首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
本研究探讨体外诱导鸡胚胎生殖细胞(EGCs)分化为神经干细胞(NSCs)的可能性.EGCs经类胚体(EB)阶段,以维生素A酸(RA)等进行诱导,在NSCs选择性培养基中筛培养扩增7 d,观察形态变化;采用RT-PCR法检测nestin基因表达及免疫细胞化学法检测nestin等NSCs特异性标志物,并对其扩增及分化能力进行观察.结果显示:EGCs经初级诱导,NSCs选择性培养基筛选培养7 d后,形成大量神经球样结构,可扩增传代;绝大部分神经球样结构呈nestin抗原阳性,表达nestin基因,且可分化为神经上皮样及少突胶质细胞.研究结果表明:RA等诱导的EGCs,经选择性培养基筛选培养可获得NSCs,有望为眼部神经变性疾病的治疗提供新的技术参考.  相似文献   

3.
4.
5.
6.
The gonadal development of chicken embryo is regulated by hormones and growth factors. Transforming growth factor beta (TGF-β) isoforms may play a critical role in the regulation of growth in chicken gonads. We have investigated the effect of the TGF-β isoforms on the number of germ and somatic cells in the ovary of the chicken embryo. Ovaries were obtained from chicken embryos at 9 days of incubation. They were organ-cultured for 72 h in groups treated with TGF-β1, TGF-β2, soluble betaglycan, TGF-β1 plus soluble betaglycan, or TGF-β2 plus soluble betaglycan, and untreated (control). TGF-β1 and TGF-β2 diminished the somatic cell number in the ovary of the chicken embryo at this age by inhibiting the proliferation of the somatic cells without increasing apoptosis. On the other hand, TGF-β1 and TGF-β2 did not affect the number of germ cells in the cultured ovary. The capacity of TGF-β1 and TGF-β2 to diminish the number of somatic cells in the ovary was blocked with soluble betaglycan, a natural TGF-β antagonist. However, changes in the location of germ cells within the ovary suggested that TGF-β promoted the migration of the germ cells from the ovarian cortex to the medulla. Thus, TGF-β affects germ and somatic cells in the ovary of the 9-day-old chicken embryo and inhibits the proliferation of somatic cells.This work was supported by DGAPA-UNAM (IN214403) and CONACYT (45030).  相似文献   

7.
8.
9.
10.
11.
12.
In many animals, the germ line is specified by a distinct cytoplasmic structure called germ plasm (GP). GP is necessary for primordial germ cell (PGC) formation in anuran amphibians including Xenopus. However, it is unclear whether GP is a direct germ cell determinant in vertebrates. Here we demonstrate that GP acts autonomously for germ cell formation in Xenopus.EGFP-labeled GP from the vegetal pole was transplanted into animal hemisphere of recipient embryos. Cells carrying transplanted GP (T-GP) at the ectopic position showed characteristics similar to the endogenous normal PGCs in subcellular distribution of GP and presence of germ plasm specific molecules. However, T-GP-carrying-cells in the ectopic tissue did not migrate towards the genital ridge. T-GP-carrying cells from gastrula or tailbud embryos were transferred into the endoderm of wild-type hosts. From there, they migrated into the developing gonad. To clarify whether ectopic T-GP-carrying cells can produce functional germ cells, they were identified by changing the recipients, from the wild-type Xenopus to transgenic Xenopus expressing DsRed2. After transferring T-GP carrying cells labeled genetically with DsRed2 into wild-type hosts, we could find chimeric gonads in mature hosts. Furthermore, the spermatozoa and eggs derived from T-GP-carrying cells were fertile. Thus, we have demonstrated that Xenopus germ plasm is sufficient for germ cell determination.  相似文献   

