首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Neural tube closure is an important and necessary process during the development of the central nervous system. The formation of the neural tube structure from a flat sheet of neural epithelium requires several cell morphogenetic events and tissue dynamics to account for the mechanics of tissue deformation. Cell elongation changes cuboidal cells into columnar cells, and apical constriction then causes them to adopt apically narrow, wedge-like shapes. In addition, the neural plate in Xenopus is stratified, and the non-neural cells in the deep layer (deep cells) pull the overlying superficial cells, eventually bringing the two layers of cells to the midline. Thus, neural tube closure appears to be a complex event in which these three physical events are considered to play key mechanical roles. To test whether these three physical events are mechanically sufficient to drive neural tube formation, we employed a three-dimensional vertex model and used it to simulate the process of neural tube closure. The results suggest that apical constriction cued the bending of the neural plate by pursing the circumference of the apical surface of the neural cells. Neural cell elongation in concert with apical constriction further narrowed the apical surface of the cells and drove the rapid folding of the neural plate, but was insufficient for complete neural tube closure. Migration of the deep cells provided the additional tissue deformation necessary for closure. To validate the model, apical constriction and cell elongation were inhibited in Xenopus laevis embryos. The resulting cell and tissue shapes resembled the corresponding simulation results.

  相似文献   

2.
Epithelial invagination in many model systems is driven by apical cell constriction, mediated by actin and myosin II contraction regulated by GTPase activity. Here we investigate apical constriction during chick lens placode invagination. Inhibition of actin polymerization and myosin II activity by cytochalasin D or blebbistatin prevents lens invagination. To further verify if lens placode invaginate through apical constriction, we analyzed the role of Rho-ROCK pathway. Rho GTPases expression at the apical portion of the lens placode occurs with the same dynamics as that of the cytoskeleton. Overexpression of the pan-Rho inhibitor C3 exotoxin abolished invagination and had a strong effect on apical myosin II enrichment and a mild effect on apical actin localization. In contrast, pharmacological inhibition of ROCK activity interfered significantly with apical enrichment of both actin and myosin. These results suggest that apical constriction in lens invagination involves ROCK but apical concentration of actin and myosin are regulated through different pathways upstream of ROCK. genesis 49:368-379, 2011.  相似文献   

3.
Shroom is an actin-associated determinant of cell morphology that is required for neural tube closure in both mice and frogs. Shroom regulates this process by causing apical constriction of epithelial cells via a pathway involving myosin II. Here we report on characterization of the Shroom-related proteins Apxl and KIAA1202 and their role in cell architecture. Shroom, Apxl, and KIAA1202 exhibit differing abilities to interact with the actin cytoskeleton. In fibroblasts, Shroom readily associates with actin stress fibers and induces bundling, Apxl is found on cortical actin, and KIAA1202 is localized to a cytoplasmic population of F-actin. In epithelial cells, Apxl and KIAA1202 do not induce apical constriction as Shroom does, but have the capacity to do so if targeted to the apical junctional complex. To determine whether the activity of Shroom-like proteins is conserved in invertebrates, we have tested the ability of the lone Shroomrelated protein in Drosophila, CG8603, to activate the constriction pathway. A chimeric protein consisting of the Shroom targeting domain and the Drosophila protein elicits constriction. Finally, we show that Apxl is involved in regulating the cytoskeletal organization and architecture of endothelial cells. We predict that the ability of Shroom-like proteins to regulate cellular morphology is conserved in evolution and is regulated in part by subcellular localization.  相似文献   

4.
Electron microscopy and indirect immunofluorescence were employed to correlate the distribution patterns of major contractile proteins (actin and myosin) with 1) the organizational state of microfilaments, 2) the apical cell surface topography, 3) the shape of the neuroepithelial cells, and 4) the degree of bending of the neuroepithelium during neurulation in chick embryos at Hamburger and Hamilton stages 5-10 of development. Both actin and myosin are present at these developmental stages and colocalize in the neural plate as well as in later phases of neurulation. During elevation of neural folds, actin- and myosin-specific fluorescence is always most intense in regions where the greatest degree of bending of the neuroepithelium takes place [e.g., the midline of the V-shaped neuroepithelium (early neural fold stage) and the midlateral walls of the "C"-shaped neuroepithelium (mid-neural-fold stage)]. This intense fluorescence coincides with 1) a particularly dense packing of microfilaments and 2) highly constricted cell apices. After neural folds make contact, there is an overall reduction in both the intensity of apical fluorescence and the thickness of apical microfilament bundles, especially in the roof and floor of the neural tube. The remaining fluorescence in the contact area is apparently related to cellular movements during fusion of neural folds.  相似文献   

