首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proliferation and differentiation of epithelial cells are thought to be regulated by soluble factors in extracellular fluid and insoluble components of the extracellular matrix. We have examined the combined effects of soluble factors and an extracellular matrix (EHS matrix) on DNA synthesis, cell proliferation, and surfactant protein gene expression in primary cultures of alveolar type II epithelial cells. Cells on EHS matrix cultured in DMEM containing insulin, cholera toxin, EGF, aFGF, 5% rat serum, and 15-fold concentrated bronchoalveolar lavage fluid (D-GM) formed larger aggregates than cells cultured on the same substratum in DMEM containing 5% rat serum (D-5). Cells cultured in D-GM on EHS matrix incorporated more [3H]-thymidine than cells on the same substratum in D-5, with an eight-fold increase seen on day 4 of culture. This increase in [3H]-thymidine incorporation was accompanied by a labeling index of greater than 65% of the cells. Cell counts showed that exposure of type II cells on EHS matrix to D-GM resulted in increased cell number on day 4 of culture. [3H]-thymidine autoradiography combined with immunostaining with anti-cytokeratin, anti-SP-A, and anti-vimentin antibodies demonstrated that the proliferating cells were epithelial cells that contained SP-A. Type II cells cultured on plastic in D-GM also showed increased [3H]-thymidine incorporation compared to cells cultured in D-5. The level of [3H]-thymidine incorporation by cells on plastic, however, was significantly less than that seen in cells cultured in the same medium on EHS matrix. Type II cells cultured on EHS matrix in D-GM had a decreased abundance of mRNAs for SP-A and SP-C than cells cultured on EHS matrix in D-5 as determined by Northern analysis. This inhibition was reversed by switching from D-GM to D-5 on day 4 and culturing the cells for an additional 4 days. In contrast, SP-B mRNA was increased in response to D-GM. This increase was not reversed by switching from D-GM to D-5 on day 4. These results suggest that the interaction of soluble factors and extracellular matrix components has a strong influence on type II cell proliferation, which were partially associated with the reversible inhibition of lung tissue-specific protein mRNAs. Their dynamic interplay among the type II cell, the extracellular matrix, and growth factors may determine multicellular functions and play an important role in normal lung development and in the repair of the lung epithelium following injury.  相似文献   

2.
3.
Phosphatidylcholine labeling was studied in freshly isolated adult rat alveolar type II epithelial cells exposed to dexamethasone and epidermal growth factor. Dexamethasone at a medium concentration of 10?8m, enhanced phosphatidylcholine labeling in type II cells by about 25%. In lung fibroblast controls, dexamethasone had no effect. Phosphatidylcholine secretion into the culture medium was not observed in either cell type. Quantitation of dexamethasone receptors revealed a twofold greater number of receptors in type II cells than in control fibroblasts. In contrast, the addition of epidermal growth factor to the medium of type II cells or lung fibroblasts had no effect on phosphatidylcholine labeling or secretion into culture medium. Lung fibroblasts were found to have 11-fold more surface receptors for epidermal growth factor than isolated type II cells. These results indicate that dexamethasone significantly increases phosphatidylcholine synthesis in type II cells and thus, may also effect the production of surfactant by these cells.  相似文献   

4.
5.
6.

Background

Pulmonary fibrosis may result from abnormal alveolar wound repair after injury. Hepatocyte growth factor (HGF) improves alveolar epithelial wound repair in the lung. Stem cells were shown to play a major role in lung injury, repair and fibrosis. We studied the presence, origin and antifibrotic properties of HGF-expressing stem cells in usual interstitial pneumonia.

Methods

Immunohistochemistry was performed in lung tissue sections and primary alveolar epithelial cells obtained from patients with usual interstitial pneumonia (UIP, n = 7). Bone marrow derived stromal cells (BMSC) from adult male rats were transfected with HGF, instilled intratracheally into bleomycin injured rat lungs and analyzed 7 and 14 days later.

