首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chicken blastodermal cells were cultured for 48 hr as explanted intact embryos, as dispersed cells in a monolayer, or with a confluent layer of mouse fibroblasts. The cells were then dispersed and injected into stage X (E-G&K) recipient embryos that were exposed to 600 rads of irradiation from a 60Co source. Regardless of the conditions in which the cells were cultured, chimeras with contributions to both somatic tissues and the germline were observed. When blastodermal cells were co-cultured with mouse embryonic fibroblasts, significantly more somatic chimeras were observed and the proportion of feather follicles derived from donor cells was increased relative to that observed following the injection of cells derived from explanted embryos or monolayer cultures. Culture of blastodermal cells in any of the systems, however, yielded fewer chimeras that exhibited reduced contributions to somatic tissues in comparison to the frequency and extent of somatic chimerism observed following injection of freshly prepared cells. Contributions to the germline were observed at an equal frequency regardless of the conditions of culture, but were significantly reduced in comparison to the frequency and rate of germ-line transmission following injection of cells obtained directly from stage X (E-G&K) embryos. These data demonstrate that some cells retain the ability to contribute to germline and somatic tissues after 48 hr in culture and that the ability to contribute to the somatic and germline lineages is not retained equally. © 1996 Wiley-Liss, Inc.  相似文献   

2.
The metabolism, ultrastructure, and function of mass-isolated pole cells were examined during short-term culture in vitro. In addition to demonstrating that these cells functioned normally in culture, a number of new features of embryonic pole cells were discovered. Cell populations isolated from Renografin density gradients were incubated in medium containing tritiated valine, uridine, or thymidine. Although pole cells incorporated similar amounts of valine into protein as other embryonic cells throughout the first 6 hr in culture, they began to synthesize RNA only after 2 hr in culture. Approximately 30% of the pole cells synthesized DNA in vitro and this synthetic activity occurred largely during the first hour of culture. An ultrastructural analysis of colcemid-treated cells showed that 10% of the pole cells divide shortly after placement in culture. During pole cell culture in vitro, polar granules and nuclear bodies fragment and disperse so that they are eventually not detected in these cells. These changes also occur during pole cell development in vivo. Finally, we have obtained 25 to 33% germ line mosaicism among the fertile adults which were derived from embryos receiving transplantation of isolated pole cells before and after culture in vitro. These results demonstrate that these cells are able to follow their normal developmental program in vitro and are able to give rise to functional germ cells in vivo.  相似文献   

3.
4.
We have isolated and cultured human primordial germ cells (PGCs) from early embryos. The PGCs expressed embryonic germ (EG) cell-specific surface markers, including Oct4 and Nanos. We derived a cell population from these PGCs that we termed embryoid body-derived (EBD) cells. EBD cells can be extensively expanded in vitro for more than 50 passages and express lineage markers from all three primary germ layers. The myogenic potential of the EBD cells was examined both in vitro and in vivo.In vitro, the EBD cells can be induced to form multinucleated myotubes, which express late skeletal muscle-specific markers, including MHC and dystrophin, when exposed to human galectin-1. In vivo, the EBD cells gave rise to all the myogenic lineages, including the skeletal muscle stem cells known as satellite cells. Strikingly, these cells were able to partially restore degenerated muscles in the SCID/mdx mouse, an animal model of the Duchenne’s muscular dystrophy. These results indicate the EBD cells may be a promising source of myogenic stem cells for cell-based therapies for muscle degenerative disorders.  相似文献   

5.
The mammalian germline is characterized by extensive epigenetic reprogramming during its development into functional eggs and sperm. Specifically, the epigenome requires resetting before parental marks can be established and transmitted to the next generation. In the female germline, X‐chromosome inactivation and reactivation are among the most prominent epigenetic reprogramming events, yet very little is known about their kinetics and biological function. Here, we investigate X‐inactivation and reactivation dynamics using a tailor‐made in vitro system of primordial germ cell‐like cell (PGCLC) differentiation from mouse embryonic stem cells. We find that X‐inactivation in PGCLCs in vitro and in germ cell‐competent epiblast cells in vivo is moderate compared to somatic cells, and frequently characterized by escaping genes. X‐inactivation is followed by step‐wise X‐reactivation, which is mostly completed during meiotic prophase I. Furthermore, we find that PGCLCs which fail to undergo X‐inactivation or reactivate too rapidly display impaired meiotic potential. Thus, our data reveal fine‐tuned X‐chromosome remodelling as a critical feature of female germ cell development towards meiosis and oogenesis.  相似文献   