5.
6.
Neural tube closure is a critical morphogenetic event that is regulated by dynamic changes in cell shape and behavior. Although previous studies have uncovered a central role for the non-canonical Wnt signaling pathway in neural tube closure, the underlying mechanism remains poorly resolved. Here, we show that the missing in metastasis (MIM; Mtss1) protein, previously identified as a Hedgehog response gene and actin and membrane remodeling protein, specifically binds to Daam1 and couples non-canonical Wnt signaling to neural tube closure. MIM binds to a conserved domain within Daam1, and this interaction is positively regulated by Wnt stimulation. Spatial expression of MIM is enriched in the anterior neural plate and neural folds, and depletion of MIM specifically inhibits anterior neural fold closure without affecting convergent extension movements or mesoderm cell fate specification. Particularly, we find that MIM is required for neural fold elevation and apical constriction along with cell polarization and elongation in both the superficial and deep layers of the anterior neural plate. The function of MIM during neural tube closure requires both its membrane-remodeling domain and its actin-binding domain. Finally, we show that the effect of MIM on neural tube closure is not due to modulation of Hedgehog signaling in the Xenopus embryo. Together, our studies define a morphogenetic pathway involving Daam1 and MIM that transduces non-canonical Wnt signaling for the cytoskeletal changes and membrane dynamics required for vertebrate neural tube closure.  相似文献   

7.
Cell shape changes are critical for morphogenetic events such as gastrulation, neurulation, and organogenesis. However, the cell biology driving cell shape changes is poorly understood, especially in vertebrates. The beginning of Xenopus laevis gastrulation is marked by the apical constriction of bottle cells in the dorsal marginal zone, which bends the tissue and creates a crevice at the blastopore lip. We found that bottle cells contribute significantly to gastrulation, as their shape change can generate the force required for initial blastopore formation. As actin and myosin are often implicated in contraction, we examined their localization and function in bottle cells. F-actin and activated myosin accumulate apically in bottle cells, and actin and myosin inhibitors either prevent or severely perturb bottle cell formation, showing that actomyosin contractility is required for apical constriction. Microtubules were localized in apicobasally directed arrays in bottle cells, emanating from the apical surface. Surprisingly, apical constriction was inhibited in the presence of nocodazole but not taxol, suggesting that intact, but not dynamic, microtubules are required for apical constriction. Our results indicate that actomyosin contractility is required for bottle cell morphogenesis and further suggest a novel and unpredicted role for microtubules during apical constriction.  相似文献   

8.
During early development of the central nervous system, the neuroepithelial cells undergo dynamic changes in shape, cumulative action of which cause the neural plate to bend mediolaterally to form the neural tube. The apicobasal elongation changes the cuboidal cells into columnar ones, whereas apical constriction minimizes the cell apices, causing them to adopt wedge-like shapes. To achieve the morphological changes required for the formation of a hollow structure, these cellular changes must be controlled in time and space. To date, it is widely accepted that spatial and temporal changes of the cytoskeletal organization are fundamental to epithelial cell shape changes, and that noncetrosomal microtubules assembled along apicobasal axis and actin filaments and non-muscle myosin II at the apical side are central machineries of cell elongation and apical constriction, respectively. Hence, especially in the last decade, intracellular mechanisms regulating these cytoskeletons have been extensively investigated at the molecular level. As a result, several actin-binding proteins, Rho/ROCK pathway, and cell-cell adhesion molecules have been proven to be the central regulators of apical constriction, while the regulatory mechanisms of cell elongation remain obscure. In this review, we first describe the distribution and role of cytoskeleton in cell shape changes during neural tube closure, and then summarize the current knowledge about the intracellular proteins that directly modulate the cytoskeletal organization and thus the neural tube closure.  相似文献   