Results

In UIP, HGF was expressed in specific cells mainly located in fibrotic areas close to the hyperplastic alveolar epithelium. HGF-positive cells showed strong co-staining for the mesenchymal stem cell markers CD44, CD29, CD105 and CD90, indicating stem cell origin. HGF-positive cells also co-stained for CXCR4 (HGF+/CXCR4+) indicating that they originate from the bone marrow. The stem cell characteristics were confirmed in HGF secreting cells isolated from UIP lung biopsies. In vivo experiments showed that HGF-expressing BMSC attenuated bleomycin induced pulmonary fibrosis in the rat, indicating a beneficial role of bone marrow derived, HGF secreting stem cells in lung fibrosis.

Conclusions

HGF-positive stem cells are present in human fibrotic lung tissue (UIP) and originate from the bone marrow. Since HGF-transfected BMSC reduce bleomycin induced lung fibrosis in the bleomycin lung injury and fibrosis model, we assume that HGF-expressing, bone-marrow derived stem cells in UIP have antifibrotic properties.  相似文献   

7.
The root endodermis forms a selective barrier that prevents the free diffusion of solutes into the vasculature; to make this barrier, endodermal cells deposit hydrophobic compounds in their cell walls, forming the Casparian strip. Here, we showed that, in contrast to vascular and epidermal root cells, endodermal root cells do not divide alongside the root apical meristem in Arabidopsis thaliana. Auxin treatment induced division of endodermal cells in wild-type plants, but not in the auxin signaling mutant auxin resistant3-1. Endodermis-specific activation of auxin responses by expression of truncated AUXIN-RESPONSIVE FACTOR5 (ΔARF5) in root endodermal cells under the control of the ENDODERMIS7 promoter (EN7::ΔARF5) also induced endodermal cell division. We used an auxin transport inhibitor to cause accumulation of auxin in endodermal cells, which induced endodermal cell division. In addition, knockout of P-GLYCOPROTEIN1 (PGP1) and PGP19, which mediate centripetal auxin flow, promoted the division of endodermal cells. Together, these findings reveal a tight link between the endodermal auxin response and endodermal cell division, suggesting that auxin is a key regulator controlling the division of root endodermal cells, and that PGP1 and PGP19 are involved in regulating endodermal cell division.

The endodermal auxin response, which is regulated by centripetal auxin flow, determines division of the endodermal cells.  相似文献   

8.

Rationale

Semaphorin 3A (Sema3A) is a neural guidance cue that also mediates cell migration, proliferation and apoptosis, and inhibits branching morphogenesis. Because we have shown that genetic deletion of neuropilin-1, which encodes an obligatory Sema3A co-receptor, influences airspace remodeling in the smoke-exposed adult lung, we sought to determine whether genetic deletion of Sema3A altered distal lung structure.

Methods

To determine whether loss of Sema3A signaling influenced distal lung morphology, we compared pulmonary histology, distal epithelial cell morphology and maturation, and the balance between lung cell proliferation and death, in lungs from mice with a targeted genetic deletion of Sema3A (Sema3A-/-) and wild-type (Sema3A+/+) littermate controls.

Results

Genetic deletion of Sema3A resulted in significant perinatal lethality. At E17.5, lungs from Sema3A-/- mice had thickened septae and reduced airspace size. Distal lung epithelial cells had increased intracellular glycogen pools and small multivesicular and lamellar bodies with atypical ultrastructure, as well as reduced expression of type I alveolar epithelial cell markers. Alveolarization was markedly attenuated in lungs from the rare Sema3A-/- mice that survived the immediate perinatal period. Furthermore, Sema3A deletion was linked with enhanced postnatal alveolar septal cell death.

