首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phorbol 12,13-dibutyrate (PDBu) increased the production of 3,4-dihydroxyphenylalanine (DOPA) in the superior cervical ganglion of the rat. This effect occurred without a detectable lag and persisted for at least 90 min of incubation. The action of PDBu was half-maximal at a concentration of approximately 0.1 microM; at high concentrations, PDBu produced about a twofold increase in DOPA accumulation. PDBu increased DOPA production in decentralized ganglia and in ganglia incubated in a Ca2+-free medium. The action of PDBu was additive with the actions of dimethylphenylpiperazinium, muscarine, and 8-Br-cyclic AMP, all of which also increase DOPA accumulation, and was not inhibited by the cholinergic antagonists hexamethonium (3 mM) and atropine (6 microM). Finally, PDBu did not increase the content of cyclic AMP in the ganglion. Thus, the action of PDBu does not appear to be mediated by the release of neurotransmitters from preganglionic nerve terminals, by the stimulation of cholinergic receptors in the ganglion, or by an increase in ganglionic cyclic AMP. PDBu also increased the incorporation of 32Pi into tyrosine hydroxylase. PDBu activates protein kinase C, which in turn may phosphorylate tyrosine hydroxylase and increase the rate of DOPA synthesis in the ganglion.  相似文献   

2.
Phenylephrine increased [3H]norepinephrine efflux and accumulation of cyclic AMP in cultured rat superior cervical ganglion cells superfused with Tyrode's solution. The purpose of this study was to determine the mechanism and relationship between these two events. Electrical stimulation (1-2 Hz), potassium chloride (50 mM), and the preferential alpha 1-adrenergic receptor agonist phenylephrine (1-100 microM) increased fractional tritium efflux, whereas methoxamine, cirazoline, and amidephrine were relatively ineffective. Phenylephrine, but not methoxamine and cirazoline, also increased cyclic AMP accumulation. Phenylephrine-induced tritium efflux was not altered by alpha- and beta-adrenergic receptor antagonists or by removal of extracellular calcium. Phenylephrine-induced cyclic AMP accumulation was blocked by the beta-adrenergic receptor antagonists propranolol and atenolol. Forskolin (10 microM) and the nonhydrolyzable cyclic AMP analogue 8-(4-chlorophenylthio)cyclic AMP (100 microM) had minimal effect on tritium efflux. However, phenylephrine-evoked increase in tritium efflux was dose dependently attenuated by the neuronal uptake blocker cocaine, and phenylephrine dose-dependently inhibited the incorporation of [3H]norepinephrine into neuronal stores. We conclude that the increase in tritium efflux induced by phenylephrine is independent of cyclic AMP accumulation and appears to be mediated by uptake of phenylephrine via the neuronal carrier-mediated amine transport process, which in turn promotes efflux of the adrenergic transmitter from its storage sites.  相似文献   

3.
Abstract Receptor-mediated stimulation of Dictyostelium cells by the aggregative chemoattractant cyclic AMP leads to a complex excitatory response resulting in chemotaxis and the synthesis and release of cyclic AMP as the relayed chemotactic signal. However, the mechanism of this stimulus-response coupling is not well understood. In this study, we show that a number of compounds, best known as inhibitors of cyclooxygenase activity in mammalian cells, prevent cyclic AMP receptor-mediated cell excitation and cyclic AMP accumulation in aggregation-competent Dictyostelium cells. These observations suggest that some eicosanoid-like compound(s) may be involved in stimulus-response coupling in this organism, as is the case in higher eukaryotic cells.  相似文献   

