首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Morphological investigations of morphogenesis accompanying the metamorphosis of the cinctoblastula larva of poriferan Plakina trilopha (Homoscleromorpha) have been made. The larva possesses a distinct columnar epithelium which subdivides into three cellular areas: antero-lateral, postero-lateral, and posterior one. Characteristic morphological features of the cells in each area can be used as natural markers when tracing the fate of larval cells during metamorphosis. The ciliated epithelium of the larva is transformed directly into choanoderm and pinacoderm, without losing its organization. This transformation is a peculiar feature of the metamorphosis in Homoscleromorpha. Metamorphosis in P. trilopha is based on epithelial morphogenesis and includes the mechanisms of flattening of the exopinacoderm, evagination and invagination of larval epithelium in the course of the development of the rhagon aquiferous system. The flattening of larval cells during exopinacoderm formation in metamorphosing P. trilopha is a common change of cell shape during epithelial morphogenesis of this species. The separation of proximal fragments of cells has been observed here. This phenomenon, that we have called “cytoplasmic shedding”, appears to play an important role in the change of epithelial cell shape in P. trilopha. Mechanism of epithelial–mesenchymal transition, i.e., ingression of epithelial ciliated cells into the cavity of the metamorphosing larva of P. trilopha participates in mesohylar cell origin.  相似文献   

2.
Diverse types of epithelial morphogenesis drive development. Similar cytoskeletal and cell adhesion machinery orchestrate these changes, but it is unclear how distinct tissue types are produced. Thus, it is important to define and compare different types of morphogenesis. We investigated cell flattening and elongation in the amnioserosa, a squamous epithelium formed at Drosophila gastrulation. Amnioserosa cells are initially columnar. Remarkably, they flatten and elongate autonomously by perpendicularly rotating the microtubule cytoskeleton--we call this 'rotary cell elongation'. Apical microtubule protrusion appears to initiate the rotation and microtubule inhibition perturbs the process. F-actin restrains and helps orient the microtubule protrusions. As amnioserosa cells elongate, they maintain their original cell-cell contacts and develop planar polarity. Myosin II localizes to anterior-posterior contacts, while the polarity protein Bazooka (PAR-3) localizes to dorsoventral contacts. Genetic analysis revealed that Myosin II and Bazooka cooperate to properly position adherens junctions. These results identify a specific cellular mechanism of squamous tissue morphogenesis and molecular interactions involved.  相似文献   

3.
Identifying genes involved in the control of adherens junction (AJ) remodeling is essential to understanding epithelial morphogenesis. During follicular epithelium development in Drosophila melanogaster, the main body follicular cells (MBFCs) are displaced toward the oocyte and become columnar. Concomitantly, the stretched cells (StCs) become squamous and flatten around the nurse cells. By monitoring the expression of epithelial cadherin and Armadillo, I have discovered that the rate of AJ disassembly between the StCs is affected in follicles with somatic clones mutant for fringe or Delta and Serrate. This results in abnormal StC flattening and delayed MBFC displacement. Additionally, accumulation of the myosin II heavy chain Zipper is delayed at the AJs that require disassembly. Together, my results demonstrate that the Notch pathway controls AJ remodeling between the StCs and that this role is crucial for the timing of MBFC displacement and StC flattening. This provides new evidence that Notch, besides playing a key role in cell differentiation, also controls cell morphogenesis.  相似文献   

4.
Dihydropyrimidinase-related protein 4 (Dpysl4) is a known regulator of hippocampal neuron development. Here, we report that Dpysl4 is involved in growth regulation, polarization and differentiation of dental epithelial cells during tooth germ morphogenesis. A reduction in Dpysl4 gene expression in the tooth germ produced a loss of ameloblasts, resulting in the decrease of synthesis and secretion of enamel. The inhibition of Dpysl4 gene expression led to promotion of cell proliferation of inner enamel epithelial cells and inhibition of the differentiation of these cells into pre-ameloblasts, which was confirmed by analyzing cell polarization, columnar cell structure formation and the expression of ameloblast marker genes. By contrast, overexpression of Dpysl4 in dental epithelial cells induces inhibition of growth and increases the expression of the inner enamel epithelial cell marker gene, Msx2. These findings suggest that Dpysl4 plays essential roles in tooth germ morphogenesis through the regulation of dental epithelial cell proliferation, cell polarization and differentiation.  相似文献   