Conclusions

These data suggest that Sema3A modulates distal pulmonary epithelial cell development and alveolar septation. Defining how Sema3A influences structural plasticity of the developing lung is a critical first step for determining if this pathway can be exploited to develop innovative strategies for repair after acute or chronic lung injury.  相似文献   

9.
The role in cell multiplication and maturation of several factors present in the late fetal lung was explored on isolated fetal rat pulmonary fibroblasts and alveolar epithelial type II cells cultivated in serum-free medium. The low degree of reciprocal contamination of each cell population was assessed by immunocytochemistry. Epidermal Growth Factor (EGF) stimulated thymidine incorporation and DNA accumulation in both cell types. In type II cells, it increased labeled-choline incorporation into surfactant phosphatidylcholine (PC), consistently with previous data obtained with lung explant cultures, but not into non-surfactant PC. Insulin-like growth factor (IGF)-I slightly stimulated DNA accumulation in fibroblasts although it did not significantly stimulate thymidine incorporation, contrary to IGF-II which presented a dose-dependent stimulating activity of thymidine incorporation. Neither IGF-I nor IGF-II stimulated type II cell growth. IGFs thus appear to primarily control the growth of lung mesenchyme. In type II cells, they stimulated the most non-surfactant PC biosynthesis. Gastrin releasing peptide (GRP) which was recently reported to promote fetal lung growth in vivo and to stimulate surfactant biosynthesis in lung organ culture revealed as a growth factor for type II cells only, at concentrations below 10 −9 M. At concentration 10 −8 M, although it did not affect DNA synthesis, GRP tended to increase surfactant and non-surfactant-PC biosynthesis. Retinoic acid inhibited thymidine incorporation into type II cells on a dose-dependent manner but nevertheless enhanced surfactant-PC biosynthesis to a similar extent as EGF. It is suggested that retinoic acid may represent a differentiation or maturation factor for the alveolar epithelium.  相似文献   

10.
 The degree of immunoreactive connexin43 (Cx43) in rat lung was evaluated during the development of radiation-induced pulmonary fibrosis in rat by a double immunofluorescence technique using polyclonal antisera to Cx43 and monoclonal antibodies to cytokeratins on cryostat sections. In normal rat lungs, Cx43 was detected in pneumocytes type II and I, in large blood vessel endothelia, in peribronchial smooth muscle cells, and in some peribronchial and perivascular interstitial cells. As early as 1 week after irradiation, enhanced immunoreactivity for Cx43 in the epithelial cells was detected. In severely injured lungs (about 3 months after irradiation), Cx43 was found also in the cytoplasm of type II pneumocytes. These findings were confirmed by western blot data. Western blot analysis also revealed increased phosphorylation of Cx43. It remains to be investigated whether the increased content of Cx43 in irradiated rat lung may be due to an enhanced number of gap junctions between type I and II alveolar epithelial cells. Accepted: 20 May 1996  相似文献   

11.
Salt-inducible kinase 1 (SIK1) in epithelial cells mediates the increases in active sodium transport (Na+, K+-ATPase-mediated) in response to elevations in the intracellular concentration of sodium. In lung alveolar epithelial cells increases in active sodium transport in response to β-adrenergic stimulation increases pulmonary edema clearance. Therefore, we sought to determine whether SIK1 is present in lung epithelial cells and to examine whether isoproterenol-dependent stimulation of Na+, K+-ATPase is mediated via SIK1 activity. All three SIK isoforms were present in airway epithelial cells, and in alveolar epithelial cells type 1 and type 2 from rat and mouse lungs, as well as from human and mouse cell lines representative of lung alveolar epithelium. In mouse lung epithelial cells, SIK1 associated with the Na+, K+-ATPase α-subunit, and isoproterenol increased SIK1 activity. Isoproterenol increased Na+, K+-ATPase activity and the incorporation of Na+, K+-ATPase molecules at the plasma membrane. Furthermore, those effects were abolished in cells depleted of SIK1 using shRNA, or in cells overexpressing a SIK1 kinase-deficient mutant. These results provide evidence that SIK1 is present in lung epithelial cells and that its function is relevant for the action of isoproterenol during regulation of active sodium transport. As such, SIK1 may constitute an important target for drug discovery aimed at improving the clearance of pulmonary edema.  相似文献   