6.
Egg or sperm? The mechanism of sexual fate decision in germ cells has been a long‐standing issue in biology. A recent analysis identified foxl3 as a gene that determines the sexual fate decision of germ cells in the teleost fish, medaka. foxl3/Foxl3 acts in female germline stem cells to repress commitment into male fate (spermatogenesis), indicating that the presence of mitotic germ cells in the female is critical for continuous sexual fate decision of germ cells in medaka gonads. Interestingly, foxl3 is found in most vertebrate genomes except for mammals. This provides the interesting possibility that the sexual fate of germ cells in mammals is determined in a different way compared to foxl3‐possessing vertebrates. Considering the fact that germline stem cells are the cells where foxl3 begins to express and sexual fate decision initiates and mammalian ovary does not have typical germline stem cells, the mechanism in mammals may have been co‐evolved with germline stem cell loss in mammalian ovary.
  相似文献   

7.
Primordial germ cells (PGCs) from stage 27 (5.5-day-old) Korean native ogol chicken embryonic germinal ridges were cultured in vitro for 5 days. As in in vivo culture, these cultured PGCs were expected to have already passed beyond the migration stage. Approximately 200 of these PGCs were transferred into 2.5-day-old white leghorn embryonic blood stream, and then the recipient embryos were incubated until hatching. The rate of hatching was 58.8% in the manipulated eggs. Six out of 60 recipients were identified as germline chimeric chickens by their feather colour. The frequency of germline transmission of donor PGCs was 1.3–3.1% regardless of sex. The stage 27 PGCs will be very useful for collecting large numbers of PGCs, handling of exogenous DNA transfection during culture, and for the production of desired transgenic chickens.  相似文献   

8.

Background

Avian primordial germ cells (PGCs) have significant potential to be used as a cell-based system for the study and preservation of avian germplasm, and the genetic modification of the avian genome. It was previously reported that PGCs from chicken embryos can be propagated in culture and contribute to the germ cell lineage of host birds.

Principal Findings

We confirm these results by demonstrating that PGCs from a different layer breed of chickens can be propagated for extended periods in vitro. We demonstrate that intracellular signalling through PI3K and MEK is necessary for PGC growth. We carried out an initial characterisation of these cells. We find that cultured PGCs contain large lipid vacuoles, are glycogen rich, and express the stem cell marker, SSEA-1. These cells also express the germ cell-specific proteins CVH and CDH. Unexpectedly, using RT-PCR we show that cultured PGCs express the pluripotency genes c-Myc, cKlf4, cPouV, cSox2, and cNanog. Finally, we demonstrate that the cultured PGCs will migrate to and colonise the forming gonad of host embryos. Male PGCs will colonise the female gonad and enter meiosis, but are lost from the gonad during sexual development. In male hosts, cultured PGCs form functional gametes as demonstrated by the generation of viable offspring.

Conclusions

The establishment of in vitro cultures of germline competent avian PGCs offers a unique system for the study of early germ cell differentiation and also a comparative system for mammalian germ cell development. Primary PGC lines will form the basis of an alternative technique for the preservation of avian germplasm and will be a valuable tool for transgenic technology, with both research and industrial applications.  相似文献   

