首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For detection of the latent periodicity of the protein families responsible for various biological functions, methods of information decomposition, cyclic profile alignment, and the method of noise decomposition have been used. The latent periodicity, being specific to a particular family, is recognized in 94 of 110 analyzed protein families. Family specific periodicity was found for more than 70% of amino acid sequences in each of these families. Based on such sequences the characteristic profile of the latent periodicity has been deduced for each family. Possible relationship between the recognized latent periodicity, evolution of proteins, and their structural organization is discussed.  相似文献   

2.
Latent amino acid repeats seem to be widespread in genetic sequences and to reflect their structure, function, and evolution. We have recently identified latent periodicity in more than 150 protein families including protein kinases and various nucleotide-binding proteins. The latent repeats in these families were correlated to their structure and evolution. However, a majority of known protein families were not identified with our latent periodicity search algorithm. The main presumable reason for this was the inability of our techniques to identify periodicities interspersed with insertions and deletions. We designed the new latent periodicity search algorithm, which is capable of taking into account insertions and deletions. As a result, we identified many novel cases of latent periodicity peculiar to protein families. Possible origins of the periodic structure of these families are discussed. Summarizing, we presume that latent periodicity is present in a substantial portion of known protein families. The latent periodicity matrices and the results of Swiss-Prot scans are available from http://bioinf.narod.ru/del/.  相似文献   

3.
A method of noise decomposition has been developed. This method allows for the identification of a latent periodicity with symbol insertions and deletions that is specific for all or most amino acid sequences belonging to the same protein family or protein domain. The latent periodicity has been identified in catalytic domains of 85% of serine/threonine and tyrosine protein kinases. Similar results have been obtained for 22 other protein families. The possible role of latent periodicity in protein families is discussed.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 3, 2005, pp. 420–436.Original Russian Text Copyright © 2005 by Laskin, Kudryashov, Skryabin, Korotkov.  相似文献   

4.
We identified latent periodicity in catalytic domains of approximately 85% of serine/threonine and tyrosine protein kinases. Similar results were obtained for other 22 protein domains. We also designed the method of noise decomposition, which is aimed to distinguish between different periodicity types of the same period length. The method is to be used in conjunction with the cyclic profile alignment, and this combination is able to reveal structure-related or function-related patterns of latent periodicity. Possible origins of the periodic structure of protein kinase active sites are discussed. Summarizing, we presume that latent periodicity is the common property of many catalytic protein domains.  相似文献   

5.
6.
7.
8.
《The Journal of cell biology》1986,103(6):2499-2509
A new connective tissue protein, which we call fibrillin, has been isolated from the medium of human fibroblast cell cultures. Electrophoresis of the disulfide bond-reduced protein gave a single band with an estimated molecular mass of 350,000 D. This 350-kD protein appeared to possess intrachain disulfide bonds. It could be stained with periodic acid-Schiff reagent, and after metabolic labeling, it contained [3H]glucosamine. It could not be labeled with [35S]sulfate. It was resistant to digestion by bacterial collagenase. Using mAbs specific for fibrillin, we demonstrated its widespread distribution in the connective tissue matrices of skin, lung, kidney, vasculature, cartilage, tendon, muscle, cornea, and ciliary zonule. Electron microscopic immunolocalization with colloidal gold conjugates specified its location to a class of extracellular structural elements described as microfibrils. These microfibrils possessed a characteristic appearance and averaged 10 nm in diameter. Microfibrils around the amorphous cores of the elastic fiber system as well as bundles of microfibrils without elastin cores were labeled equally well with antibody. Immunolocalization suggested that fibrillin is arrayed periodically along the individual microfibril and that individual microfibrils may be aligned within bundles. The periodicity of the epitope appeared to match the interstitial collagen band periodicity. In contrast, type VI collagen, which has been proposed as a possible microfibrillar component, was immunolocalized with a specific mAb to small diameter microfilaments that interweave among the large, banded collagen fibers; it was not associated with the system of microfibrils identified by the presence of fibrillin.  相似文献   