9.
Regulation of cellular adhesion and cytoskeletal dynamics is essential for neurulation, though it remains unclear how these two processes are coordinated. Members of the Ena/VASP family of proteins are localized to sites of cellular adhesion and actin dynamics and lack of two family members, Mena and VASP, in mice results in failure of neural tube closure. The precise mechanism by which Ena/VASP proteins regulate this process, however, is not understood. In this report, we show that Xenopus Ena (Xena) is localized to apical adhesive junctions of neuroepithelial cells during neurulation and that Xena knockdown disrupts cell behaviors integral to neural tube closure. Changes in the shape of the neural plate as well as apical constriction within the neural plate are perturbed in Xena knockdown embryos. Additionally, we demonstrate that Xena is essential for cell-cell adhesion. These results demonstrate that Xena plays an integral role in coordinating the regulation of cytoskeletal dynamics and cellular adhesion during neurulation in Xenopus.  相似文献   

10.
Actin filaments and myosin II are evolutionarily conserved force-generating components of the contractile ring during cytokinesis. Here we show that in budding yeast, actin filament depolymerization plays a major role in actomyosin ring constriction. Cofilin mutation or chemically stabilizing actin filaments attenuate actomyosin ring constriction. Deletion of myosin II motor domain or the myosin regulatory light chain reduced the contraction rate and also the rate of actin depolymerization in the ring. We constructed a quantitative microscopic model of actomyosin ring constriction via filament sliding driven by both actin depolymerization and myosin II motor activity. Model simulations based on experimental measurements support the notion that actin depolymerization is the predominant mechanism for ring constriction. The model predicts invariability of total contraction time regardless of the initial ring size, as originally reported for C. elegans embryonic cells. This prediction was validated in yeast cells of different sizes due to different ploidies.  相似文献   

11.
Although the actomyosin cytoskeleton has been implicated in clathrin-mediated endocytosis, a clear requirement for actomyosin in clathrin-independent endocytosis (CIE) has not been demonstrated. We discovered that the Rho-associated kinase ROCK2 is required for CIE of MHCI and CD59 through promotion of myosin II activity. Myosin IIA promoted internalization of MHCI and myosin IIB drove CD59 uptake in both HeLa and polarized Caco2 intestinal epithelial cells. In Caco2 cells, myosin IIA localized to the basal cortex and apical brush border and mediated MHCI internalization from the basolateral domain, while myosin IIB localized at the basal cortex and apical cell–cell junctions and promoted CD59 uptake from the apical membrane. Atomic force microscopy demonstrated that myosin IIB mediated apical epithelial tension in Caco2 cells. Thus, specific cargoes are internalized by ROCK2-mediated activation of myosin II isoforms to mediate spatial regulation of CIE, possibly by modulation of local cortical tension.  相似文献   

12.
Apical constriction is a cell shape change that promotes epithelial bending. Activation of nonmuscle myosin II (Myo-II) by kinases such as Rho-associated kinase (Rok) is important to generate contractile force during apical constriction. Cycles of Myo-II assembly and disassembly, or pulses, are associated with apical constriction during Drosophila melanogaster gastrulation. It is not understood whether Myo-II phosphoregulation organizes contractile pulses or whether pulses are important for tissue morphogenesis. Here, we show that Myo-II pulses are associated with pulses of apical Rok. Mutants that mimic Myo-II light chain phosphorylation or depletion of myosin phosphatase inhibit Myo-II contractile pulses, disrupting both actomyosin coalescence into apical foci and cycles of Myo-II assembly/disassembly. Thus, coupling dynamic Myo-II phosphorylation to upstream signals organizes contractile Myo-II pulses in both space and time. Mutants that mimic Myo-II phosphorylation undergo continuous, rather than incremental, apical constriction. These mutants fail to maintain intercellular actomyosin network connections during tissue invagination, suggesting that Myo-II pulses are required for tissue integrity during morphogenesis.  相似文献   

13.
Cytoplasmic (or non-muscle) myosin II isoforms are widely expressed molecular motors playing essential cellular roles in cytokinesis and cortical tension maintenance. Two of the three human non-muscle myosin II isoforms (IIA and IIB) have been investigated at the protein level. Transient kinetics of non-muscle myosin IIB showed that this motor has a very high actomyosin ADP affinity and slow ADP release. Here we report the kinetic characterization of the non-muscle myosin IIA isoform. Similar to non-muscle myosin IIB, non-muscle myosin IIA shows high ADP affinity and little enhancement of the ADP release rate by actin. The ADP release rate constant, however, is more than an order of magnitude higher than the steady-state ATPase rate. This implies that non-muscle myosin IIA spends only a small fraction of its ATPase cycle time in strongly actin-bound states, which is in contrast to non-muscle myosin IIB. Non-muscle myosin II isoforms thus appear to have distinct enzymatic properties that may be of importance in carrying out their cellular functions.  相似文献   