5.
The adult form of a multicellular organism is shaped by a series of morphogenetic processes that organise the body into tissues and organs. Most of these events involve the deformation of sheets of epithelial cells that are highly polarised along their apical-basal axes and attached to each other by lateral junctions. Here we discuss the role played by modifications in the apical-basal polarity system in driving morphogenesis, with an emphasis on well-characterised events during Drosophila development. Changing the activity of polarity factors can alter the relative sizes of the apical, lateral and basal domains. This can drive transitions between cuboidal, columnar and squamous epithelial morphologies, to increase or decrease the surface area of an epithelial sheet. These changes can also cause epithelial cells to become wedge-shaped, which can drive tissue bending and invagination. In addition, it has recently emerged that the activity of apical-basal polarity factors can also be modulated in a planar polarised manner. By affecting the contractility of the actomyosin cytoskeleton and the stability of adherens junctions, changes within the plane of the epithelium can cause cell rearrangements that contribute to convergence and extension movements, boundary formation and cell alignment.  相似文献   

6.
Regulation of epithelial cell shape, for example, changes in relative sizes of apical, basal, and lateral membranes, is a key mechanism driving morphogenesis. However, it is unclear how epithelial cells control the size of their membranes. In the epithelium of the Drosophila melanogaster ovary, cuboidal precursor cells transform into a squamous epithelium through a process that involves lateral membrane shortening coupled to apical membrane extension. In this paper, we report a mutation in the gene Tao, which resulted in the loss of this cuboidal to squamous transition. We show that the inability of Tao mutant cells to shorten their membranes was caused by the accumulation of the cell adhesion molecule Fasciclin 2, the Drosophila N-CAM (neural cell adhesion molecule) homologue. Fasciclin 2 accumulation at the lateral membrane of Tao mutant cells prevented membrane shrinking and thereby inhibited morphogenesis. In wild-type cells, Tao initiated morphogenesis by promoting Fasciclin 2 endocytosis at the lateral membrane. Thus, we identify here a mechanism controlling the morphogenesis of a squamous epithelium.  相似文献   

7.
The border cells of Drosophila are a model system for coordinated cell migration. Ecdysone signaling has been shown to act as the timing signal to initiate the migration process. Here we find that mutations in phantom (phm), encoding an enzyme in the ecdysone biosynthesis pathway, block border cell migration when the entire follicular epithelium of an egg chamber is mutant, even when the associated germline cells (nurse cells and oocyte) are wild-type. Conversely, mutant germline cells survive and do not affect border cell migration, as long as the surrounding follicle cells are wild-type. Interestingly, even small patches of wild-type follicle cells in a mosaic epithelium are sufficient to allow the production of above-threshold levels of ecdysone to promote border cell migration. The same phenotype is observed with mutations in shade (shd), encoding the last enzyme in the pathway that converts ecdysone to the active 20-hydroxyecdysone. Administration of high 20-hydroxyecdysone titers in the medium can also rescue the border cell migration phenotype in cultured egg chambers with an entirely phm mutant follicular epithelium. These results indicate that in normal oogenesis, the follicle cell epithelium of each individual egg chamber must supply sufficient ecdysone precursors, leading ultimately to high enough levels of mature 20-hydroxyecdysone to the border cells to initiate their migration. Neither the germline, nor the neighboring egg chambers, nor the surrounding hemolymph appear to provide threshold amounts of 20-hydroxyecdysone to do so. This “egg chamber autonomous” ecdysone synthesis constitutes a useful way to regulate the individual maturation of the asynchronous egg chambers present in the Drosophila ovary.  相似文献   

8.
9.
In rodents, a circumvallate papilla (CVP) develops with dynamic changes in epithelial morphogenesis during early tongue development. Molecular and cellular studies of CVP development revealed that there would be two different mechanisms in the apex and the trench wall forming regions with specific expression patterns of Wnt11 and Shh. Molecular interactions were examined using in vitro organ culture with over-expression of Shh, important signalling molecules and various inhibitors revealed that there are two significant different mechanisms in CVP formation by Wnt11 and Shh expressions. Wnt, a well known key molecule to initiate taste papillae, would govern Rho activation and cytoskeleton formation in the apex epithelium of CVP. In contrast, Shh regulates the cell proliferation to differentiate taste buds and to invaginate the epithelium for development of von Ebner's gland (VEG). Based on these results, we suggest that these different molecular signalling cascades of Wnt11 and Shh would play crucial roles in specific morphogenesis and pattern formation of CVP during early mouse embryo development.  相似文献   

10.
11.
Complex organ shapes arise from the coordinate actions of individual cells. The Drosophila egg chamber is an organ-like structure that lengthens along its anterior–posterior axis as it grows. This morphogenesis depends on an unusual form of planar polarity in the organ’s outer epithelial layer, the follicle cells. Interestingly, this epithelium also undergoes a directed migration that causes the egg chamber to rotate around its anterior–posterior axis. However, the functional relationship between planar polarity and migration in this tissue is unknown. We have previously reported that mutations in the Misshapen kinase disrupt follicle cell planar polarity. Here we show that Misshapen’s primary role in this system is to promote individual cell motility. Misshapen decreases integrin levels at the basal surface, which may facilitate detachment of each cell’s trailing edge. These data provide mechanistic insight into Misshapen’s conserved role in cell migration and suggest that follicle cell planar polarity may be an emergent property of individual cell migratory behaviors within the epithelium.  相似文献   