13.
Inheritance (sequestration of a localized determinant: germplasm) and zygotic induction are two modes of metazoan primordial germ cell (PGC) specification. vasa and nanos homologs are evolutionarily conserved germline marker genes that have been used to examine the ontogeny of germ cells in various animals. In the lepidopteran insect Bombyx mori, although the lack of vasa homolog (BmVLG) protein localization as well as microscopic observation suggested the lack of germplasm, classical embryo manipulation studies and the localization pattern of Bm-nosO (one of the four nanos genes in Bombyx) maternal mRNA in the egg raised the possibility that an inheritance mode is operating in Bombyx. Here, we generated Bm-nosO knockouts to examine whether the localized mRNA acts as a localized germ cell determinant. Contrary to our expectations, Bm-nosO knockout lines could be established. However, these lines frequently produced abnormal eggs, which failed to hatch, to various extent depending on the individuals. We also found that Bm-nosO positively regulated BmVLG expression at least during embryonic stage, directly or indirectly, indicating that these genes were on the same developmental pathway for germ cell formation in Bombyx. These results suggest that these conserved genes are concerned with stable germ cell production. On the other hand, from the aspect of BmVLG as a PGC marker, we showed that maternal Bm-nosO product(s) as well as early zygotic Bm-nosO activity were redundantly involved in PGC specification; elimination of both maternal and zygotic gene activities (as in knockout lines) resulted in the apparent lack of PGCs, indicating that an inheritance mechanism indeed operates in Bombyx. This, however, together with the fact that germ cells are produced at all in Bm-nosO knockout lines, also suggests the possibility that, in Bombyx, not only this inheritance mechanism but also an inductive mechanism acts in concert to form germ cells or that loss of early PGCs are compensated for by germline regeneration: mechanisms that could enable the evolution of preformation. Thus, Bombyx could serve as an important organism in understanding the evolution of germ cell formation mechanisms; transition between preformation and inductive modes.  相似文献   

14.
The Drosophila melanogaster histone lysine methyltransferase (HKMT) Eggless (Egg/dSETDB1) catalyzes methylation of Histone H3 lysine 9 (H3K9), a signature of repressive heterochromatin. Our previous studies showed that H3K9 methylation by Egg is required for oogenesis. Here we analyze a set of EMS-induced mutations in the egg gene, identify the molecular lesions of these mutations, and compare the effects on oogenesis of both strong loss-of-function and weak hypomorphic alleles. These studies show that H3K9 methylation by Egg is required for multiple stages of oogenesis. Mosaic expression experiments show that the egg gene is not required intrinsically in the germ cells for their early differentiation, but is required in the germ cells for their survival past stage 5 of oogenesis. egg is also required in germ stem cells for their maintenance, since egg germ stem cells initially survive but are not maintained as females age. Mosaic analysis also reveals that the early egg chamber budding defects in egg ovaries are due to an intrinsic requirement for egg in follicle stem cells and their descendents, and that egg plays a non-autonomous role in somatic cells in the germarium to influence the differentiation of early germ cells.  相似文献   

15.
The establishment of an effective germ cell selection/enrichment platform from in vitro differentiating human embryonic stem cells (hESCs) is crucial for studying the molecular and signaling processes governing human germ cell specification and development. In this study, we developed a germ cell-enriching system that enables us to identify signaling factors involved in germ cell-fate induction from differentiating hESCs in vitro. First, we demonstrated that selection through an OCT4-EGFP reporter system can successfully increase the percentage of meiotic-competent, germ cell-like cells from spontaneously differentiating hESCs. Furthermore, we showed that the pluripotency associated surface marker, epithelial cell adhesion molecule (EpCAM), is also expressed in human fetal gonads and can be used as an effective selection marker for germ cell enrichment from differentiating hESCs. Combining OCT4 and EpCAM selection can further enrich the meiotic-competent germ cell-like cell population. Also, with the percentage of OCT4(+)/EpCAM(+) cells as readout, we demonstrated the synergistic effect of BMP4/pSMAD1/5/8 and WNT3A/β-CATENIN in promoting hESCs toward the germline fate. Combining BMP4/WNT3A induction and OCT4/EpCAM selection can significantly increase the putative germ cell population with meiotic competency. Co-transplantation of these cells with dissociated mouse neonatal ovary cells into SCID mice resulted in a homogenous germ cell cluster formation in vivo. The stepwise platform established in this study provides a useful tool to elucidate the molecular mechanisms of human germ cell development, which has implications not only for human fertility research but regenerative medicine in general.  相似文献   