12.
The biochemical characteristics of type II alveolar epithelial cells dissociated from adult rabbit lung by instillation of low concentrations of an elastase trypsin mixture are reported. Cells studied immediately (within 4 h) after isolation were found to incorporate the radioactively labelled precursors [U-14C]glucose, [methyl-3H]choline and [3H]palmitate into cellular phosphatidylcholine at rates 2–10-fold higher than previously reported for cells not subject to short-term cell culture. Secretion of phosphatidylcholine was stimulated by beta-adrenergic agonists. Measurement of specific activities of enzymes of phospholipid biosynthesis in subcellular fractions of isolated lung cells showed a significant enrichment of acyl coenzyme A-lysophosphatidylcholine acyltransferase, an enzyme believed to be involved in pulmonary surfactant phosphatidylcholine remodeling, in the endoplasmic reticulum of type II cells. These observations support the utility of freshly isolated type II cells as a model system for the study of the functions of the alveolar epithelium.  相似文献   

13.
Acute lung injury is characterized by injury to the lung epithelium that leads to impaired resolution of pulmonary edema and also facilitates accumulation of protein-rich edema fluid and inflammatory cells in the distal airspaces of the lung. Recent in vivo and in vitro studies suggest that mesenchymal stem cells (MSC) may have therapeutic value for the treatment of acute lung injury. Here we tested the ability of human allogeneic mesenchymal stem cells to restore epithelial permeability to protein across primary cultures of polarized human alveolar epithelial type II cells after an inflammatory insult. Alveolar epithelial type II cells were grown on a Transwell plate with an air-liquid interface and injured by cytomix, a combination of IL-1β, TNFα, and IFNγ. Protein permeability measured by 131I-labeled albumin flux was increased by 5-fold over 24 h after cytokine-induced injury. Co-culture of human MSC restored type II cell epithelial permeability to protein to control levels. Using siRNA knockdown of potential paracrine soluble factors, we found that angiopoietin-1 secretion was responsible for this beneficial effect in part by preventing actin stress fiber formation and claudin 18 disorganization through suppression of NFκB activity. This study provides novel evidence for a beneficial effect of MSC on alveolar epithelial permeability to protein.  相似文献   

14.
Lung maturation before birth includes type II pneumocyte differentiation with progressive disappearance of glycogen content and onset of surfactant synthesis. We have shown previously that 1,25-(OH)2D3 increases surfactant synthesis and secretion by type II cells and decreases their glycogen content in fetal rat lung explants. Recently, the gene coding fructose 1,6 bisphosphatase (F1,6BP), a regulatory enzyme of gluconeogenesis, has been identified in type II cells and its promoter bears a Vitamin D response element. Present results show:The coexistence of type II cells at different stages of maturation. in rat fetal lung on day 21 of gestation (electron microscopy), and the association between maturation of type II cells and disappearance of their glycogen content. The immunogold labeling of all type II cells when using the 9A7g VDR-antibody, with significantly more abundant gold particles in cells exhibiting an intermediate glycogen content. The expression of F1,6BP mRNA in a human type II cell line (NCI-H441) and the increase of this expression after 18h incubation with 1,25-(OH)2D3 (10(-8)M). These results bring further evidence for a physiological role of 1,25-(OH)2D3 during type II pneumocyte maturation. Activation of F1,6BP may participate to the 1,25-(OH)2D3 action on surfactant synthesis via the gluconeogenesis pathway.  相似文献   

15.
Cell division in heart muscle cells progressively ceases during the development of the rat heart, leading to an adult stage with muscle cells incapable of cell division. We have quantitatively determined the number of dividing and nondividing heart muscle cells in cultures derived from different stages of the developing rat heart with the use of 3HTdR continuous labeling and fluorescent antimyosin staining. The cultures were derived from 14 and 17 day postcoital (dPC) rat embryos and from 1 and 4 day postnatal (dPN) rats. The percent nondividing cells increased with development and the age of the postnatal rat. The percent nondividing cells in 14 dPC equalled 21%, 17 dPC equalled 25%, 1 dPN equalled 44%, and 4 dPN equalled 60%. This method for the quantitative determination of dividing and nondividing cells in the developing rat heart provides a model that is useful for the study of the mechanism of the loss of cell division capacity.  相似文献   

