首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The gamma-D-glutamyl-(L)meso-diaminopimelate endopeptidase, or endopeptidase I, from Bacillus sphaericus 9602 was purified to apparent protein homogeneity. The purification was achieved by a six-step procedure: ammonium sulfate fractionation, phenyl-Sepharose chromatography, two consecutive DEAE-Trisacryl chromatographies, chromatofocusing and Sephacryl S-200 permeation chromatography. The enzyme was purified 5000-fold with a 38% recovery of lytic activity. It is an acidic protein (pI 5.4) of hydrophobic nature. Kinetic studies have shown a Km value of 0.57 mM and an apparent Vmax of 8.3 mumol min-1 (mg enzyme)-1 with N-acetylmuramyl-L-alanyl-gamma-D-glutamyl-(L)meso-diaminopimelyl (L)-D-[14C]alanine as substrate. The enzyme was inhibited by o-phenanthroline and EDTA and was reactivated by zinc, cobalt and manganese ions; thus endopeptidase I is a metallo enzyme, probably a zinc enzyme. Moreover it is a heat-stable protein with an apparent inactivation temperature of 80 degrees C.  相似文献   

3.
Mechanistic analysis of the argE-encoded N-acetylornithine deacetylase   总被引:6,自引:0,他引:6  
The E. coli argE-encoded N-acetyl-L-ornithine deacetylase has been cloned, expressed, and purified in high yield. The substrate specificity of the enzyme is relatively broad, with a number of alpha-N-acyl-L-amino acids exhibiting activity, including both alpha-N-acetyl- and alpha-N-formylmethionine that exhibit higher activity than alpha-N-acetyl-L-ornithine. Sequence homolgy suggests that the enzyme is a member of the metal-dependent aminoacylase family, and the purified enzyme contains a single atom of zinc per monomer. The activity of this enzyme can be increased greater than 2-fold by the addition of zinc, or 8-fold by the addition of cobalt. This suggests that the enzyme can accommodate two metal ions at the active site. The pH dependence of the kinetic parameters has been determined and revealed the presence of two enzymic groups, one functioning as a general base and one functioning as a general acid. Solvent kinetic isotope effects on the hydrolysis of N-acetylornithine have been determined, and a linear proton inventory suggests that a single proton transfer occurs in a partially rate-limiting step. A chemical mechanism is proposed and compared with other mechanisms determined for other members of the aminoacylase family.  相似文献   

4.
1. Human hepatic "acid" beta-galactosidase preparations, which had been purified approximately 250-fold, were examined for activities toward 4-methylumbelliferyl beta-galactoside, galactosylceramide, lactosylceramide, galactosyl-N-acetylgalactosaminyl-[N-acetylneuraminyl]-galactosyl-glucosylceramide (GM1-Ganglioside) and galactosyl-Cacetylgalactosaminyl-galactosyl-glucosylceramide (asialo GM1-ganglioside). 2. The enzyme was active toward the synthetic substrate, GM1-ganglioside and asialo GM1-ganglioside but was inactive toward galactosylceramide. Under our assay conditions, optimized for lactosylceramidase II, the preparations were as active toward lactosylceramide as toward GM1-ganglioside or its asialo derivative. Teh apparent Km values for the three natural substrates were similar. When determined by the assay system of Wenger, D.A., Sattler, M., Clark, C. and McKelvey, H. (1974) Clin. Chim. Acta 56, 199-206, lactosylceramidecleaving activity was 0.2% of that determined by our assay system. This confirmed our previous suggestion that the Wenger assay system determines exclusively the activity of lactosylceramidase I, which is probably identical with galactosylceramide beta-galactosidase. 3. Crude sodium taurocholate was far more effective than pure taurocholate in stimualting hydrolysis of the three glycosphingolipids by the beta-galactosidase. However, crude tauroxycholate, suggesting that the unique activating capacity of the crude taurocholate might be due to taurodeoxycholate present as the major impurity. 4. Cl- was generally stimulatory for hydrolysis of the natural glycosphingolipids by our enzyme preparation. Effects of additional oleic acid and Triton X-100 Were generally minor in either direction. 5. When the enzyme preparation was diluted with water, activity toward the synthetic substrate declined rapidly while those toward the natural substrates were essentially stable. Activity toward the synthetic substrate remained much more stable when the enzyme was diluted with 0.1 M sodium citrate/phosphate buffer, pH 5.0. 6. These observations provide insight into the complex relationship among the human hepatic beta-galactosidases.  相似文献   