14.
Apical constriction is an essential cell behavior during neural tube closure, but its underlying mechanisms are not fully understood. Lulu, or EPB4.1l5, is a FERM domain protein that has been implicated in apical constriction and actomyosin contractility in mouse embryos and cultured cells. Interference with the function of Lulu in Xenopus embryos by a specific antisense morpholino oligonucleotide or a carboxy-terminal fragment of Lulu impaired apical constriction during neural plate hinge formation. This effect was likely due to lack of actomyosin contractility in superficial neuroectodermal cells. By contrast, overexpression of Lulu RNA in embryonic ectoderm cells triggered ectopic apico-basal elongation and apical constriction, accompanied by the apical recruitment of F-actin. Depletion of endogenous Lulu disrupted the localization and activity of Shroom3, a PDZ-containing actin-binding protein that has also been implicated in apical constriction. Furthermore, Lulu and Shroom3 RNAs cooperated in triggering ectopic apical constriction in embryonic ectoderm. Our findings reveal that Lulu is essential for Shroom3-dependent apical constriction during vertebrate neural tube closure.  相似文献   

15.
Cell–cell adhesion couples the contractile cortices of epithelial cells together, generating tension to support a range of morphogenetic processes. E-cadherin adhesion plays an active role in generating junctional tension by promoting actin assembly and cortical signaling pathways that regulate myosin II. Multiple myosin II paralogues accumulate at mammalian epithelial cell–cell junctions. Earlier, we found that myosin IIA responds to Rho-ROCK signaling to support junctional tension in MCF-7 cells. Although myosin IIB is also found at the zonula adherens (ZA) in these cells, its role in junctional contractility and its mode of regulation are less well understood. We now demonstrate that myosin IIB contributes to tension at the epithelial ZA. Further, we identify a receptor type-protein tyrosine phosphatase alpha–Src family kinase–Rap1 pathway as responsible for recruiting myosin IIB to the ZA and supporting contractile tension. Overall these findings reinforce the concept that orthogonal E-cadherin–based signaling pathways recruit distinct myosin II paralogues to generate the contractile apparatus at apical epithelial junctions.  相似文献   

16.
Apical constriction is critical for epithelial morphogenesis, including neural tube formation. Vertebrate apical constriction is induced by di‐phosphorylated myosin light chain (ppMLC)‐driven contraction of actomyosin‐based circumferential rings (CRs), also known as perijunctional actomyosin rings, around apical junctional complexes (AJCs), mainly consisting of tight junctions (TJs) and adherens junctions (AJs). Here, we revealed a ppMLC‐triggered system at TJ‐associated CRs for vertebrate apical constriction involving microtubules, LUZP1, and myosin phosphatase. We first identified LUZP1 via unbiased screening of microtubule‐associated proteins in the AJC‐enriched fraction. In cultured epithelial cells, LUZP1 was found localized at TJ‐, but not at AJ‐, associated CRs, and LUZP1 knockout resulted in apical constriction defects with a significant reduction in ppMLC levels within CRs. A series of assays revealed that ppMLC promotes the recruitment of LUZP1 to TJ‐associated CRs, where LUZP1 spatiotemporally inhibits myosin phosphatase in a microtubule‐facilitated manner. Our results uncovered a hitherto unknown microtubule‐LUZP1 association at TJ‐associated CRs that inhibits myosin phosphatase, contributing significantly to the understanding of vertebrate apical constriction.  相似文献   