9.
The differentiation of pluripotent stem cells into various progeny is perplexing. In vivo, nature imposes strict fate constraints. In vitro, PSCs differentiate into almost any phenotype. Might the concept of ‘cellular promiscuity'' explain these surprising behaviours?John Gurdon''s [1] and Shinya Yamanaka''s [2] Nobel Prize involves discoveries that vex fundamental concepts about the stability of cellular identity [3,4], ageing as a rectified path and the differences between germ cells and somatic cells. The differentiation of pluripotent stem cells (PSCs) into progeny, including spermatids [5] and oocytes [6], is perplexing. In vivo, nature imposes strict fate constraints. Yet in vitro, reprogrammed PSCs liberated from the body government freely differentiate into any phenotype—except placenta—violating even somatic cell against germ cell segregations. Albeit that it is anthropomorphic, might the concept of ‘cellular promiscuity'' explain these surprising behaviours?Fidelity to one''s differentiated state is nearly universal in vivo—even cancers retain some allegiance. Appreciating the mechanisms in vitro that liberate reprogrammed cells from the numerous constraints governing development in vivo might provide new insights. Similarly to highway guiderails, a range of constraints preclude progeny cells within embryos and organisms from travelling too far away from the trajectory set by their ancestors. Restrictions are imposed externally—basement membranes and intercellular adhesions; internally—chromatin, cytoskeleton, endomembranes and mitochondria; and temporally by ageing.‘Cellular promiscuity'' was glimpsed previously during cloning; it was seen when somatic cells successfully ‘fertilized'' enucleated oocytes in amphibians [1] and later with ‘Dolly'' [7]. Embryonic stem cells (ESCs) corroborate this. The inner cell mass of the blastocyst cells develops faithfully, but liberation from the trophoectoderm generates pluripotent ESCs in vitro, which are freed from fate and polarity restrictions. These freedom-seeking ESCs still abide by three-dimensional rules as they conform to chimaera body patterning when injected into blastocysts. Yet if transplanted elsewhere, this results in chaotic teratomas or helter-skelter in vitro differentiation—that is, pluripotency.August Weismann''s germ plasm theory, 130 years ago, recognized that gametes produce somatic cells, never the reverse. Primordial germ cell migrations into fetal gonads, and parent-of-origin imprints, explain how germ cells are sequestered, retaining genomic and epigenomic purity. Left uncontaminated, these future gametes are held in pristine form to parent the next generation. However, the cracks separating germ and somatic lineages in vitro are widening [5,6]. Perhaps, they are restrained within gonads not for their purity but to prevent wild, uncontrolled misbehaviours resulting in germ cell tumours.The ‘cellular promiscuity'' concept regarding PSCs in vitro might explain why cells of nearly any desired lineage can be detected using monospecific markers. Are assays so sensitive that rare cells can be detected in heterogeneous cultures? Certainly population heterogeneity is considered for transplantable cells—dopaminergic neurons and islet cells—compared with applications needing few cells—sperm and oocytes. This dilemma of maintaining cellular identity in vitro after reprogramming is significant. If not addressed, the value of unrestrained induced PSCs (iPSCs) as reliable models for ‘diseases in a dish'', let alone for subsequent therapeutic transplantations, might be diminished. X-chromosome re-inactivation variants in differentiating human PSCs, epigenetic imprint errors and copy number variations are all indicators of in vitro infidelity. PSCs, which are held to be undifferentiated cells, are artefacts after all, as they undergo their programmed development in vivo.If correct, the hypothesis accounts for concerns raised about the inherent genomic and epigenomic unreliability of iPSCs; they are likely to be unfaithful to their in vivo differentiation trajectories due to both the freedom from in vivo developmental programmes, as well as poorly characterized modifications in culture conditions. ‘Memory'' of the PSC''s identity in vivo might need to be improved by using approaches that might not fully erase imprints. Regulatory authorities, including the Food & Drug Administration, require evidence that cultured PSCs do retain their original cellular identity. Notwithstanding fidelity lapses at the organismal level, the recognition that our cells have intrinsic freedom-loving tendencies in vitro might generate better approaches for only partly releasing somatic cells into probation, rather than full emancipation.  相似文献   

10.
Spermatogonial stem cells (SSCs, also called germline stem cells) are self-renewing unipotent stem cells that produce differentiating germ cells in the testis. SSCs can be isolated from the testis and cultured in vitro for long-term periods in the presence of feeder cells (often mouse embryonic fibroblasts). However, the maintenance of SSC feeder culture systems is tedious because preparation of feeder cells is needed at each subculture. In this study, we developed a Matrigel-based feeder-free culture system for long-term propagation of SSCs. Although several in vitro SSC culture systems without feeder cells have been previously described, our Matrigel-based feeder-free culture system is time- and cost- effective, and preserves self-renewability of SSCs. In addition, the growth rate of SSCs cultured using our newly developed system is equivalent to that in feeder cultures. We confirmed that the feeder-free cultured SSCs expressed germ cell markers both at the mRNA and protein levels. Furthermore, the functionality of feeder-free cultured SSCs was confirmed by their transplantation into germ cell-depleted mice. These results suggest that our newly developed feeder-free culture system provides a simple approach to maintaining SSCs in vitro and studying the basic biology of SSCs, including determination of their fate.  相似文献   

11.

Background

Mouse embryonic stem (ES) cells can differentiate into female and male germ cells in vitro. Primate ES cells can also differentiate into immature germ cells in vitro. However, little is known about the differentiation markers and culture conditions for in vitro germ cell differentiation from ES cells in primates. Monkey ES cells are thus considered to be a useful model to study primate gametogenesis in vitro. Therefore, in order to obtain further information on germ cell differentiation from primate ES cells, this study examined the ability of cynomolgus monkey ES cells to differentiate into germ cells in vitro.