5.
Metallo-beta-lactamases are native zinc enzymes that catalyse the hydrolysis of beta-lactam antibiotics, but are also able to function with cobalt(II) and require one or two metal-ions for catalytic activity. The hydrolysis of cefoxitin, cephaloridine and benzylpenicillin catalysed by CoBcII (cobalt-substituted beta-lactamase from Bacillus cereus) has been studied at different pHs and metal-ion concentrations. An enzyme group of pK(a) 6.52+/-0.1 is found to be required in its deprotonated form for metal-ion binding and catalysis. The species that results from the loss of one cobalt ion from the enzyme has no significant catalytic activity and is thought to be the mononuclear CoBcII. It appears that dinuclear CoBcII is the active form of the enzyme necessary for turnover, while the mononuclear CoBcII is only involved in substrate binding. The cobalt-substituted enzyme is a more efficient catalyst than the native enzyme for the hydrolysis of some beta-lactam antibiotics suggesting that the role of the metal-ion is predominantly to provide the nucleophilic hydroxide, rather than to act as a Lewis acid to polarize the carbonyl group and stabilize the oxyanion tetrahedral intermediate.  相似文献   

6.
N-氨甲酰基水解酶是一种非常具有工业应用价值的水解酶,可用于制备光学纯氨基酸。通过LA PCR从Sinorhizobium morelensS-5菌中克隆到1.3kb的DNA片段,测序表明该片段上含有一个完整的N-氨甲酰基水解酶的基因(hyuC)序列。将hyuC基因克隆到表达载体pET30a上,重组质粒pET30a-HyuC在大肠杆菌中获得了高水平表达。重组的N-氨甲酰基水解酶经过热处理和三步柱色谱分离而纯化。纯化倍数为16.1倍,收率21.2%。该酶为同源四聚体,亚基分子量是38kDa。最适温度是60℃,最适pH为7.0。该酶有较高的热稳定性和氧化稳定性。Fe2 和Ca2 对酶的活性有一定的促进作用,而金属螯合剂和巯基试剂对酶活无明显影响。  相似文献   

7.
Water activity and substrate concentration effects on lipase activity   总被引:4,自引:0,他引:4  
Catalytic activity of lipases (from Rhizopus arrhizus, Canadida rugosa, and Pseudomonas sp. was studied in organic media, mainly diisopropyl ether. The effect of water activity (a(w)) on V(max) showed that the enzyme activity in general increased with increasing amounts of water for the three enzymes. This was shown both for esterification and hydrolysis reactions catalyzed by R. arrhizus lipase. In the esterification reaction the K(m) for the acid substrate showed a slight increase with increasing water activities. On the other hand, the K(m) for the alcohol substrate increased 10-20-fold with increasing water activity. The relative changes in K(m) were shown to be independent of the enzyme studied and solvent used. The effect was attributed to the increasing competition of water as a nucleophile for the acyl-enzyme at higher water activities. In a hydrolysis reaction the K(m) for the ester was also shown to increase as the water activity increased. The effect of water in this case was due to the fact that increased concentration of one substrate (water), and thereby increased saturation of the enzyme, will increase the apparent K(m) of the substrate (ester) to be determined. This explained why the hydrolysis rate decreased with increasing water activity at a fixed, low ester concentration. The apparent V(max) for R. arrhizus lipase was similar in four of six different solvents that were tested; exceptions were toulene and trichloroethylene, which showed lower values. The apparent K(m) for the alcohol in the solvents correlated with the hydrophobicity of the solvent, hydrophobic solvents giving lower apparent K(m). (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 55: 798-806, 1997.  相似文献   