4.
5.
The effect of prostaglandin analogues on the cycle AMP level in cultured chondrocytes were examined. Prostaglandin E1 at 0.4 to 30 μM, increased the intracellular concentration of cyclic AMP in chondrocytes. Its effect was rapid, being evident within 1 min and reaching a maximum in 10 to 20 min. The maximum level was sustained until 30 min after its addition and then decreased gradually. Prostaglandin D2 and E2 also increased the cyclic AMP level in chondrocytes, but they had less effect than prostaglandin E1. Prostaglandin A1 had no effect on the nucleotide level in chondrocytes, although they markedly increased the level in fibroblasts. The time course of stimulation of cyclic AMP accumulation in chondrocytes by prostaglandin E1, D2 or E2 was quite different from that by parathyroid hormone (PTH): the effect of prostaglandin was slower and more sustained than that of PTH. PTH potentiated the effect of prostaglandin E1, E2, or D2 on the cyclic AMP level in chondrocytes and that the combined effects of prostaglandin, PTH or both produced a synergistic effect on the accumulation of cyclic AMP in the chondrocytes. These findings suggest that prostaglandin E1, E2, and D2 increase the synthesis of cyclic AMP and that the combined effect of the prostaglandins and PTH on the cyclic AMP level in chondrocytes is partly attributed to the synergistic synthesis of cyclic AMP in the cells.  相似文献   

6.
In a rat phrenic nerve-hemidiaphragm preparation, calcitonin gene-related peptide (CGRP) increased the twitch contraction induced by nerve or transmural stimulation dose dependently. Either electrical or high K+ stimulation of the phrenic nerve caused release of a CGRP-like immunoreactive substance (CGRP-LIS) in a Ca2(+)-dependent manner. Electrical stimulation of the phrenic nerve also increased the cyclic AMP content in diaphragm. This increase was not observed in Ca2(+)-free medium and was blocked by antiserum against CGRP. These results indicate that excitation of the motor nerve causes release of CGRP-LIS at nerve terminals and that the released CGRP-LIS increases the cyclic AMP content of skeletal muscles and potentiates twitch contraction.  相似文献   

7.
Choleragen increases cyclic AMP content of confluent human fibroblasts. Maximally effective concentrations of isoproterenol and prostaglandin E1 also induce large increases in cyclic AMP content of human fibroblasts and in confluent cultures the effect of prostaglandin E1 is much greater than that of isoproterenol. After incubation with choleragen, the increment in cyclic AMP produced by 2 μM isoproterenol is increased and approaches that produced by 5.6 μM prostaglandin E1. Although the concentration of isoproterenol which produces a maximal increase in cyclic AMP is similar in both control and choleragen-treated cells, lower concentrations of isoproterenol are more effective in the choleragen-treated cells. In choleragen-treated cells, although the response to 5.6 μM prostaglandin E1 is reduced by as much as 50%, the concentration of prostaglandin E1 required to induce a maximal increase in cyclic AMP is 110 that required in control cells. Thus the capacities of intact human fibroblasts to respond to isoproterenol and prostaglandin E1 can be altered independently during incubation of intact cells with choleragen. Differences in responsiveness to the two agonists were not demonstrable in adenylate cyclase preparations from control or choleragen-treated cells.In rat fat cells, the effects of choleragen on cyclic AMP content were much smaller than those in fibroblasts. In contrast to its effect on intact fibroblasts, choleragen treatment of rat fat cells did not alter the accumulation of cyclic AMP in response to a maximally effective concentration of isoproterenol. The responsiveness of adenylate cyclase preparations to isoproterenol was also not altered by exposure of fat cells to choleragen.  相似文献   

