共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Re-programming of C. elegans male epidermal precursor fates by Wnt, Hox, and LIN-12/Notch activities
Hui Yu 《Developmental biology》2010,345(1):1-11
In Caenorhabditiselegans males, different subsets of ventral epidermal precursor (Pn.p) cells adopt distinct fates in a position-specific manner: three posterior cells, P(9-11).p, comprise the hook sensillum competence group (HCG) with three potential fates (1°, 2°, or 3°), while eight anterior cells, P(1-8).p, fuse with the hyp7 epidermal syncytium. Here we show that activation of the canonical BAR-1 β-catenin pathway of Wnt signaling alters the competence of P(3-8).p and specifies ectopic HCG-like fates. This fate transformation requires the Hox gene mab-5. In addition, misexpression of mab-5 in P(1-8).p is sufficient to establish HCG competence among these cells, as well as to generate ectopic HCG fates in combination with LIN-12 or EGF signaling. While increased Wnt signaling induces predominantly 1° HCG fates, increased LIN-12 or EGF signaling in combination with MAB-5 overexpression promotes 2° HCG fates in anterior Pn.p cells, suggesting distinctive functions of Wnt, LIN-12, and EGF signaling in specification of HCG fates. Lastly, wild-type mab-5 function is necessary for normal P(9-11).p fate specification, indicating that regulation of ectopic HCG fate formation revealed in anterior Pn.p cells reflect mechanisms of pattern formation during normal hook development. 相似文献
3.
4.
5.
6.
Julie E. Gleason 《Developmental biology》2010,348(1):58-66
Metazoan stem cells repopulate tissues during adult life by dividing asymmetrically to generate another stem cell and a cell that terminally differentiates. Wnt signaling regulates the division pattern of stem cells in flies and vertebrates. While the short-lived nematode C. elegans has no adult somatic stem cells, the lateral epithelial seam cells divide in a stem cell-like manner in each larval stage, usually generating a posterior daughter that retains the seam cell fate and an anterior daughter that terminally differentiates. We show that while wild-type adult animals have 16 seam cells per side, animals with reduced function of the TCF homolog POP-1 have as many as 67 seam cells, and animals with reduced function of the β-catenins SYS-1 and WRM-1 have as few as three. Analysis of seam cell division patterns showed alterations in their stem cell-like divisions in the L2-L4 stages: reduced Wnt signaling caused both daughters to adopt non-seam fates, while activated Wnt signaling caused both daughters to adopt the seam fate. Therefore, our results indicate that Wnt signaling globally regulates the asymmetric, stem cell-like division of most or all somatic seam cells during C. elegans larval development, and that Wnt pathway regulation of stem cell-like behavior is conserved in nematodes. 相似文献
7.
8.
9.
10.
The Wnt signaling pathway regulates multiple aspects of the development of stem cell-like epithelial seam cells in Caenorhabditis elegans, including cell fate specification and symmetric/asymmetric division. In this study, we demonstrate that lit-1, encoding the Nemo-like kinase in the Wnt/β-catenin asymmetry pathway, plays a role in specifying temporal identities of seam cells. Loss of function of lit-1 suppresses defects in retarded heterochronic mutants and enhances defects in precocious heterochronic mutants. Overexpressing lit-1 causes heterochronic defects opposite to those in lit-1(lf) mutants. LIT-1 exhibits a periodic expression pattern in seam cells within each larval stage. The kinase activity of LIT-1 is essential for its role in the heterochronic pathway. lit-1 specifies the temporal fate of seam cells likely by modulating miRNA-mediated silencing of target heterochronic genes. We further show that loss of function of other components of Wnt signaling, including mom-4, wrm-1, apr-1, and pop-1, also causes heterochronic defects in sensitized genetic backgrounds. Our study reveals a novel function of Wnt signaling in controlling the timing of seam cell development in C. elegans. 相似文献
11.