8.
Native carboxypeptidase B and its Co2+-substituted derivative were oxidized by the active-site-directed agent m-chloroperbenzoic acid. The following results were obtained a) In the cobalt enzyme there was a decrease in both the peptidase and the esterase activities, whereas in the zinc enzyme only the peptidase activity decreased. Peptide or ester pseudo-substrates protected the cobalt enzyme but not the zinc enzyme against inactivation. b) Upon oxidation and formation of Co3+, cleavage of peptide bonds occurred in the cobalt enzyme but not in the zinc enzyme. Both enzymes retained their original metal content. c) Following oxidation of the enzymes, amino acid analysis revealed a modification of a methionyl residue in the zinc enzyme only; the cobalt enzyme, on the other hand, showed a modification of a histidyl residue. d) Peptide mapping of the enzymes after cleavage by cyanogen bromide indicated that two methionyl peptides were missing in the oxidized zinc enzyme. These peptides point to Met-64 as the site of modification. The peptide map of the oxidized cobalt enzyme was similar to that of the unmodified native (i.e., zinc) enzyme. These studies indicate that the specific metal ion present in the enzyme imposes certain structural and functional differences on the active site, leading to differing reactivities of specific amino acid residues and to a different alignment of the active-site-directed reagent in the two enzymes.  相似文献   

9.
The beta-glucosidase from the hyperthermophilic archaeon Pyrococcus furiosus (CelB) is the most thermostable and thermoactive family 1 glycosylhydrolase described to date. To obtain more insight in the molecular determinants of adaptations to high temperatures and study the possibility of optimizing low-temperature activity of a hyperthermostable enzyme, we generated a library of random CelB mutants in Escherichia coli. This library was screened for increased activity on p-nitrophenyl-beta-D-glucopyranoside at room temperature. Multiple CelB variants were identified with up to 3-fold increased rates of hydrolysis of this aryl glucoside, and 10 of them were characterized in detail. Amino acid substitutions were identified in the active-site region, at subunit interfaces, at the enzyme surface, and buried in the interior of the monomers. Characterization of the mutants revealed that the increase in low-temperature activity was achieved in different ways, including altered substrate specificity and increased flexibility by an apparent overall destabilization of the enzyme. Kinetic characterization of the active-site mutants showed that in all cases the catalytic efficiency at 20 degrees C on p-nitrophenyl-beta-D-glucose, as well as on the disaccharide cellobiose, was increased up to 2-fold. In most cases, this was achieved at the expense of beta-galactosidase activity at 20 degrees C and total catalytic efficiency at 90 degrees C. Substrate specificity was found to be affected by many of the observed amino acid substitutions, of which only some are located in the vicinity of the active site. The largest effect on substrate specificity was observed with the CelB variant N415S that showed a 7.5-fold increase in the ratio of p-nitrophenyl-beta-D-glucopyranoside/p-nitrophenyl-beta-D-galactopyra noside hydrolysis. This asparagine at position 415 is predicted to interact with active-site residues that stabilize the hydroxyl group at the C4 position of the substrate, the conformation of which is equatorial in glucose-containing substrates and axial in galactose-containing substrates.  相似文献   

10.
Arylsulfatase C (ASC) was purified about 1,000-fold from human placenta. The major steps in the procedure included chromatography on Con A-Sepharose and Bio-Gel A-1.5 m. The purified enzyme was homogeneous by sodium dodecylsulfate/polyacrylamide gel electrophoresis. The native enzyme has an apparent molecular weight of 238,000 resulting from three identical subunits of 78,000 daltons. The purified enzyme hydrolyzes the artificial substrate p-nitrophenyl sulfate (NPS), and the two natural substrates estronesulfate (ES) and dehydroepiandrosterone sulfate (DHEAS), the ratio of these three activities being constant throughout the purification. ES and DHEAS are powerful competitive inhibitors of the enzymatic hydrolysis of NPS. ASC, ESase and DHEASase activities show the same thermal stability. These results strongly suggest that a single enzyme is responsible for the hydrolysis of the two natural and the artificial substrates.  相似文献   