16.
Two alveolar epithelial cell lines R3/1 and L2 were screened by immunocytochemical and RT-PCR analysis of epithelial and mesenchymal/contractile marker proteins. R3/1 and L2 cells were tested for their sensitivity to bleomycin (BLM), an anticancer drug, which is proposed to induce changes in lung cell differentiation. Both epithelial cell lines exhibited a mixed phenotype consisting of epithelial (E-cadherin, aquaporin-5 and cytokeratin 8) and myofibroblast-like (vimentin, α-SMA and caveolin-3) properties suggesting that the cell lines are arrested in vitro at a certain developmental stage during epithelial–mesenchymal transition (EMT). BLM treatment of R3/1 cells resulted in a partial reversal of this process modifying the cells in an epithelial direction, e.g., upregulation of E-cadherin, aquaporin-5 and other lung epithelial antigens at the mRNA and protein level. L2 cells showed similar alterations following BLM exposure. Immunohistochemical investigation of lung tissue from two different animal models of BLM-induced fibrosis (mouse and rat), revealed no signs of EMT, e.g., myofibroblastic differentiation of alveolar epithelial cells in situ. Immunohistological analysis of tissue samples of the rat model showed a heterogeneous population of myofibroblasts (α-SMA+/caveolin-3+, α-SMA-/caveolin-3+, and α-SMA+/caveolin-3). These results suggest that BLM, on one hand, induces fibrosis and on the other hand possibly suppresses EMT during fibrogenesis.  相似文献   

17.
This study aims to examine the impact of ursodeoxycholic acid (UDCA) on pulmonary edema and explore the underlying molecular mechanisms. The effects of UDCA on pulmonary edema were assessed through hematoxylin and eosin (H&E) staining, lung dry/wet (W/D) ratio, TNF-α/IL-1β levels of bronchoalveolar lavage fluid (BALF), protein expression of epithelial sodium channel (ENaC), and Na+/K+-ATPase. Besides, the detailed mechanisms were explored in primary rat alveolar type (AT) II epithelial cells by determining the effects of BOC-2 (ALX [lipoxin A4 receptor] inhibitor), Rp-cAMP (cAMP inhibitor), LY294002 (PI3K inhibitor), and H89 (PKA inhibitor) on the therapeutic effects of UDCA against lipopolysaccharide (LPS)-induced changes. Histological examination suggested that LPS-induced lung injury was obviously attenuated by UDCA. BALF TNF-α/IL-1β levels and lung W/D ratios were decreased by UDCA in LPS model rats. UDCA stimulated alveolar fluid clearance (AFC) though the upregulation of ENaC and Na+/K+-ATPase. BOC-2, Rp-cAMP, and LY294002 largely suppressed the therapeutic effects of UDCA. Significant attenuation of pulmonary edema and lung inflammation was revealed in LPS-challenged rats after the UDCA treatment. The therapeutic efficacy of UDCA against LPS was mainly achieved through the ALX/cAMP/PI3K pathway. Our results suggested that UDCA might be a potential drug for the treatment of pulmonary edema induced by LPS.  相似文献   

18.
Apoptosis plays a central role in the cellular remodeling of the developing lung. We determined the spatiotemporal patterns of the cell death regulators Fas and Fas ligand (FasL) during rabbit lung development and correlated their expression with pulmonary and type II cell apoptosis. Fetal rabbit lungs (25-31 days gestation) were assayed for apoptotic activity by terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling (TUNEL) and DNA size analysis. Fas and FasL expression were analyzed by RT-PCR, immunoblot, and immunohistochemistry. Type II cell apoptosis increased significantly on gestational day 28; the type II cell apoptotic index increased from 0.54 +/- 0.34% on gestational day 27 to 3.34 +/- 1.24% on day 28, P < 0.01 (ANOVA). This corresponded with the transition from the canalicular to the terminal sac stage of development. The day 28 rise in epithelial apoptosis was synchronous with a robust if transient 20-fold increase in FasL mRNA and a threefold increase in FasL protein levels. In contrast, Fas mRNA levels remained constant, suggestive of constitutive expression. Fas and FasL proteins were immunolocalized to alveolar type II cells and bronchiolar Clara cells. The correlation of this highly specific pattern of FasL expression with alveolar epithelial apoptosis and remodeling implicates the Fas/FasL system as a potentially important regulatory pathway in the control of postcanalicular alveolar cytodifferentiation.  相似文献   