8.
Previous work has shown that incubation of hippocampal slices in medium without added calcium markedly attenuates the capacity of vasoactive intestinal peptide (VIP) to elevate cyclic AMP levels. The present studies examined the mechanism that confers calcium dependence on VIP stimulation of cyclic AMP accumulation in hippocampal slices. Calcium dependence was apparent immediately on slice preparation and was reversible only if calcium ions were added back very early during slice incubation (within 5 min). The cyclic AMP response to VIP was not abolished by preincubating slices in 100 microM adenosine, suggesting that calcium-dependent, VIP-induced release of adenosine does not mediate VIP elevation of cyclic AMP. VIP-stimulated cyclic AMP accumulation was not decreased by agents that block calcium influx (verapamil, nifedipine, magnesium ions), or by calmodulin antagonists (trifluoperazine, calmidozolium). In fact both verapamil (100 microM) and magnesium (14 mM) augmented VIP stimulation of cyclic AMP generation. Incubation of slices with the phosphodiesterase inhibitor 1-methyl-3-isobutylxanthine (MIX) did not affect VIP activation of cyclic AMP accumulation if slices were incubated without added calcium, but MIX did enhance VIP elevation of cyclic AMP content in slices incubated with calcium. Thus calcium dependence of the cyclic AMP response to VIP in hippocampal slices is unlikely to result from VIP-dependent calcium influx, from interactions with calmodulin, or from calcium-inhibited phosphodiesterase(s).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The number of vasoactive intestinal peptide (VIP) receptors and the efficiency of VIP in the stimulation of cyclic AMP accumulation in rat jejunal epithelial cells increased after bilateral adrenalectomy. However, this condition increased neither receptor affinity nor VIP potency. In addition, jejunal VIP levels followed a parallel increase. These changes reversed to control conditions after glucocorticoid replacement with dexamethasone indicating that adrenalectomy modifies the intestinal VIP receptor/effector system and suggest a relationship between corticosteroids and VIP in the functions of intestinal epithelium.  相似文献   

10.
Summary Expression of the β-adrenergic receptor (βAR) and its coupling to cyclic AMP (cAMP) synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this study was to determine if electrical stimulation in a pattern simulating slow muscle contraction would alter the βAR response in primary cultures of avian and mammalian skeletal muscle cells. Specifically, chicken skeletal muscle cells and rat skeletal muscle cells that had been grown for 7d in culture were subjected to electrical stimulation for an additional 2 d at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. In chicken skeletal muscle cells, the βAR population was not significantly affected by electrical stimulation; however, the ability of these cells to synthesize cyclic AMP was reduced by approximately one-half. In contrast, the βAR population in rat muscle cells was increased slightly but not significantly by electrical stimulation, and the ability of these cells to synthesize cyclic AMP was increased by almost twofold. The basal levels of intracellular cyclic AMP in neither rat muscle cells nor chicken muscle cells were affected by electrical stimulation.  相似文献   

11.
12.
Pineal cyclic AMP and cyclic GMP are regulated by norepinephrine (NE) acting through alpha 1- and beta-adrenoceptors. beta-Adrenergic stimulation appears to be an absolute requirement and alpha 1-adrenergic activation amplifies beta-adrenergic stimulation of the cyclic AMP response 10-fold and the cyclic GMP response 100-fold, respectively. Chronic deprivation of adrenergic stimulation, due to exposure to constant light (LL) or by surgical denervation, enhances the cyclic AMP response and diminishes the cyclic GMP response as compared to control animals in a 10:14 light/dark (LD) cycle. This phenomenon is termed see-saw signal processing. In the current study we find these changes do not reflect shifts in the time course or Ka of these responses. Dose-response studies indicate the beta-adrenergic component of cyclic AMP stimulation is enhanced and the alpha 1-adrenergic component of cyclic GMP stimulation is diminished in LL pinealocytes. Several observations indicate these changes may reflect alterations in Ca2+-sensitive postreceptor mechanisms.  相似文献   

13.
Experiments were carried out to elucidate the characteristics of regulation of cyclic AMP levels in intact myocardial cells. For this purpose, the influence of isoproterenol, a nonselective cyclic nucleotide phosphodiesterase (PDE) inhibitor 3-isobutyl-1-methylxanthine (IBMX) and carbachol on cyclic AMP levels was investigated in isolated rat cardiac myocytes. The extent of cyclic AMP accumulation induced by isoproterenol was much less than that produced by IBMX: submaximal concentrations of isoproterenol and IBMX elevated the cyclic AMP level 2.4- and 4.8-fold of the control level, respectively. Both agents in combination increased the cyclic AMP level markedly 48-fold. Carbachol inhibited the cyclic AMP accumulation induced by isoproterenol, IBMX and their combination by 30%, 60% and 80% of the respective response. The extent of inhibition produced by carbachol of the cyclic AMP accumulation induced by IBMX + isoproterenol was smaller than that caused by propranolol, and carbachol produced only a marginal additional inhibitory action to that of propranolol, implying that carbachol does not affect the process of cyclic AMP degradation. The present findings indicate that in intact cardiac myocytes the rate of cyclic AMP degradation catalyzed by PDE may be a crucial process of cyclic AMP turnover. This view is supported by the observations that the inhibitory action of carbachol on the effect of isoproterenol was less than that on the effect of IBMX, and that the inhibitory action of carbachol was markedly enhanced by the simultaneous presence of IBMX.  相似文献   