17.
Echinoid (Ed) is a homophilic immunoglobulin domain-containing cell adhesion molecule (CAM) that localizes to adherens junctions (AJs) and cooperates with Drosophila melanogaster epithelial (DE)-cadherin to mediate cell adhesion. Here we show that Ed takes part in many processes of dorsal closure, a morphogenetic movement driven by coordinated cell shape changes and migration of epidermal cells to cover the underlying amnioserosa. Ed is differentially expressed, appearing in epidermis but not in amnioserosa cells. Ed functions independently from the JNK signaling pathway and is required to regulate cell morphology, and for assembly of actomyosin cable, filopodial protrusion and coordinated cell migration in dorsal-most epidermal cells. The effect of Ed on cell morphology requires the presence of the intracellular domain (Edintra). Interestingly, Ed forms homodimers in vivo and Edintra monomer directly associates with unconventional myosin VI/Jaguar (Jar) motor protein. We further show that ed genetically interacts with jar to control cell morphology. It has previously been shown that myosin VI is monomeric in vitro and that its dimeric form can associate with and travel processively along actin filaments. Thus, we propose that Ed mediates the dimerization of myosin VI/Jar in vivo which in turn regulates the reorganization and/or contraction of actin filaments to control changes in cell shape. Consistent with this, we found that ectopic ed expression in the amnioserosa induces myosin VI/Jar-dependent apical constriction of this tissue.  相似文献   

18.
During gastrulation in Drosophila melanogaster, coordinated apical constriction of the cellular surface drives invagination of the mesoderm anlage. Forces generated by the cortical cytoskeletal network have a pivotal role in this cellular shape change. Here, we show that the organisation of cortical actin is essential for stabilisation of the cellular surface against contraction. We found that mutation of genes related to heterotrimeric G protein (HGP) signaling, such as Gβ13F, Gγ1, and ric-8, results in formation of blebs on the ventral cellular surface. The formation of blebs is caused by perturbation of cortical actin and induced by local surface contraction. HGP signaling mediated by two Gα subunits, Concertina and G-iα65A, constitutively regulates actin organisation. We propose that the organisation of cortical actin by HGP is required to reinforce the cortex so that the cells can endure hydrostatic stress during tissue folding.  相似文献   

19.
Changes in the shape of neuroepithelial cells, particularly apical constriction, are generally thought to play a major role in generating the driving forces for neural tube formation. Our previous study [Nagele and Lee (1987) J. Exp. Zool., 241:197-205] has shown that, in the developing midbrain region of stage 8+ chick embryos, neuroepithelial cells showing the greatest degree of apical constriction are concentrated at sites of enhanced bending of the neuroepithelium (i.e., the floor and midlateral walls of neural tube), suggesting that driving forces resulting from apical constriction are concentrated at these sites during closure of the neural tube. In the present study, we have used morphometric methods to 1) measure regional variations in the degree of apical constriction and apical surface folding at selected regions along the anteroposterior axis of stage 8+ chick embryos, which closely resemble the various ontogenetic phases of neural tube formation, and 2) investigate how forces resulting from apical constriction are distributed within the neuroepithelium during transformation of the neural plate into a neural tube. Results show that, during neural tube formation, driving forces resulting from apical constriction are not distributed uniformly throughout the neuroepithelium but rather are concentrated sequentially at three distinct locations: 1) the floor (during transformation of the neural plate to a V-shaped neuroepithelium), 2) the midlateral walls (during transformation of the V-shaped neuroepithelium into a C-shaped neuroepithelium), and 3) the upper walls (during the transformation of the C-shaped neuroepithelium into a closed neural tube).  相似文献   

20.
The global cell movements that shape an embryo are driven by intricate changes to the cytoarchitecture of individual cells. In a developing embryo, these changes are controlled by patterning genes that confer cell identity. However, little is known about how patterning genes influence cytoarchitecture to drive changes in cell shape. In this paper, we analyze the function of the folded gastrulation gene (fog), a known target of the patterning gene twist. Our analysis of fog function therefore illuminates a molecular pathway spanning all the way from patterning gene to physical change in cell shape. We show that secretion of Fog protein is apically polarized, making this the earliest polarized component of a pathway that ultimately drives myosin to the apical side of the cell. We demonstrate that fog is both necessary and sufficient to drive apical myosin localization through a mechanism involving activation of myosin contractility with actin. We determine that this contractility driven form of localization involves RhoGEF2 and the downstream effector Rho kinase. This distinguishes apical myosin localization from basal myosin localization, which we find not to require actinomyosin contractility or FOG/RhoGEF2/Rho-kinase signaling. Furthermore, we demonstrate that once localized apically, myosin continues to contract. The force generated by continued myosin contraction is translated into a flattening and constriction of the cell surface through a tethering of the actinomyosin cytoskeleton to the apical adherens junctions. Our analysis of fog function therefore provides a direct link from patterning to cell shape change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号