19.
The pathogenesis of reexpansion pulmonary edema is not yet fully understood. We therefore studied its mechanism in a rat model in which the left lung was collapsed by bronchial occlusion for 1 h and then reexpanded and ventilated for an additional 3 h. We then evaluated the production of reactive oxygen species in the lungs using fluorescent imaging and cerium deposition electron microscopic techniques and the incidence of apoptosis using the TdT-mediated dUTP-digoxigenin nick end labeling (TUNEL) method. We found that pulmonary reexpansion induced production of reactive oxygen species and then apoptosis, mainly in endothelial and alveolar type II epithelial cells. Endothelial cells and alveolar type I and II epithelial cells in the reexpanded lung were positive for TUNEL and cleaved caspase-3. DNA fragmentation was also observed in the reexpanded lung. In addition, wet-dry ratios obtained with reexpanded lungs were significantly higher than those obtained with control lungs, indicating increased fluid content. All of these effects were attenuated by pretreating rats with a specific xanthine oxidase inhibitor, sodium (-)-8-(3-methoxy-4-phenylsulfinylphenyl) pyrazolo[1,5-a]-1,3,5-triazine-4(1H)-one. It thus appears that pulmonary reexpansion activates xanthine oxidase in both endothelial and alveolar type II epithelial cells and that the reactive oxygen species produced by the enzyme induce apoptosis among the endothelial and alveolar type I and II epithelial cells that make up the pulmonary water-air barrier, leading to reexpansion pulmonary edema.  相似文献   

20.
Coagulation factor Xa appears involved in the pathogenesis of pulmonary fibrosis. Through its interaction with protease activated receptor-1, this protease signals myofibroblast differentiation in lung fibroblasts. Although fibrogenic stimuli induce factor X synthesis by alveolar cells, the mechanisms of local posttranslational factor X activation are not fully understood. Cell-derived microparticles are submicron vesicles involved in different physiological processes, including blood coagulation; they potentially activate factor X due to the exposure on their outer membrane of both phosphatidylserine and tissue factor. We postulated a role for procoagulant microparticles in the pathogenesis of interstitial lung diseases. Nineteen patients with interstitial lung diseases and 11 controls were studied. All subjects underwent bronchoalveolar lavage; interstitial lung disease patients also underwent pulmonary function tests and high resolution CT scan. Microparticles were enumerated in the bronchoalveolar lavage fluid with a solid-phase assay based on thrombin generation. Microparticles were also tested for tissue factor activity. In vitro shedding of microparticles upon incubation with H2O2 was assessed in the human alveolar cell line, A549 and in normal bronchial epithelial cells. Tissue factor synthesis was quantitated by real-time PCR. Total microparticle number and microparticle-associated tissue factor activity were increased in interstitial lung disease patients compared to controls (84±8 vs. 39±3 nM phosphatidylserine; 293±37 vs. 105±21 arbitrary units of tissue factor activity; mean±SEM; p<.05 for both comparisons). Microparticle-bound tissue factor activity was inversely correlated with lung function as assessed by both diffusion capacity and forced vital capacity (r2 = .27 and .31, respectively; p<.05 for both correlations). Exposure of lung epithelial cells to H2O2 caused an increase in microparticle-bound tissue factor without affecting tissue factor mRNA.Procoagulant microparticles are increased in interstitial lung diseases and correlate with functional impairment. These structures might contribute to the activation of factor X and to the factor Xa-mediated fibrotic response in lung injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号