9.
An earlier reported method for revealing latent periodicity of the nucleotide sequences has been considerably modified in a case of small samples, by applying a Monte Carlo method. This improved method has been used to search for the latent periodicity of some nucleotide sequences of the EMBL data bank. The existence of the nucleotide sequences' latent periodicity has been shown for some genes. The results obtained have implied that periodicity of gene structure is projected onto the periodicity of primary amino acid sequences and, further, onto spatial protein conformation. Even though the periodic structure of gene sequences has been eroded, it is still retained in primary and/or spatial structures of corresponding proteins. Furthermore, in a few cases the study of genes' periodicity has suggested their possible evolutionary origin by multifold duplications of some gene's fragments.  相似文献   

10.
Sequences of amino acids of some fiber proteins may have a periodic structure. To analyze this periodicity Fourier transform of a mathematical image of symbolic sequence of amino acids in a protein is sometimes used. In this work we employed one (out of few possible) particular way of doing Fourier transform as the most straightforward and optimal. Employing this optimal Fourier transform method we analyzed periodicity of fiber proteins in bacteriophage T4. As a result we managed to confirm that a certain periodicity exists in the investigated proteins. It was found that for a number of proteins the alternation of elements of the same group in the amino acid sequence with a rather small period T = 15 exists, whereas for some other proteins alternations have small periods 10 and 8. The new result is a discovery of relatively large periods of amino acids alternations, which divide the amino acids sequence of the protein into 4 or 6 equal parts. These data on the amino acids periodicity allowed us to align amino acids sequences in accordance with the established periods of both types, in agreement with certain results obtained in X-ray crystallography and electron microscopy experiments.  相似文献   

11.
The amino acid sequences of some fiber proteins possibly have a periodic structure. This periodicity can be analyzed using the Fourier transform of the mathematical image of the symbol sequence of amino acid residues in proteins. One of several possible methods of Fourier transform has been chosen as optimal for the given study. This optimal Fourier transform has been used to analyze the periodic structures in several fiber proteins of bacteriophage T4. Amino acids from some groups form sequences of alternating elements with a relatively small period (T=15); those from other groups form sequences with other small periods (T=10 and T=8). Relatively large periods of amino acid arrangement, with the entire amino acid sequence of the protein being divided between them into four or six equal parts, is a new finding. The data on protein structural periodicity make it possible to align the amino acid sequences according to the periodic structures of both type. The results obtained agree with the results of previous crystallographic and electron microscopic studies.__________Translated from Molekulyarnaya Biologiya, Vol. 39, No. 2, 2005, pp. 321–329.Original Russian Text Copyright © 2005 by Simakova, Simakov.  相似文献   

12.
Fukushima A  Ikemura T  Kinouchi M  Oshima T  Kudo Y  Mori H  Kanaya S 《Gene》2002,300(1-2):203-211
We used a power spectrum method to identify periodic patterns in nucleotide sequence, and characterized nucleotide sequences that confer periodicities to prokaryotic and eukaryotic genomes and genomes. A 10-bp periodicity was prevalent in hyperthermophilic bacteria and archaebacteria, and an 11-bp periodicity was prevalent in eubacteria. The 10-bp periodicity was also prevalent in the eukaryotes such as the worm Caenorhabditis elegans. Additionally, in the worm genome, a 68-bp periodicity in chromosome I, a 59-bp periodicity in chromosome II, and a 94-bp periodicity in chromosome III were found. In human chromosomes 21 and 22, approximately 167- or 84-bp periodicity was detected along the entire length of these chromosomes. Because the 167-bp is identical to the length of DNA that forms two complete helical turns in nucleosome organization, we speculated that the respective sequences may correspond to arrays of a special compact form of nucleosomes clustered in specific regions of the human chromosomes. This periodic element contained a high frequency of TGG. TGG-rich sequences are known to form a specific subset of folded DNA structures, and therefore, the sequences might have potential to form specific higher order structures related to the clustered occurrence of a specific form of the speculated nucleosomes.  相似文献   