12.
13.
14.
Imaginal discs of Drosophila provide an excellent system with which to study morphogenesis, pattern formation and cell proliferation in an epithelium. Discs are sac-like in structure and are composed of two epithelial layers: an upper peripodial epithelium and lower disc proper. Although development of the disc proper has been studied extensively in terms of cell proliferation, cell signaling mechanisms and pattern formation, little is known about these same processes in the peripodial epithelium. We address this topic by focusing on morphogenesis, compartmental organization, proliferation and cell lineage of the PE in wing, second thoracic leg (T2) and eye discs. We show that a subset of peripodial cells in different imaginal discs undergo a cuboidal-to-squamous cell shape change at distinct larval stages. We find that this shape change requires both Hedgehog and Decapentapelagic, but not Wingless, signaling. Additionally, squamous morphogenesis shifts the anteroposterior (AP) compartment boundary in the peripodial epithelium relative to the stationary AP boundary in the disc proper. Finally, by lineage tracing cells in the PE, we surprisingly find that peripodial cells are displaced into the disc proper during larval development and this movement leads to Ubx repression.  相似文献   

15.
Keratin expression in hamster tracheal epithelium was investigated during organ culture in serum-free, hormone-supplemented medium using monospecific monoclonal antibodies. Generally, tracheal basal cells expressed keratins detected by antibodies RCK102 and RCK103, while columnar epithelial cells were stained positively by RGE53, RCK103, RCK105 and HCK19. Metaplastic squamous cell foci reacted with antibodies RKSE60, RCK103 and HCK19. Early metaplastic alterations were more clearly RKSE60-positive than the mature lesions. In the vitamin A-depleted tracheas basal cells were clearly RCK102-positive. Superficial cells in the central part of areas of squamous metaplasia induced by cigarette smoke condensate expressed the basal cell keratins, and were negative for the columnar cell keratin 18 detected by the RGE53 antibody. This finding suggests that in cigarette smoke condensate-induced squamous metaplasia basal cells play an important role. The mucus-producing cells at the edges of metaplastic squamous cell foci expressed the keratins specific to columnar cells. Cigarette smoke condensate exposure accelerated epithelial keratinization compared to the vitamin A-depleted epithelium. It was concluded that not only small mucous granule cells, but also basal cells are involved in the development and maintenance of induced squamous metaplasia in tracheal epithelium. Furthermore, in vitro vitamin A-depleted epithelium did not coexpress vimentin in addition to the different keratins.  相似文献   

16.
Gibson MC  Schubiger G 《Cell》2000,103(2):343-350
Cells employ a diverse array of signaling mechanisms to establish spatial patterns during development. Nowhere is this better understood than in Drosophila, where the limbs and eyes arise from discrete epithelial sacs called imaginal discs. Molecular-genetic analyses of pattern formation have generally treated discs as single epithelial sheets. Anatomically, however, discs comprise a columnar cell monolayer covered by a squamous epithelium known as the peripodial membrane. Here we demonstrate that during development, peripodial cells signal to disc columnar cells via microtubule-based apical extensions. Ablation and targeted gene misexpression experiments demonstrate that peripodial cell signaling contributes to growth control and pattern formation in the eye and wing primordia. These findings challenge the traditional view of discs as monolayers and provide foundational evidence for peripodial cell function in Drosophila appendage development.  相似文献   

17.
Transition from G1 to S phase of the cell cycle is mediated by interactions between the Retinoblastoma gene product (pRb), p16, and cyclin D1. To determine the expression of these proteins in the sinonasal mucosa immunohistochemistry was carried out on archived tissue sections from 46 patients (37 men, 9 women, age range 17 to 82 years, median 55 years). Nuclear immunostaining for these proteins was assessed and the expression rates (percentages of immunoreactive nuclei) in normal respiratory epithelium, inverted sinonasal papillomas, cylindrical (oncocytic) sinonasal papillomas, and squamous cell carcinomas were compared. Normal respiratory epithelium showed significantly higher pRb expression in surface cells compared to basal cells (p < 0.05). In contrast, abundant pRb expression in surface and basal cells was detected in columnar differentiation in sinonasal papillomas and adjacent mucosa. Cuboidal and squamous metaplasia in inverted papillomas showed significantly reduced pRb expression in surface cells compared to columnar epithelium in inverted papillomas (p < 0.05, respectively). Expression of p16 was detected in all epithelial cell layers of normal respiratory epithelium, sinonasal papillomas, and adjacent mucosa. Cuboidal and squamous metaplasia in inverted papillomas showed increased p16 expression in surface cells compared to columnar epithelium in inverted papillomas (p < 0.05 between squamous metaplasia and columnar epithelium). Sinonasal squamous cell carcinomas showed the coexpression of pRb and p16. Expression rates of cyclin D1 higher than 10% were detected only in invasive carcinomas but not in carcinoma in situ, sinonasal papillomas or respiratory epithelium. Conclusively, pRb expression accompanies terminal differentiation in columnar surface cells. Expression of pRb in proliferating basal cells is present in sinonasal papillomas and adjacent mucosa but not in normal respiratory epithelium. Cuboidal and squamous metaplasia in inverted papillomas involves downregulation of pRb expression along with increased p16 expression in surface cells. Sinonasal squamous cell carcinomas coexpress pRb and p16. Overexpression of cyclin D1 in sinonasal lesions is confined to invasive squamous cell carcinomas.  相似文献   