Methods and Findings

To explore the differentiation markers for detecting germ cells differentiated from ES cells, the expression of various germ cell marker genes was examined in tissues and ES cells of the cynomolgus monkey (Macaca fascicularis). VASA is a valuable gene for the detection of germ cells differentiated from ES cells. An increase of VASA expression was observed when differentiation was induced in ES cells via embryoid body (EB) formation. In addition, the expression of other germ cell markers, such as NANOS and PIWIL1 genes, was also up-regulated as the EB differentiation progressed. Immunocytochemistry identified the cells expressing stage-specific embryonic antigen (SSEA) 1, OCT-4, and VASA proteins in the EBs. These cells were detected in the peripheral region of the EBs as specific cell populations, such as SSEA1-positive, OCT-4-positive cells, OCT-4-positive, VASA-positive cells, and OCT-4-negative, VASA-positive cells. Thereafter, the effect of mouse gonadal cell-conditioned medium and growth factors on germ cell differentiation from monkey ES cells was examined, and this revealed that the addition of BMP4 to differentiating ES cells increased the expression of SCP1, a meiotic marker gene.

Conclusion

VASA is a valuable gene for the detection of germ cells differentiated from ES cells in monkeys, and the identification and characterization of germ cells derived from ES cells are possible by using reported germ cell markers in vivo, including SSEA1, OCT-4, and VASA, in vitro as well as in vivo. These findings are thus considered to help elucidate the germ cell developmental process in primates.  相似文献   

12.
13.
14.
Human embryonic stem cell differentiation towards various cell types belonging to ecto-, endo- and mesodermal cell lineages has been demonstrated, with high efficiency rates using standardized differentiation protocols. However, germ cell differentiation from human embryonic stem cells has been very inefficient so far. Even though the influence of various growth factors has been evaluated, the gene expression of different cell lines in relation to their differentiation potential has not yet been extensively examined. In this study, the potential of three male human embryonic stem cell lines to differentiate towards male gonadal cells was explored by analysing their gene expression profiles. The human embryonic stem cell lines were cultured for 14 days as monolayers on supporting human foreskin fibroblasts or as spheres in suspension, and were differentiated using BMP7, or spontaneous differentiation by omitting exogenous FGF2. TLDA analysis revealed that in the undifferentiated state, these cell lines have diverse mRNA profiles and exhibit significantly different potentials for differentiation towards the cell types present in the male gonads. This potential was associated with important factors directing the fate of the male primordial germ cells in vivo to form gonocytes, such as SOX17 or genes involved in the NODAL/ACTIVIN pathway, for example. Stimulation with BMP7 in suspension culture resulted in up-regulation of cytoplasmic SOX9 protein expression in all three lines. The observation that human embryonic stem cells differentiate towards germ and somatic cells after spontaneous and BMP7-induced stimulation in suspension emphasizes the important role of somatic cells in germ cell differentiation in vitro.  相似文献   

15.
16.
Chicken primordial germ cells (PGCs) differentiate into germ cells in gonads. Because PGCs can be cloned and cultured maintaining germline competency, they are a good means of modifing the chicken genome, but the efficiency of plasmid transfection into PGCs is very low. In this study, I attempted to improve the efficiency of PGC transfection. Cultured PGCs were purified by Percoll density gradient centrifugation, and were then transfected with plasmid DNA. For transient transfection, the transfection efficiency increased more than 7-fold by the Percoll method. The efficiency of stable transfection of PGCs also increased significantly. The stable transfectants that were isolated by this method accumulated in the developing gonads after microinjection into bloodstream of chick embryos, indicating that gene transfection by Percoll purification did not alter the function of PGCs in vivo.  相似文献   

17.

Background

Mammalian germ cells progress through a unique developmental program that encompasses proliferation and migration of the nascent primordial germ cell (PGC) population, reprogramming of nuclear DNA to reset imprinted gene expression, and differentiation of mature gametes. Little is known of the genes that regulate quantitative and qualitative aspects of early mammalian germ cell development both in vivo, and during differentiation of germ cells from mouse embryonic stem cells (mESCs) in vitro.

Methodology and Principal Findings

We used a transgenic mouse system that enabled isolation of small numbers of Oct4ΔPE:GFP-positive germ cells in vivo, and following differentiation from mESCs in vitro, to uncover quantitate and qualitative phenotypes associated with the disruption of a single translational regulator, Dazl. We demonstrate that disruption of Dazl results in a post-migratory, pre-meiotic reduction in PGC number accompanied by aberrant expression of pluripotency genes and failure to erase and re-establish genomic imprints in isolated male and female PGCs, as well as subsequent defect in progression through meiosis. Moreover, the phenotypes observed in vivo were mirrored by those in vitro, with inability of isolated mutant PGCs to establish pluripotent EG (embryonic germ) cell lines and few residual Oct-4-expressing cells remaining after somatic differentiation of mESCs carrying a Dazl null mutation. Finally, we observed that even within undifferentiated mESCs, a nascent germ cell subpopulation exists that was effectively eliminated with ablation of Dazl.