The hermaphrodite Caenorhabditis elegans germline has become a classic model for stem cell regulation, but the male C. elegans germline has been largely neglected. This work provides a cellular analysis of the adult C. elegans male germline, focusing on its predicted stem cell region in the distal gonad. The goals of this study were two-fold: to establish the C. elegans male germline as a stem cell model and to identify sex-specific traits of potential relevance to the sperm/oocyte decision. Our results support two major conclusions. First, adult males do indeed possess a population of germline stem cells (GSCs) with properties similar to those of hermaphrodite GSCs (lack of cell cycle quiescence and lack of reproducibly oriented divisions). Second, germ cells in the mitotic region, including those most distal within the niche, exhibit sex-specific behaviors (e.g. cell cycle length) and therefore have acquired sexual identity. Previous studies demonstrated that some germ cells are not committed to a sperm or oocyte cell fate, even in adults. We propose that germ cells can acquire sexual identity without being committed to a sperm or oocyte cell fate. 相似文献
12.
Brendan C. Mullaney Kaveh Ashrafi 《Biochimica et Biophysica Acta (BBA)/Molecular and Cell Biology of Lipids》2009,1791(6):474-478
C. elegans has long been used as an experimentally tractable organism for discovery of fundamental mechanisms that underlie metazoan cellular function, development, neurobiology, and behavior. C. elegans has more recently been exploited to study the interplay of environment and genetics on lipid storage pathways. As an experimental platform, C. elegans is amenable to an extensive array of forward and reverse genetic, a variety of “omics” and anatomical approaches that together allow dissection of complex physiological pathways. This is particularly relevant to the study of fat biology, as energy balance is ultimately an organismal process that involves behavior, nutrient digestion, uptake and transport, as well as a variety of cellular activities that determine the balance between lipid storage and utilization. C. elegans offers the opportunity to dissect these pathways and various cellular and organismal homeostatic mechanisms in the context of a genetically tractable, intact organism. 相似文献
13.
14.
Genes previously implicated in mammalian sexual development have either a male- or female-specific role. The signaling molecule WNT4 has been shown to be important in female sexual development. Lack of Wnt4 gives rise to masculinization of the XX gonad and we showed previously that the role of WNT4 was to inhibit endothelial and steroidogenic cell migration into the developing ovary. Here we show that Wnt4 also has a function in the male gonad. We find that Sertoli cell differentiation is compromised in Wnt4 mutant testes and that this defect occurs downstream of the testis-determining gene Sry but upstream of Sox9 and Dhh, two early Sertoli cell markers. Genetic analysis shows that this phenotype is primarily due to the action of WNT4 within the early genital ridge. Analysis of different markers identifies the most striking difference in the genital ridge at early stages of its development between wild-type and Wnt4 mutant embryos to be a significant increase of steroidogenic cells in the Wnt4 -/- gonad. These results identify WNT4 as a new factor involved in the mammalian testis determination pathway and show that genes can have a specific but distinct role in both male and female gonad development. 相似文献
15.
The Caenorhabditis elegans uterine seam cell (utse) is an H-shaped syncytium that connects the uterus to the body wall. Comprising nine nuclei that move outward in a bidirectional manner, this synctium undergoes remarkable shape change during development. Using cell ablation experiments, we show that three surrounding cell types affect utse development: the uterine toroids, the anchor cell and the sex myoblasts. The presence of the anchor cell (AC) nucleus within the utse is necessary for proper utse development and AC invasion genes fos-1, cdh-3, him-4, egl-43, zmp-1 and mig-10 promote utse cell outgrowth. Two types of uterine lumen epithelial cells, uterine toroid 1 (ut1) and uterine toroid 2 (ut2), mediate proper utse outgrowth and we show roles in utse development for two genes expressed in the uterine toroids: the RASEF ortholog rsef-1 and Trio/unc-73. The SM expressed gene unc-53/NAV regulates utse cell shape; ablation of sex myoblasts (SMs), which generate uterine and vulval muscles, cause defects in utse morphology. Our results clarify the nature of the interactions that exist between utse and surrounding tissue, identify new roles for genes involved in cell outgrowth, and present the utse as a new model system for understanding cell shape change and, putatively, diseases associated with cell shape change. 相似文献
16.