18.
In the follicle cell (FC) epithelium that surrounds the Drosophila egg, a complex set of cell signals specifies two cell fates that pattern the eggshell: the anterior centripetal FC that produce the operculum and the posterior columnar FC that produce the main body eggshell structure. We have previously shown that the long-range morphogen DPP represses the expression of the bunched (bun) gene in the anterior-most centripetal FC. bun, which encodes a homolog of vertebrate TSC-22/GILZ, in turn represses anterior gene expression and antagonizes Notch signaling to restrict centripetal FC fates in posterior cells. From a screen for novel targets of bun repression we have identified the C/EBP homolog slow border cells (slbo). At stage 10A, slbo expression overlaps bun in anterior FC; by stage 10B they repress each other's expression to establish a sharp slbo/bun expression boundary. The precise position of the slbo/bun expression boundary is sensitive to Notch signaling, which is required for both slbo activation and bun repression. As centripetal migration proceeds from stages 10B-14, slbo represses its own expression and both slbo loss-of-function mutations and overexpression approaches reveal that slbo is required to coordinate centripetal migration with nurse cell dumping. We propose that in anterior FC exposed to a Dpp morphogen gradient, high and low levels of slbo and bun, respectively, are established by modulation of Notch signaling to direct threshold cell fates. Interactions among Notch, slbo and bun resemble a conserved signaling cassette that regulates mammalian adipocyte differentiation.  相似文献   

19.
Many animals exhibit stereotypical left-right (LR) asymmetry in their internal organs. The mechanisms of LR axis formation required for the subsequent LR asymmetric development are well understood, especially in some vertebrates. However, the molecular mechanisms underlying LR asymmetric morphogenesis, particularly how mechanical force is integrated into the LR asymmetric morphogenesis of organs, are poorly understood. Here, we identified zipper (zip), encoding a Drosophila non-muscle myosin II (myosin II) heavy chain, as a gene required for LR asymmetric development of the embryonic anterior midgut (AMG). Myosin II is known to directly generate mechanical force in various types of cells during morphogenesis and cell migration. We found that myosin II was involved in two events in the LR asymmetric development of the AMG. First, it introduced an LR bias to the directional position of circular visceral muscle (CVMU) cells, which externally cover the midgut epithelium. Second, it was required for the LR-biased rotation of the AMG. Our results suggest that myosin II in CVMU cells plays a crucial role in generating the force leading to LR asymmetric morphogenesis. Taken together with previous studies in vertebrates, the involvement of myosin II in LR asymmetric morphogenesis might be conserved evolutionarily.  相似文献   

20.
E-cadherin, the primary epithelial adherens junction protein, has been implicated as playing a critical role in nucleating formation of adherens junctions, tight junctions, and desmosomes. In addition to its role in maintaining structural tissue integrity, E-cadherin has also been suggested as an important modulator of cell signaling via interactions with its cytoplasmic binding partners, catenins, as well as with growth factor receptors. Therefore, we proposed that loss of E-cadherin from the developing mouse intestinal epithelium would disrupt intestinal epithelial morphogenesis and function. To test this hypothesis, we used a conditional knockout approach to eliminate E-cadherin specifically in the intestinal epithelium during embryonic development. We found that E-cadherin conditional knockout mice failed to survive, dying within the first 24 hours of birth. Examination of intestinal architecture at E18.5 demonstrated severe disruption to intestinal morphogenesis in animals lacking E-cadherin in the epithelium of the small intestine. We observed changes in epithelial cell shape as well as in the morphology of villi. Although junctional complexes were evident, junctions were abnormal, and barrier function was compromised in E-cadherin mutant intestine. We also identified changes in the epithelial cell populations present in E-cadherin conditional knockout animals. The number of proliferating cells was increased, whereas the number of enterocytes was decreased. Although Wnt/β-catenin target mRNAs were more abundant in mutants compared with controls, the amount of nuclear activated β-catenin protein was dramatically lower in mutants compared with controls. In summary, our data demonstrate that E-cadherin is essential for intestinal epithelial morphogenesis and homeostasis during embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号