Conclusions and Significance

This report establishes the translational regulator Dazl as a component of pluripotency, genetic, and epigenetic programs at multiple time points of germ cell development in vivo and in vitro, and validates use of the ESC system to model and explore germ cell biology.  相似文献   

18.
Mammalian germ cells are powerful cells, the only ones that transmit information to the next generation ensuring the continuation of the species. But “with great power, comes great responsibility”, meaning that germ cells are only a few steps away from turning carcinogenic. Despite recent advances little is known about germ cell formation in mammals, predominantly because of the inaccessibility of these cells. Moreover, it is difficult to pin down what in essence is characteristic of a germ cell, as germ cells keep changing place, morphology, expression markers and epigenetic identity. Formation of (primordial) germ cells in primate ES cell cultures would therefore be helpful to identify molecular signalling pathways associated with germ cell differentiation and to study epigenetic changes in germ cells. In addition, the in vitro derivation of functional germ cells from ES cells could be used in combination with therapeutic cloning to generate patient-specific ES cell lines, and can have applications in animal breeding. In this review we present the state-of-the-art on how mouse and human germ cells are formed in vivo (the good), we discuss the link between germ cells, pluripotency and germ cell tumours (the bad) and show that despite continuous progress in trying to differentiate germ cells in vitro (the ugly) the generation of functional germ cells is still a real challenge.  相似文献   

19.
Primordial germ cell (PGC) allocation, characterization, lineage restriction, and differentiation have been extensively studied in the mouse. Murine PGC can be easily identified using markers as alkaline phosphatase content or the expression of pluripotent markers such as Pou5f1, Nanog, Sox2, Kit, SSEA1, and SSEA4. These tools allowed us to clarify certain aspects of the complex interactions of somatic and germinal cells in the establishment of the germ cell lineage, its segregation from the neighbouring somatic tissue, and the guidance mechanisms during migration that direct most of the germ cells into the genital ridges. Few data are available from other domestic animals and here we reported our preliminary studies on the isolation, characterization, and in vitro culture of sheep PGCs. Sheep PGCs can be identified with the markers previously used in mouse, but, in some cases, these markers are not coherently expressed in the same cell depending on the grade of differentiation and on technical problems related to commercial antibodies used. Pluripotency of PGCs in culture (EGCs) from domestic animals also needs further evaluation even though the derivation of embryonic pluripotent cell lines from large mammals may be an advantage as they are more physiologically similar to the human and perhaps more relevant for clinical translation studies. Comprehensive epigenetic reprogramming of the genome in early germ cells, and derived EGCs including extensive erasure of epigenetic modifications, may be relevant for gaining insight into events that lead to reprogramming and establishment of totipotency. EGCs can differentiate in vitro in a various range of tissues, form embryonic bodies, but in many cases failed to generate tumours when transplanted into immunodeficient mice and are not able to generate germline chimeric animals after their transfer. Such incomplete information clearly indicates the urge to improve the studies on derivation of stem cells in farm animals and shows the need for a multidisciplinary investigation in order to create farm animal models to set up suitable ethical and technical systems for cell regenerative therapies in humans.  相似文献   

20.
The hermaphrodite Caenorhabditis elegans germline has become a classic model for stem cell regulation, but the male C. elegans germline has been largely neglected. This work provides a cellular analysis of the adult C. elegans male germline, focusing on its predicted stem cell region in the distal gonad. The goals of this study were two-fold: to establish the C. elegans male germline as a stem cell model and to identify sex-specific traits of potential relevance to the sperm/oocyte decision. Our results support two major conclusions. First, adult males do indeed possess a population of germline stem cells (GSCs) with properties similar to those of hermaphrodite GSCs (lack of cell cycle quiescence and lack of reproducibly oriented divisions). Second, germ cells in the mitotic region, including those most distal within the niche, exhibit sex-specific behaviors (e.g. cell cycle length) and therefore have acquired sexual identity. Previous studies demonstrated that some germ cells are not committed to a sperm or oocyte cell fate, even in adults. We propose that germ cells can acquire sexual identity without being committed to a sperm or oocyte cell fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号