首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The robust regenerative ability of planarians is known to be dependent on adult pluripotent stem cells called neoblasts. One of the morphological features of neoblasts is cytoplasmic ribonucleoprotein granules (chromatoid bodies: CBs), which resemble germ granules present in germline cells in other animals. Previously, we showed by immuno‐electron microscopic analysis that DjCBC‐1, a planarian Me31B/Dhh1/DDX6 homologue, which is a component of ribonucleoprotein granules, was localized in CBs in the planarian Dugesia japonica. Also, recently it was reported using another planarian species that Y12 antibody recognizing symmetrical dimethylarginine (sDMA) specifically binds to CBs in which histone mRNA is co‐localized. Here, we showed by double immunostaining and RNA interference (RNAi) that DjCBC‐1‐containing CBs and Y12‐immunoreactive CBs are distinct structures, suggesting that CBs are composed of heterogeneous populations. We also found that the Y12‐immunoreactive CBs specifically contained a cytoplasmic type of planarian PIWI protein (DjPiwiC). We revealed by RNAi experiments that Y12‐immunoreactive CBs may have anti‐transposable element activity involving the DjPiwiC protein in the neoblasts.  相似文献   

2.
3.
Undifferentiated cells of planarians (Platyhelminthes, Turbellaria), also called neoblasts, are totipotent stem cells, which give rise to all differentiated cell types, while maintaining their own density by cell proliferation. Neoblasts are the only somatic cells of planarians bearing chromatoid bodies in their cytoplasm; these organelles disappear as differentiation takes place. Studies on germinal cells of several groups of organisms have shown that chromatoid bodies contain substantial amounts of RNA. To test its presence in neoblasts, we have used an RNase–gold technique. We found chromatoid bodies labeled with RNase–gold particles. Heterogeneity in the density of the label, may be correlated with the functionality and complexity of these organelles. The gold marker was also present over the nucleus and rough endoplasmic reticulum, but mitochondria, secretory granules, and the extracellular space were devoid of label. This specific localization of RNA in planarian chromatoid bodies supports earlier findings on germ cells and embryonic cells in a variety of organisms, indicating that chromatoid bodies are information-storage structures, essential during the process of cell differentiation. © 1993 Wiley-Liss, Inc.  相似文献   

4.
The remarkable capability of planarian regeneration is mediated by a group of adult stem cells referred to as neoblasts. Although these cells possess many unique cytological characteristics (e.g. they are X-ray sensitive and contain chromatoid bodies), it has been difficult to isolate them after cell dissociation. This is one of the major reasons why planarian regenerative mechanisms have remained elusive for a long time. Here, we describe a new method to isolate the planarian adult stem cells as X-ray-sensitive cell populations by fluorescence-activated cell sorting (FACS). Dissociated cells from whole planarians were labeled with fluorescent dyes prior to fractionation by FACS. We compared the FACS profiles from X-ray-irradiated and non-irradiated planarians, and thereby found two cell fractions which contained X-ray-sensitive cells. These fractions, designated X1 and X2, were subjected to electron microscopic morphological analysis. We concluded that X-ray-sensitive cells in both fractions possessed typical stem cell morphology: an ovoid shape with a large nucleus and scant cytoplasm, and chromatoid bodies in the cytoplasm. This method of isolating X-ray-sensitive cells using FACS may provide a key tool for advancing our understanding of the stem cell system in planarians.  相似文献   

5.
6.
It has been postulated that the high regeneration ability of planarians is supported by totipotent stem cells, called neoblasts. There have been a few reports showing the distribution of neoblasts in planarians. However, the findings were not completely consistent. To determine the distribution of neoblasts, we focused on proliferating cell nuclear antigen (PCNA), which is present in proliferative cells. We cloned and sequenced the cDNA of PCNA from the planarian Dugesia japonica and produced an antiserum recognizing the gene product. X-ray irradiation caused rapid loss of all PCNA-positive cells and loss of the neoblasts (which were morphologically defined by the presence of the chromatoid body), strongly suggesting that all PCNA-positive cells were true neoblasts. Using the antiserum, we were successful in identifying the neoblasts more clearly than any previous work. In addition to their dispersed distribution in the dorsal and ventral mesenchyme, the neoblasts were distributed as clusters along the midline and bilateral lines in the dorsal mesenchyme. We also examined the behavior of the neoblasts after decapitation. Decapitation did not seem to affect the migration of neoblasts far from the wound. We demonstrated here that DjPCNA is a powerful tool for identifying planarian neoblasts.Edited by D.A. Weisblat  相似文献   