11.
5-Aminolaevulinic acid dehydratase: structure, function, and mechanism.   总被引:6,自引:0,他引:6  
delta-Aminolaevulinic acid dehydratase catalyses the synthesis of porphobilinogen. The enzyme has a molecular mass of 285000 and is composed of eight similar subunits of molecular mass 35000. The N-terminal amino acid is acylated, and the number of peptides found on tryptic digestion equals the number of lysine and arginine residues per mass of 35000. The eight subunits are apparently arranged at the corners of a cube and therefore have dihedral (D4) symmetry. The bovine liver enzyme which has been cystallized contains 4--6 atoms of zinc per mole of enzyme. The apo-enzyme obtained on prolonged hydrolysis can be reactivated by the addition of zinc or cadmium ions. The dialysed enzyme must be first treated with dithiothreitol. There are two very active SH groups in a total of 6--7-SH groups per subunit. The substrate forms a Schiff base with the epsilon-amino group of a lysine residue. Reduction of the Schiff base with NaBH4 should reveal the number of active sites per mole of enzyme. It appears that only four of the eight subunits form a Schiff base with the substrate indicating that the enzyme exhibits the phenomenon of either half-site reactivity or negative cooperativity. The enzyme appears to have a strong subunit-subunit interaction for an immobilized preparation remained stable for at least a month. An immobilized enzyme preparation was treated in a manner so that it dissociated into tetramers. Both the eluate and protein still attached to the Sepharose on a column were enzymically active. The bound enzyme could not reassociate under assay conditions but still contained about 50% of the original enzyme activity. It would seem that the enzyme is active when composed with less than eight subunits.  相似文献   

12.
A new series of thio ester, depsipeptide, and peptide substrates have been synthesized for the bacterial enzyme Clostridium histolyticum collagenase. The hydrolysis of the depsipeptide substrate was followed on a pH stat, and thio ester hydrolysis was measured by inclusion of the chromogenic thiol reagent 4,4'-dithiopyridine in the assay mixture. The best thio ester substrate, Boc-Abz-Gly-Pro-Leu-SCH2CO-Pro-Nba, had a kcat/KM of 63 000 M-1 s-1, while several shorter thio ester sequences were inactive as substrates. In general, the peptide analogues of all the reactive thio ester substrates were shown to be hydrolyzed 5-10 times faster by collagenase. In one case (Z-Gly-Pro-Leu-Gly-Pro-NH2) where a comparison was made, the peptide substrate was respectively 8- and 106-fold more readily hydrolyzed than the corresponding thio ester and ester substrates. Cleavages of the two fluorescence-quench substrates Abz-Gly-Pro-Leu-Gly-Pro-Nba and Abz-Gly-Pro-Leu-SCH2CO-Pro-Nba could be easily followed fluorogenically since a 5-10-fold increase in fluorescence occurred upon hydrolysis. The fluorescent peptide substrate is the best synthetic substrate known for C. histolyticum collagenase with a kcat/KM value of 490 000 M-1 s-1. A series of new reversible inhibitors were developed by the attachment of zinc ligating groups (hydroxamic acid, carboxymethyl, and thiol) to various peptide sequences specific for C. histolyticum collagenase. The shorter peptides designed to bind to either the P3-P1 or P1'-P3' subsites were poor to moderate inhibitors. The thiol HSCH2CH2CO-Pro-Nba had the lowest K1 (0.02 mM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
1. The substrate specificity of the enzyme protochlorophyllide reductase in barley (Hordeum vulgare) etioplasts was investigated. 2. It was shown that naturally occurring esterified protochlorophyllide and chemically prepared protochlorophyllide methyl ester are not substrates for the enzyme, suggesting an important role for the C-7 carboxylic acid group in binding of the porphyrin to the enzyme. 3. Removal of magnesium from the protochlorophyllide leads to inactivity of the compound as a substrate for the enzyme. However, activity can be restored by replacing the magnesium with zinc, whereas nickel, copper or cobalt failed to restore substrate activity. 4. Binding of the second substrate, NADPH, to the enzyme probably occurs through the 2'-phosphate group in the coenzyme.  相似文献   