13.
Clustered regularly interspaced short palindromic repeats (CRISPRs) are a family of DNA direct repeats found in many prokaryotic genomes. Repeats of 21-37 bp typically show weak dyad symmetry and are separated by regularly sized, nonrepetitive spacer sequences. Four CRISPR-associated (Cas) protein families, designated Cas1 to Cas4, are strictly associated with CRISPR elements and always occur near a repeat cluster. Some spacers originate from mobile genetic elements and are thought to confer "immunity" against the elements that harbor these sequences. In the present study, we have systematically investigated uncharacterized proteins encoded in the vicinity of these CRISPRs and found many additional protein families that are strictly associated with CRISPR loci across multiple prokaryotic species. Multiple sequence alignments and hidden Markov models have been built for 45 Cas protein families. These models identify family members with high sensitivity and selectivity and classify key regulators of development, DevR and DevS, in Myxococcus xanthus as Cas proteins. These identifications show that CRISPR/cas gene regions can be quite large, with up to 20 different, tandem-arranged cas genes next to a repeat cluster or filling the region between two repeat clusters. Distinctive subsets of the collection of Cas proteins recur in phylogenetically distant species and correlate with characteristic repeat periodicity. The analyses presented here support initial proposals of mobility of these units, along with the likelihood that loci of different subtypes interact with one another as well as with host cell defensive, replicative, and regulatory systems. It is evident from this analysis that CRISPR/cas loci are larger, more complex, and more heterogeneous than previously appreciated.  相似文献   

14.
In this work, the helix-forming residues in fragments of several proteins (ribonuclease, thermolysin, tendamistat and angiogenin) were identified by NOE and the helix proton shifts were measured as delta changes associated with helix-population increments driven by trifluoroethanol addition. When estimated in this way, a regular pattern of helix conformational shifts was clearly seen in the delta delta versus sequence profiles of all the peptides studied. The helix periodicity of the H alpha and H beta resonances was especially clear, an observation that earlier statistical studies of protein delta values failed to predict. Amide protons showed the largest helix shifts, but with a less-sharply defined periodic character. Aromatic residues considerably distorted the periodicity of the helix amide shifts in some peptides, as evidenced by the delta shifts of a RNase A fragment 1-15 analog in which the two aromatic residues were replaced by Ala. The relationship between helix periodicity and peptide amphiphatic character is discussed.  相似文献   

15.
Based on the similarity between the TIGR (trabecular-meshwork inducible glucocorticoid response) (also known as myocilin) and olfactomedin protein families identified throughout the length of the TIGR protein, we have identified more distantly related proteins to determine the elements essential to the function/structure of the TIGR and olfactomedin proteins. Using a sequence walk method and the Shotgun program, we have identified a family including 31 olfactomedin domain-containing sequences. Multiple sequence alignments and secondary structure analyses were used to identify conserved sequence elements. Pairwise identity in the olfactomedin domain ranges from 8 to 64%, with an average pairwise identity of 24%. The N-terminal regions of the proteins fall into two subgroups, one including the TIGR and olfactomedin families and another group of apparently unrelated domains. The TIGR and olfactomedin sequences display conserved motifs including a residual leucine zipper region and maintain a similar secondary structure throughout the N-terminal region. The correlation between conserved elements and disease-associated mutations and apparent polymorphisms in human TIGR was also examined to evaluate the apparent importance of conserved residues to the function/structure of TIGR. Several residues have been identified as essential to the function and/or structure of the human TIGR protein based on their degree of conservation across the family and their implication in the pathogenesis of primary open-angle glaucoma. Additionally, we have identified a group of chitinase sequences containing several of the highly conserved motifs present in the C-terminal region of the olfactomedin domain-containing sequences.  相似文献   

16.
17.
Proline-rich regions have been identified in many surface proteins of pathogenic streptococci and staphylococci. These regions have been suggested to be located in cell wall-spanning domains and/or to be required for surface expression of the protein. Because little is known about these regions, which are found in extensively studied and biologically important surface proteins, we characterized the proline-rich region in one such protein, the beta protein of group B streptococci. The proline-rich region in beta, designated the XPZ region, has a proline at every third position, and the sequence is highly periodic in other respects. Immunochemical analysis showed that the XPZ region was not associated with the cell wall but was exposed on the bacterial surface. Moreover, characterization of a beta mutant lacking the XPZ region demonstrated that this region was not required for surface expression of the beta protein. Comparison of the XPZ region in different beta proteins showed that it varied in size but always retained the typical sequence periodicity. Circular dichroism spectroscopy indicated that the XPZ region had the structure of a polyproline II helix, an extended and solvent-exposed structure with exactly three residues per turn. Because of the three-residue sequence periodicity in the XPZ region, it is expected to be amphipathic and to have distinct nonpolar and polar surfaces. This study identified a proline-rich structure with unique properties that is exposed on the surface of an important human pathogen.  相似文献   