14.
The process of cyclic AMP efflux from rat islets of Langerhans has been studied. The dynamics of glucose-induced cyclic AMP efflux closely resembled the pattern of glucose-induced insulin release. Thus, both processes were dose-dependent for glucose having the same threshold concentrations (4–8 mmol/l glucose), with the time course of cyclic AMP efflux and insulin release from 0–60 min being very similar. Galactose did not affect insulin release, cyclic AMP efflux and intra-islet cyclic AMP accumulation. On the other hand, inosine, N-acetylglucosamine, α-ketoisocaproic acid, L-leucine and xylitol all promoted insulin release and cyclic AMP efflux. Except for L-leucine, all these substances enhanced the intracellular accumulation of cyclic AMP. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, greatly augmented all these parameters in the presence of glucose whereas in the absence of glucose, insulin release was not enhanced, while both cyclic AMP efflux and cyclic AMP accumulation were elevated. The drug, probenecid, did not alter either insulin release or intra-islet cyclic AMP levels, while cyclic AMP efflux was markedly reduced (though not abolished). Papaverine inhibited both insulin release and cyclic AMP efflux, but was found to augment the intra-islet cyclic AMP levels. The efflux of cyclic AMP correlates more closely with insulin release than with the cyclic AMP accumulation in most instances. The efflux is independent of either insulin secretory granule extrusion or intracellular fluctuations of the nucleotide, though it is not yet known whether cyclic AMP efflux may have some regulatory significance in insulin release.  相似文献   

15.
High levels of cyclic AMP activity were detected in the fruit of Zizyphus jujuba. The partially purified cyclic AMP-like substance was found in amounts ranging from 100 to 150 nmol/g (fr. wt) by both a competitive binding assay and radioimmunoassay. The cyclic AMP-like substance also showed the same elution pattern as authentic cyclic AMP and was decomposed by cyclic nucleotide-specific phosphodiesterase.  相似文献   

16.
Abstract: The cyclic 3'-5' adenosine monophosphate (cyclic AMP) content of the rat hippocampal formation doubles during the week following a medial septal lesion and remains elevated for at least 1 month, the longest time period studied. This elevation in cyclic AMP does not result from sympathetic in growth, as neither superior cervical ganglion stimulation nor ganglionectomy influences hippocampal cyclic AMP content after lesions. Interruption of the cholinergic septohippocampal pathway in the fornix did not elevate hippocampal cyclic AMP content. Further, treatment of septallesioned animals with oxotremorine or of normal animals with atropine did not influence hippocampal cyclic AMP content. Finally, neither locus ceruleus lesions nor treatment with propranolol affected hippocampal cyclic AMP content. We believe this to be the first report of a sustained elevation in hippocampal cyclic AMP content. Like other long-term events, it is likely to have profound effects on hippocampal function and represents a remarkable brain adaptation to remote injury.  相似文献   

17.
La3+ was found to inhibit the secretion of 5-hydroxytryptamine and the production of thromboxane B2 by washed platelets exposed to collagen or thrombin. In addition, La3+ inhibited secretion in response to sodium arachidonate, although the conversion of arachidonate to thromboxane B2 was not affected.La3+ was also found to enhance the accumulation of cyclic AMP under basal conditions and in response to prostaglandin E1, in washed platelets. The inhibition of cyclic AMP accumulation by ADP was prevented by La3+, suggesting that the effect of ADP on cyclic AMP metabolism was dependent upon the presence or flux of calcium at the platelet membrane.La3+ inhibited the activity of adenylate cyclase in platelet lysates both in response to prostaglandin E1 and to F?, indicating a possible effect at the catalytic subunit of the enzyme. None of the observed effects of La3+ could be reversed by the addition of Ca2+ up to 10 mM. The stimulation of cyclic AMP production by La3+ may largely explain the inhibitory effect of La3+ upon platelet secretion and thromboxane B2 production. These results also suggest that Ca2+ localised at the platelet plasma membrane may be important in the regulation of cyclic AMP metabolism.  相似文献   