14.
Purification and characterization of human placental aminopeptidase A   总被引:3,自引:0,他引:3  
Human placental aminopeptidase A (AAP) was purified 3,900-fold from human placenta and characterized. The enzyme was solubilized from membrane fractions with Triton X-100, then subjected to trypsin digestion, zinc sulfate fractionation, chromatographies with DE-52, Sephacryl S-300, and hydroxylapatite, affinity chromatography with Bestatin-Sepharose 4B, and finally immunoaffinity chromatography with the antibody against microsomal leucine aminopeptidase (LAP). Aminopeptidase A was completely separated from leucine aminopeptidase by the immunoaffinity chromatography. The apparent relative molecular mass (Mr) of the enzyme was estimated to be 280,000 by gel filtration. The purified enzyme was most active at pH 7.1 with L-aspartyl-beta-naphthylamide (L-Asp-NA) as substrate; the Km value for this substrate was 4.0 mmol/l in the presence of Ca2+. Human placental aminopeptidase A was markedly activated by alkaline earth metals (Ca2+, Sr2+, Ba2+), but strongly inhibited by metal chelating agents such as EDTA and o-phenanthroline. The highest activity was observed with L-glutamyl-beta-naphthylamide, while only minimal hydrolysis was found with some neutral and basic amino acid beta-naphthylamides.  相似文献   

15.
A glutathione S-transferase (GST) enzyme from corn (Zea mays L. Pioneer hybrid 3906) that is active with p-coumaric acid and other unsaturated phenylpropanoids was purified approximately 97-fold and characterized. The native enzyme appeared to be a monomer with a molecular mass of approximately 30 kD and an apparent isoelectric point at pH 5.2. The enzyme had a pH optimum between 7.5 and 8.0 and apparent Km values of 4.4 and 1.9 mM for reduced glutathione (GSH) and p-coumaric acid, respectively. In addition to p-coumaric acid, the enzyme was also active with o-coumaric acid, m-coumaric acid, trans-cinnamic acid, ferulic acid, and coniferyl alcohol. In addition to GSH, the enzyme could also utilize cysteine as a sulfhydryl source. The enzyme activity measured when GSH and trans-cinnamic acid were used as substrates was enhanced 2.6- and 5.2-fold by the addition of 50 [mu]M p-coumaric acid and 7-hydroxycoumarin, respectively. 1H- and 13C-nuclear magnetic resonance spectroscopic analysis of the conjugate revealed that the enzyme catalyzed the addition of GSH to the olefinic double bond of p-coumaric acid. Based on the high activity and the substrate specificity of this enzyme, it is possible that this enzyme may be involved in the in vivo conjugation of a number of unsaturated phenylpropanoids.  相似文献   

16.
Glycosylasparaginase catalyzes the hydrolysis of the N-glycosylic bond in N(4)-(2-acetamido-2-deoxy-beta-D-glucopyranosyl)-L-asparagine in the catabolism of N-linked oligosaccharides. A deficiency, or absence, of enzyme activity gives rise to aspartylglycosaminuria, the most common disorder of glycoprotein metabolism. The enzyme catalyzes the hydrolysis of a variety of asparagine and aspartyl compounds containing a free alpha-carboxyl group and a free alpha-amino group; computational studies suggest that the alpha-amino group actively participates in the catalytic mechanism. In order to study the importance of the alpha-carboxyl group and the alpha-amino group on the natural substrate to the reaction catalyzed by the enzyme, 14 analogues of the natural substrate were studied where the structure of the aspartyl group of the substrate was changed. The incremental binding energy (DeltaDeltaGb) for those analogues that were substrates was calculated. The results show that the alpha-amino group may be substituted with a group of comparable size, for the alpha-amino group contributes little, if any, to the transition state binding energy of the natural substrate. The alpha-amino group position acts as an "anchor" in the binding site for the substrate. On the other hand, the alpha-carboxyl group is necessary for enzyme activity; removal of the alpha-carboxyl group or changing it to an alpha-carboxamide group results in no hydrolysis reaction. Also, N-acetyl-D-glucosamine is not sufficient for binding to the active site for efficient hydrolysis by the enzyme. These results provide supporting evidence for a proposed intramolecular autoproteolytic activation reaction for the enzyme. However, the results raise a question as to an important role for the alpha-amino group in the catalytic mechanism as indicated in computational studies.  相似文献   