7.
Electron-dense cytoplasmic structures, referred to as chromatoid bodies, are observed in the somatic stem cells, called neoblasts, and germline cells in adult planarians. Although it has been revealed that the chromatoid bodies morphologically resemble germline granules in Drosophila and Xenopus embryos, what essential role it plays in the planarian has remained unclear. In the present study, to examine whether chromatoid bodies in planarian embryos are responsible for germline formation, the presence and behavior of chromatoid bodies during embryogenesis were examined. Mitochondrial large ribosomal RNA and mitochondrial small ribosomal RNA were used as candidate markers for components of the chromatoid body. Starting from the fertilized egg, extramitochondrial signals of both RNA (mtrRNA) were observed. At the ultrastructural level, mtrRNA were localized on the surface of the chromatoid bodies. At subsequent stages, the signals of mtrRNA were observed in certain restricted blastomeres that contribute to the formation of larval structures. The signals gradually decreased from the gastrula stage. These results suggest that the chromatoid bodies associated with mtrRNA in embryogenesis are not germline granules. The chromatoid bodies of blastomeres may be concerned with the toti- or pluripotency and cell differentiation as proposed in adult planarian neoblasts.  相似文献   

8.
In adult organisms, stem cells are crucial to homeostasis and regeneration of damaged tissues. In planarians, adult stem cells (neoblasts) are endowed with an extraordinary replicative potential that guarantees unlimited replacement of all differentiated cell types and extraordinary regenerative ability. The molecular mechanisms by which neoblasts combine long-term stability and constant proliferative activity, overcoming the impact of time, remain by far unknown. Here we investigate the role of Djmot, a planarian orthologue that encodes a peculiar member of the HSP70 family, named Mortalin, on the dynamics of stem cells of Dugesia japonica. Planarian stem cells and progenitors constitutively express Djmot. Transient Djmot expression in differentiated tissues is only observed after X-ray irradiation. DjmotRNA interference causes inability to regenerate and death of the animals, as a result of permanent growth arrest of stem cells. These results provide the first evidence that an hsp-related gene is essential for neoblast viability and suggest the possibility that high levels of Djmot serve to keep a p53-like protein signaling under control, thus allowing neoblasts to escape cell death programs. Further studies are needed to unravel the molecular pathways involved in these processes.  相似文献   

9.
10.
11.
12.
A Bruno-like gene is required for stem cell maintenance in planarians   总被引:1,自引:0,他引:1  
The regenerative abilities of freshwater planarians are based on neoblasts, stem cells maintained throughout the animal's life. We show that a member of the Bruno-like family of RNA binding proteins is critical for regulating neoblasts in the planarian Schmidtea mediterranea. Smed-bruno-like (bruli) mRNA and protein are expressed in neoblasts and the central nervous system. Following bruli RNAi, which eliminates detectable Bruli protein, planarians initiate the proliferative response to amputation and form small blastemas but then undergo tissue regression and lysis. We characterize the neoblast population by using antibodies recognizing SMEDWI-1 and Histone H4 (monomethyl-K20) and cell-cycle markers to label subsets of neoblasts and their progeny. bruli knockdown results in a dramatic reduction/elimination of neoblasts. Our analyses indicate that neoblasts lacking Bruli can respond to wound stimuli and generate progeny that can form blastemas and differentiate; yet, they are unable to self-renew. These results suggest that Bruli is required for stem cell maintenance.  相似文献   