18.
Astrocytes are the primary site of glutamate conversion to glutamine in the brain. We examined the effects of treatment with either dibutyryl cyclic AMP and/or the synthetic glucocorticoid dexamethasone on glutamine synthetase enzyme activity and steady-state mRNA levels in cultured neonatal rat astrocytes. Treatment of cultures with dibutyryl cyclic AMP alone (0.25 mM–1.0 mM) increased glutamine synthetase activity and steady state mRNA levels in a dose-dependent manner. Similarly, treatment with dexamethasone alone (10–7–10–5 M) increased glutamine synthetase mRNA levels and enzyme activity. When astrocytes were treated with both effectors, additive increases in glutamine synthetase activity and mRNA were obtained. However, the additive effects were observed only when the effect of dibutyryl cyclic AMP alone was not maximal. These findings suggest that the actions of these effectors are mediated at the level of mRNA accumulation. The induction of glutamine synthetase mRNA by dibutyryl cyclic AMP was dependent on protein synthesis while the dexamethasone effect was not. Glucocorticoids and cyclic AMP are known to exert their effects on gene expression by different molecular mechanisms. Possible crosstalk between these effector pathways may occur in regulation of astrocyte glutamine synthetase expression.Abbreviations used GS glutamine synthetase - dbcAMP dibutyryl cyclic AMP - MEM minimal essential medium - cyx cycloheximide - GRE glucocorticoid response element - CRE cyclic AMP response element  相似文献   

19.
Author index     
(1) Cyclic AMP stimulated alanine transport in isolated hepatocytes by approx. 30%, in the range 0.2–5 mM alanine. (2) Alanine utilisation was also stimulated by cyclic AMP. The rates of transport and metabolism were comparable, both in the presence and absence of cyclic AMP. (3) At concentrations of alanine above 1 mM, addition of ouabain, or the reduction of the Na+ concentration, could partially inhibit transport without affecting the rate of metabolism. (4) At these alanine concentrations, stimulation of metabolism by cyclic AMP was associated with a decrease in the intracellular to extracellular alanine concentration ratio. (5) At alanine concentrations below 0.5 mM, or at higher concentrations when transport was inhibited by reducing the Na+ concentration, cyclic AMP caused an increase in the alanine concentration ratio. (6) It is concluded that at concentrations of alanine above 1 mM, alanine transport is not rate-limiting for alanine metabolism in hepatocytes from fed rats, and cyclic AMP stimulates alanine metabolism primarily by an effect on an intracellular reaction. At physiological concentrations of alanine, however, alanine transport appears to be rate-limiting in agreement with a previous report.  相似文献   

20.
The effect of dibutyryl cyclic AMP on the transport of α-methyl-d-glucoside and α-aminoisobutyric acid in separated tubules and purified brush border membranes from rabbit kidney was investigated using a rapid filtration procedure. Dibutyryl cyclic AMP stimulated the uptake of α-methyl-d-glucoside and α-aminoisobutyric acid by separated renal tubules in agreement with prior studies utilizing renal slices (Rea, C. and Segal, S. (1973) Biochim. Biophys. Acta 311, 615–624; Weiss, I.W., Morgan, K. and Phang, J.M. (1972) J. Biol. Chem. 247, 760–764). However, in contrast to previous reports, no preincubation of the tissue with dibutyryl cyclic AMP was required for stimulation of transport to be manifest. Dibutyryl cyclic AMP stimulated oxygen consumption by separated tubules suggesting that stimulation of transport may occur by a linkage with renal oxidative metabolism. Dibutyryl cyclic AMP increased the uptake of α-aminoisobutyric acid into purified renal brush border membranes. However the uptakes of α-methyl-d-glucoside, proline, leucine and phosphate into brush border membranes were significantly inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号