17.
Metal cofactors of lysine-2,3-aminomutase.   总被引:1,自引:0,他引:1  
Lysine-2,3-aminomutase from Clostridium SB4 contains iron and sulfide in equimolar amounts, as well as cobalt, zinc, and copper. The iron and sulfide apparently constitute an Fe-S cluster that is required as a cofactor of the enzyme. Although no B12 derivative can be detected, enzyme-bound cobalt is a cofactor; however, the zinc and copper bound to the enzyme do not appear to play a role in its catalytic activity. These conclusions are supported by the following facts reported in this paper. Purification of the enzyme under anaerobic conditions increases the iron and sulfide content. Lysine-2,3-aminomutase purified from cells grown in media supplemented with added CoCl2 contains higher levels of cobalt and correspondingly lower levels of zinc and copper relative to enzyme from cells grown in media not supplemented with cobalt. The specific activity of the purified enzyme increases with increasing iron and sulfide content, and it also increases with increasing cobalt and with decreasing zinc and copper content. The zinc and copper appear to occupy cobalt sites under conditions of insufficient cobalt in the growth medium, and they do not support the activity of the enzyme. The best preparations of lysine-2,3-aminomutase obtained to date exhibit a specific activity of approximately 23 units/mg of protein and contain about 12 g atoms of iron and of sulfide per mol of hexameric enzyme. These preparations also contain 3.5 g atoms of cobalt per mol, but even the best preparations contain small amounts of zinc and copper. The sum of cobalt, zinc, and copper in all preparations analyzed to date corresponds to 5.22 +/- 0.75 g atoms per mol of enzyme. An EPR spectrum of the enzyme as isolated reveals a signal corresponding to high spin Co(II) at temperatures below 20 K. The signal appears as a partially resolved 59Co octet centered at an apparent g value of 7. The 59Co hyperfine splitting (approximately 35 G) is prominent at 4.2 K. These findings show that lysine-2,3-aminomutase requires Fe-S clusters and cobalt as cofactors, in addition to the known requirement for pyridoxal 5'-phosphate and S-adenosylmethionine.  相似文献   

18.
The kinetics of the Ca2+-dependent, alkaline pH optimum, membrane-bound phospholipase A2 from the P388D1 macrophage-like cell line were studied using various phosphatidylcholine (PC) and phosphatidylethanolamine (PE) substrates. This enzyme exhibits "surface dilution kinetics" toward PC in Triton X-100 mixed micelles, and the "dual phospholipid model" was found to adequately describe its kinetic behavior. With substrate in the form of sonicated vesicles, the dual phospholipid model should give rise to Michaelis-Menten type kinetics. However, the hydrolysis of dipalmitoyl-PC, 1-palmitoyl-2-oleoyl-PC, and 1-stearoyl-2-arachidonoyl-PC vesicles exhibited two distinct activities. Below 10 microM, the data appeared to follow Michaelis-Menten behavior, while at higher concentrations, the data could best be fit to a Hill equation with a Hill coefficient of 2. These PCs had Vmax values for the low substrate concentration range of 0.2-0.6 nmol min-1 mg-1 and Km values of 1-2 microM. At the high substrate concentration range, the Vmax values were between 5 and 7 nmol min-1 mg-1. PC containing unsaturated fatty acids had an apparent Km, determined from the Hill equation, of about 15 microM, while the apparent Km of dipalmitoyl-PC was 0.6 microM. When 70% glycerol was included in the assays, a single Michaelis-Menten curve was obtained for both dipalmitoyl-PC and 1-stearoyl,2-arachidonoyl-PC. Possible explanations for these kinetic results include reconstitution of the membrane-bound phospholipase A2 in the phospholipid vesicle or the enzyme has tow distinct phospholipid binding function. The kinetics for both dipalmitoyl-PC and dipalmitoyl-PE hydrolysis in vesicles was very similar, indicating that the enzyme does not greatly prefer one of these head groups over the other. The enzyme also showed no preference for arachidonoyl containing phospholipid. Enzymatic activity toward PC containing saturated fatty acids was linear to about 15% hydrolysis while the hydrolysis of PC containing unsaturated fatty acids was linear to only about 5%. This loss of linearity was due to inhibition by released unsaturated fatty acids. Arachidonic acid was found to be a competitive inhibitor of dipalmitoyl PC hydrolysis with a K1 of 5 microM. This tight binding suggests a possible in vivo regulatory role for arachidonic acid. Three compounds of the arachidonic acid cascade, prostaglandin F2 alpha, 6-keto-prostaglandin F1 alpha, and thromboxane B2, showed no inhibition of enzymatic activity.  相似文献   