16.
Mammalian germ cells are powerful cells, the only ones that transmit information to the next generation ensuring the continuation of the species. But “with great power, comes great responsibility”, meaning that germ cells are only a few steps away from turning carcinogenic. Despite recent advances little is known about germ cell formation in mammals, predominantly because of the inaccessibility of these cells. Moreover, it is difficult to pin down what in essence is characteristic of a germ cell, as germ cells keep changing place, morphology, expression markers and epigenetic identity. Formation of (primordial) germ cells in primate ES cell cultures would therefore be helpful to identify molecular signalling pathways associated with germ cell differentiation and to study epigenetic changes in germ cells. In addition, the in vitro derivation of functional germ cells from ES cells could be used in combination with therapeutic cloning to generate patient-specific ES cell lines, and can have applications in animal breeding. In this review we present the state-of-the-art on how mouse and human germ cells are formed in vivo (the good), we discuss the link between germ cells, pluripotency and germ cell tumours (the bad) and show that despite continuous progress in trying to differentiate germ cells in vitro (the ugly) the generation of functional germ cells is still a real challenge.  相似文献   

17.
18.
MicroRNAs (miRNAs) have emerged as critical regulators of gene expression. These small, non-coding RNAs are believed to regulate more than a third of all protein coding genes, and they have been implicated in the control of virtually all biological processes, including the biology of stem cells. The essential roles of miRNAs in the control of pluripotent stem cells were clearly established by the finding that embryonic stem (ES) cells lacking proteins required for miRNA biogenesis exhibit defects in proliferation and differentiation. Subsequently, the function of numerous miRNAs has been shown to control the fate of ES cells and to directly influence critical gene regulatory networks controlled by pluripotency factors Sox2, Oct4, and Nanog. Moreover, a growing list of tissue-specific miRNAs, which are silenced or not processed fully in ES cells, has been found to promote differentiation upon their expression and proper processing. The importance of miRNAs for ES cells is further indicated by the exciting discovery that specific miRNA mimics or miRNA inhibitors promote the reprogramming of somatic cells into induced pluripotent stem (iPS) cells. Although some progress has been made during the past two years in our understanding of the contribution of specific miRNAs during reprogramming, further progress is needed since it is highly likely that miRNAs play even wider roles in the generation of iPS cells than currently appreciated. This review examines recent developments related to the roles of miRNAs in the biology of pluripotent stem cells. In addition, we posit that more than a dozen additional miRNAs are excellent candidates for influencing the generation of iPS cells as well as for providing new insights into the process of reprogramming.  相似文献   

19.
来源于囊胚期胚胎内细胞团的胚胎干细胞具有独特的生物学特性,包括无限自我更新的能力以及分化为内胚层、中胚层和外胚层各种细胞的潜能.阐明胚胎干细胞全能性维持以及向各种特定细胞分化的分子机制,不仅有助于我们了解胚胎发育过程,而且将促进胚胎干细胞尽早应用于疾病治疗.本文主要就干细胞的一种命运决定过程,维持胚胎干细胞全能性或失去全能性开始分化,结合最新的研究进展讨论该过程中的分子调控网络,包括信号转导通路、表达调控网络以及表观遗传调控.  相似文献   

20.
为了探索鸡原始生殖细胞(Primordial germ cells,PGCs)适合的培养体系,我们在已构建的分泌型真核表达载体pSecTag-mlif(sp-)的基础上,通过脂质体介导将mlif转染到鸡PGCs和鸡胚胎成纤维(Chicken embryonic fibroblast, CEF)细胞中,48 h后收集细胞上清液,蛋白印迹均检测到小鼠白血病抑制因子(mLIF)的表达.以CEF细胞作饲养层,分七组来培养鸡PGCs,结果发现四组和五组培养的PGCs生长状态最好,三组传代后开始2-3天生长状况较好,3天后克隆周围有明显的分化现象.本实验将已构建了含mLIF基因的分泌型真核表达载体成功地瞬时转染到PGCs和CEF细胞中,且表达的mLIF具有维持鸡PGCs未分化状态的功能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号