18.
S. OHNO 《Animal genetics》1988,19(4):305-316
Inasmuch as all events in this universe are governed by multitudes of periodicities, it is a mistake to regard any coding sequence as unique implying the descent from random assemblages of four bases. Instead, each coding sequence is comprised of primordial and derived repeating units. In the case of families of proteins with transmembrane alpha-helices, the primordial repeating units of their coding sequences were base heptamers, thus, giving the heptapeptidic periodicity very conductive to alpha-helix formation to the original polypeptide chains. Even in modern coding sequences for these families of proteins, intact and base-substituted copies of these primordial heptamers are found in more or less even distribution along the entire coding sequence. In addition, there are now locally prominent tandemly recurring units that are only remotely related to primordial heptamers. In the case of Ca++ channel, local prominence of one such nonameric unit gave a unique tripeptidic periodicity to the fourth helix of each unit giving to it a girdle of positively charged residues. All these complex interplays between primordial and derived recurring units that characterize each coding sequence can best be appreciated by their musical transformation. The transformed musical score of a pertinent part of rabbit skeletal muscle Ca++ channel coding sequence is given.  相似文献   

19.
KpnI families of long, interspersed repetitive DNAs are ubiquitous repetitive elements that occur in tens of thousands of copies in primate genomes. KpnI 1.2, 1.5 and two different KpnI 1.8-kb families were found within and flanking a 6.4-kb repeat beginning at 3 kb, 3' from the human β-globin gene. Thus, six different types of KpnI families have now been identified, and four of these are found next to each other in a specific 6.4-kb repeat. Clones of the distinct KpnI families were hybridized to clones of the 6.4-kb repeat and adjacent sequences encompassed within some 17.6 kb of DNA lying 3' to the β-globin gene cluster. The four KpnI families appear to make up the entire length of the 6.4-kb repeat. The linear order of the various cloned KpnI sequences in the repeat is 5'-pBK(1.8)26-pBK.(1.5)54-pBK(1.2)11-pBK(1.8)11-3'. KpnI 1.2-kb sequences were also detected downstream from the 6.4-kb repeat. As in the case of the KpnI 1.2 and 1.5-kb families, the two KpnI 1.8-kb sequence families described here each hybridized with about 15% of all plaques in two independently generated human genome libraries.  相似文献   

20.
Several recent studies in landscape ecology have found periodicity in correlograms or semi-variograms calculated, for instance, from spatial data of soils, forests, or animal populations. Some of the studies interpreted this as an indication of regular or periodic landscape patterns. This interpretation is in disagreement with other studies that doubt whether such analysis is valid. The objective of our study was to explore the relationship between periodicity in landscape patterns and geostatistical models. We were especially interested in the validity of the assumption that periodicity in geostatistical models indicates periodicity in landscape pattern, and whether the former can characterize frequency and magnitude of the latter. We created maps containing various periodic spatial patterns, derived correlograms from these, and examined periodicity in the correlograms. We also created non-regular maps that we suspected would cause periodicity in correlograms. Our results demonstrate that a) various periodic spatial patterns produce periodicity in correlograms derived from them, b) the distance-lags at which correlograms peak correspond to the average distances between patch centers, c) periodicity is strongest when the diameter of patches is equal to the distance between patch edges, d) periodicity in omni-directional correlograms of complex spatial patterns (such as checkerboards) are combinations of several waves because inter-patch distances differ with direction; multiple directional correlograms can decompose such complexity, and e) periodicity in correlograms can also be caused when the number of patches in a study site is small. These results highlight that correlograms can be used to detect and describe regular spatial patterns. However, it is crucial to ensure that the assumption of stationarity is not violated, i.e., that the study area contains a sufficiently large number of patches to avoid incorrect conclusions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号