19.
Angiotensin-converting enzyme was solubilized from bovine lung with detergent and purified over 2300-fold to physical homogeneity by a combination of ammonium sulfate fractionation, molecular sieve chromatography, and ion exchange chromatography. The purified enzyme had an apparent molecular weight of 126,000 in both the denatured, and reduced, denatured forms as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The purified enzyme had a specific activity of 13.6 units/mg. It was inhibited by EDTA and activated by chloride ion. Chloride functioned as a nonessential activator by raising the Vmax 4.26-fold and lowering the KM 5.99-fold under saturating conditions. Under these conditions, the Vmax was 1.2 mumol/min/unit and the KM was 1.3 mM. Three series of peptides having the general structures, Hip-His-X, Hip-X-Leu, and Hip-X-His-Leu were synthesized and used to examine the binding specificity and substrate specificity of the enzyme for amino acids in the COOH-terminal (P'2), penultimate COOH-terminal (P'1), and antepenultimate COOH terminal (P1) peptide positions. These studies indicated that in terms of binding specificity, the relative importance of these three positions was P'2 > P'1 > P1, while the reverse order P1 > P'1 > P'2 was observed for the relative contribution to substrate specificity. Three peptides, Hip-His-D-Leu, Hip-D-His-Leu, and Hip-D-Phe-His-Leu, were also synthesized and used to examine the stereochemical requirements of the enzyme in terms of both peptide binding and hydrolysis. Hydrolysis was found to require an L amino acid in all three positions. In contrast, all three peptides bound to the enzyme.  相似文献   

20.
Antiontensin-converting enzyme (peptidyldipeptide hydrolase, EC 3.4.15.1) has been solubilized from canine pulmonary particles and purified to apparent homogeneity. A value of approx. 140000 was estimated for the molecular weight of the native and the reduced, denatured forms of the enzyme. No free NH2-terminal residue was detected by the dansylation procedure. Carbohydrate accounted for 17% of the weight of the enzyme, and the major residues were galactose, mannose and N-acetylglucosamine with smaller amounts of sialic acid and fucose. Removal of sialic acid residues with neuraminidase did not alter enzymatic activity. The enzyme contained one molar equivalent of zinc. Addition of this metal reversed stimulation and inhibition of activity observed in the presence of Co2+ and Mn2+, respectively. Immunologic homology of pure dog and rabbit enzymes was demonstrable with goat antisera. Fab fragments and intact IgG antibodies displayed similar inhibition dose vs. response curves with homologous enzyme, whereas the fragments were poor inhibitors of heterologous activity compared to the holoantibodies. The canine glycoprotein was much less active than the rabbit preparation in catalyzing hydrolysis of Hip-His-Leu. In contrast, the two enzymes exhibited comparable kinetic parameters with angiotensin I as substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号