in which the oxo ligand is accommodated within the dinuclear molecular cleft. 相似文献
14.
Berrisford JM Akerboom J Brouns S Sedelnikova SE Turnbull AP van der Oost J Salmon L Hardré R Murray IA Blackburn GM Rice DW Baker PJ 《Journal of molecular biology》2004,343(3):649-657
Pyrococcus furiosus phosphoglucose isomerase (PfPGI) is a metal-containing enzyme that catalyses the interconversion of glucose 6-phosphate (G6P) and fructose 6-phosphate (F6P). The recent structure of PfPGI has confirmed the hypothesis that the enzyme belongs to the cupin superfamily and identified the position of the active site. This fold is distinct from the alphabetaalpha sandwich fold commonly seen in phosphoglucose isomerases (PGIs) that are found in bacteria, eukaryotes and some archaea. Whilst the mechanism of the latter family is thought to proceed through a cis-enediol intermediate, analysis of the structure of PfPGI in the presence of inhibitors has led to the suggestion that the mechanism of this enzyme involves the metal-dependent direct transfer of a hydride between C1 and C2 atoms of the substrate. To gain further insight in the reaction mechanism of PfPGI, the structures of the free enzyme and the complexes with the inhibitor, 5-phospho-d-arabinonate (5PAA) in the presence and absence of metal have been determined. Comparison of these structures with those of equivalent complexes of the eukaryotic PGIs reveals similarities at the active site in the disposition of possible catalytic residues. These include the presence of a glutamic acid residue, Glu97 in PfPGI, which occupies the same position relative to the inhibitor as that of the glutamate that is thought to function as the catalytic base in the eukaryal-type PGIs. These similarities suggest that aspects of the catalytic mechanisms of these two structurally unrelated PGIs may be similar and based on an enediol intermediate. 相似文献
15.
Zhili Wang Kun Gao Jian Chen Youli Hong Xin Ge Dajiang Wang Zhiyun Pan Peiping Zhu Wenbing Yun Chris Jacobsen Ziyu Wu 《Biotechnology advances》2013
Understanding the hierarchical organizations of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. Light microscopy is a powerful tool for observations of the dynamics of live cells, its resolution attainable is limited and insufficient. While electron microscopy can produce images with astonishing resolution and clarity of ultra-thin (< 1 μm thick) sections of biological specimens, many questions involve the three-dimensional organization of a cell or the interconnectivity of cells. X-ray microscopy offers superior imaging resolution compared to light microscopy, and unique capability of nondestructive three-dimensional imaging of hydrated unstained biological cells, complementary to existing light and electron microscopy. 相似文献
16.
A new, weakly hydrophobic, high-performance liquid chromatography column has been developed for the separation of native proteins based on their relative hydrophobicities. Starting with a covalently bound, hydrophilic polyamine matrix, packing materials were synthesized through acylation with anhydrides and acid chlorides of increasing chain length to obtain increasingly hydrophobic surfaces. Proteins in aqueous buffers were induced to bind hydrophobically to the columns by the use of high salt concentrations in the mobile phase. Elution was achieved by decreasing the ionic strength of the solvent in a linear gradient. A mixture of cytochrome c, conalbumin, and beta-glucosidase was used as a standard to test the resolving power of newly synthesized columns. On a 4-cm butyrate column, baseline resolution was achieved in 20 min with a gradient of 3.0 mu sodium sulfate in 0.1 M potassium phosphate buffer, pH 7.0, to water. The static loading capacity for each column was determined using a hemoglobin binding assay. Capacities normally ranged between 150 and 180 mg of hemoglobin per gram of support. Since proteins are not denatured in hydrophobic interaction chromatography, enzymes eluted from the column retained enzymatic activity. Samples of alpha-amylase and beta-glucosidase ranging in size from 10 to 200 micrograms were recovered from the butyrate column with greater than 92% enzymatic activity in all cases. In a single trial, the enzyme citrate synthase was recovered from the benzoate column with 92% retention of enzymatic activity. 相似文献
17.
The luciferin-luciferase bioluminescence method was used to estimate the number of bacteria retained in neutral and amphiphilic gels and those in the eluate to determine the hydrophobic surface properties of bacteria by using hydrophobic interaction chromatography. Good correlations were found between viable counts and ATP content for Escherichia coli, Pseudomonas fragi, and Listeria monocytogenes. ATP determination was more rapid than viable counts for characterizing the relative hydrophobicity of L. monocytogenes. Quantitative estimations of adsorption of L. monocytogenes on octyl-Sepharose indicate that this microorganism is hydrophilic. 相似文献
18.
FastContact: rapid estimate of contact and binding free energies 总被引:2,自引:0,他引:2
Interaction free energies are crucial for analyzing binding propensities in proteins. Although the problem of computing binding free energies remains open, approximate estimates have become very useful for filtering potential binding complexes. We report on the implementation of a fast computational estimate of the binding free energy based on a statistically determined desolvation contact potential and Coulomb electrostatics with a distance-dependent dielectric constant, and validated in the Critical Assessment of PRotein Interactions experiment. The application also reports residue contact free energies that rapidly highlight the hotspots of the interaction. AVAILABILITY: The program was written in Fortran. The executable and full documentation is freely available at http://structure.pitt.edu/software/FastContact 相似文献
19.
Computational method for relative binding energies of enzyme-substrate complexes. 总被引:1,自引:2,他引:1
下载免费PDF全文

T. Zhang D. E. Koshland Jr 《Protein science : a publication of the Protein Society》1996,5(2):348-356
A computational method for estimating the relative binding free energies of enzyme-substrate complexes is described that combines electrostatic and solvation models and X-ray crystallographic data. The polar contribution is evaluated by the Poisson-Boltzman equation. The nonpolar contribution is evaluated by solvent transfer data and surface area calculations. This algorithm was used to calculate the relative binding energies of 63 pairs of nine different mutant proteins with seven different substituted R-malate substrates of Escherichia coli isocitrate dehydrogenase. Comparison of calculated values with the experimentally observed values shows a high degree of correlation. 相似文献
20.
Crystal structures of all available unblocked linear peptides with two to five residues were retrieved from the Cambridge Structural Database and their intermolecular contacts and packing modes studied using molecular graphics. This survey reveals that interactions between hydrophobic portions of the molecules are critically important in determining the overall features of their crystal packing patterns. Distinct hydrophobic columns or layers are observed in almost all crystal structures. Analyses of the relationships between these interactions and crystal growth properties of small peptides are given. It is suggested that needle growth is promoted by hydrophobic packing, usually along a short crystallographic axis (4.6-6.0 angstroms). Also contributing to these morphologic characteristics are entropic factors associated with hydrophobic aggregation as well as tightly bound water molecules on hydrophobic faces. The paper also provides a comprehensive overview of hydrogen bond patterns in acyclic peptide crystals. It is demonstrated that one of their primary roles is to provide a scaffolding within which hydrophobic groups can aggregate. Even though there is a high density of hydrogen bonds in the crystals, often with complex patterns and networks, certain motifs are found to recur in a number of structures indicating specific hydrogen bond preferences. Water, for example, is an integral part of the hydrogen bond networks in these crystals, usually acting as the primary donor for main-chain carboxylate groups in peptide hydrates. 相似文献