Melissa Owraghi 《Developmental biology》2010,340(2):209-355
In C. elegans the 4-cell stage blastomere EMS is an endomesodermal precursor. Its anterior daughter, MS, makes primarily mesodermal cells, while its posterior daughter E generates the entire intestine. The gene regulatory network underlying specification of MS and E has been the subject of study for more than 15 years. A key component of the specification of the two cells is the involvement of the Wnt/β-catenin asymmetry pathway, which through its nuclear effector POP-1, specifies MS and E as different from each other. Loss of pop-1 function results in the mis-specification of MS as an E-like cell, because POP-1 directly represses the end-1 and end-3 genes in MS, which would otherwise promote an endoderm fate. A long-standing question has been whether POP-1 plays a role in specifying MS fate beyond repression of endoderm fate. This question has been difficult to ask because the only chromosomal lesions that remove both end-1 and end-3 are large deletions removing hundreds of genes. Here, we report the construction of bona fide end-1 end-3 double mutants. In embryos lacking activity of end-1, end-3 and pop-1 together, we find that MS fate is partially restored, while E expresses early markers of MS fate and adopts characteristics of both MS and C. Our results suggest that POP-1 is not critical for MS specification beyond repression of endoderm specification, and reveal that Wnt-modified POP-1 and END-1/3 further reinforce E specification by repressing MS fate in E. By comparison, a previous work suggested that in the related nematode C. briggsae, Cb-POP-1 is not required to repress endoderm specification in MS, in direct contrast with Ce-POP-1, but is critical for repression of MS fate in E. The findings reported here shed new light on the flexibility of combinatorial control mechanisms in endomesoderm specification in Caenorhabditis. 相似文献
17.
18.
Blue native polyacrylamide gel electrophoresis (BN-PAGE) is an essential tool for investigating mitochondrial respiratory chain complexes. However, with current BN-PAGE protocols for Caenorhabditis elegans (C. elegans), large worm amounts and high quantities of mitochondrial protein are required to yield clear results. Here, we present an efficient approach to isolate mitochondrial complex I (NADH:ubiquinone oxidoreductase) from C. elegans, grown on agar plates. We demonstrate that considerably lower amounts of mitochondrial protein are sufficient to isolate complex I and to display clear in-gel activity results. Moreover, we present the first complex I assembly profile for C. elegans, obtained by two-dimensional BN/SDS-PAGE. 相似文献
19.
Binding of Wnt to Frizzled, and either of two members of the low-density-lipoprotein receptor-related protein family, LRP5/6, leads to beta-catenin activation by a poorly understood mechanism. LRP5/6 exhibit five highly conserved PPPS/TP motifs in their intracellular region, among which the first PPPS/TP site is rapidly phosphorylated upon Wnt stimulation. By the use of full-length LRP6 mutants harboring multiple mutations involving the five PPPS/TP motifs, we found that this first PPPS/TP phosphoacceptor site is alone not sufficient or strictly necessary for beta-catenin activation. Instead, we show that each LRP6 PPPS/TP motif contributes in a combinatorial fashion to activate the canonical Wnt-beta-catenin pathway. 相似文献
20.
Lifespan among individuals ranges widely in organisms from yeast to mammals, even in an isogenic cohort born in a nearly uniform environment. Needless to say, genetic and environmental factors are essential for aging and lifespan, but in addition, a third factor or the existence of a stochastic element must be reflected in aging and lifespan. An essential point is that lifespan or aging is an unpredictable phenomenon. The present study focuses on elucidating the biophysical and biological meanings of healthspan that latently indwells a stochastic nature. To perform this purpose, the nematode Caenorhabditis elegans served as a model animal. C. elegans fed a healthy food had an extended healthspan as compared to those fed a conventional diet. Then, utilizing this phenomenon, we clarified a mechanism of healthspan extension by measuring the single-worm ATP and estimating the ATP noise (or the variability of the ATP content) among individual worms and by quantitatively analyzing biodemographic data with the lifespan equation that was derived from a fluctuation theory. 相似文献