13.
14.
Planarians are highly regenerative organisms with the ability to remake all their cell types, including the germ cells. The germ cells have been suggested to arise from totipotent neoblasts through epigenetic mechanisms. Nanos is a zinc-finger protein with a widely conserved role in the maintenance of germ cell identity. In this work, we describe the expression of a planarian nanos-like gene Smednos in two kinds of precursor cells namely, primordial germ cells and eye precursor cells, during both development and regeneration of the planarian Schmidtea mediterranea. In sexual planarians, Smednos is expressed in presumptive male primordial germ cells of embryos from stage 8 of embryogenesis and throughout development of the male gonads and in the female primordial germ cells of the ovary. Thus, upon hatching, juvenile planarians do possess primordial germ cells. In the asexual strain, Smednos is expressed in presumptive male and female primordial germ cells. During regeneration, Smednos expression is maintained in the primordial germ cells, and new clusters of Smednos-positive cells appear in the regenerated tissue. Remarkably, during the final stages of development (stage 8 of embryogenesis) and during regeneration of the planarian eye, Smednos is expressed in cells surrounding the differentiating eye cells, possibly corresponding to eye precursor cells. Our results suggest that similar genetic mechanisms might be used to control the differentiation of precursor cells during development and regeneration in planarians. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Possible involvement of MEK mitogen-activated protein kinase and TGF-β receptor in the processes of regeneration and morphogenesis in freshwater planarian flatworms Schmidtea mediterranea was studied using a pharmacological inhibitor analysis. It was found that pharmacological inhibitors of these kinases significantly inhibit the regeneration of the head end of the animals and that this effect is realized due to inhibition of proliferative activity of neoblasts, planarian stem cells. It is shown that that the inhibition of the studied protein kinases in regenerating planarians markedly disturbs stem cell differentiation and morphogenesis.  相似文献   

16.
17.
The freshwater planarian is a powerful animal model for studying regeneration and stem cell activity in vivo.During regeneration,stem ceils (neoblasts in planarian) migrated to the wounding edge to re-build missing parts of the body.However, proteins involved in regulating cell migration during planarian regeneration have not been studied extensively.Here we report two small GTPase genes (Djrho2 and Djrho3) of Dugesia japonica (strain Pek-1).In situ hybridization results indicated that Djrho2 was expressed throughout the body with the exception of the pharynx region while Djrho3 was specifically expressed along the gastro-vaseular system.Djrho2 was largely expressed in neoblasts since its expression was sensitive to X-ray irradiation.In Djrho2-RNAi planarians, smaller anterior blaste-mas were observed in tail fragments during regeneration.Consistently, defective regeneration of visual nerve was detected by immu-nostainning with VC-1 antibody.These results suggested that Djrho2 is required for proper anterior regeneration in planairan.In contrast,no abnormality was observed after RNAi of Djrho3.We compared protein compositions of control and Djrho2-RNAi planarians using an optimized proteomic approach.Twenty-two up-regulated and 26 de-regulated protein spots were observed in the two-dimensional elec-trophoresis gels, and 17 proteins were successfully identified by Mass Spectrometry (MS) analysis.Among them, 6 actin-binding or cy-toskeleton-related proteins were found de-expressed in Djrho2-RNAi animals, suggesting that abnormal cytoskeleton assembling and cell migration were likely reasons of defected regeneration.  相似文献   

18.
19.
The ubiquitin system plays a role in nearly every aspect of eukaryotic cell biology. The enzymes responsible for transferring ubiquitin onto specific substrates are the E3 ubiquitin ligases, a large and diverse family of proteins, for which biological roles and target substrates remain largely undefined. Studies using model organisms indicate that ubiquitin signaling mediates key steps in developmental processes and tissue regeneration. Here, we used the freshwater planarian, Schmidtea mediterranea, to investigate the role of Cullin-RING ubiquitin ligase (CRL) complexes in stem cell regulation during regeneration. We identified six S. mediterranea cullin genes, and used RNAi to uncover roles for homologs of Cullin-1, ?3 and ?4 in planarian regeneration. The cullin-1 RNAi phenotype included defects in blastema formation, organ regeneration, lesions, and lysis. To further investigate the function of cullin-1-mediated cellular processes in planarians, we examined genes encoding the adaptor protein Skp1 and F-box substrate-recognition proteins that are predicted to partner with Cullin-1. RNAi against skp1 resulted in phenotypes similar to cullin-1 RNAi, and an RNAi screen of the F-box genes identified 19 genes that recapitulated aspects of cullin-1 RNAi, including ones that in mammals are involved in stem cell regulation and cancer biology. Our data provides evidence that CRLs play discrete roles in regenerative processes and provide a platform to investigate how CRLs regulate stem cells in vivo.  相似文献   

20.
A piwi homolog is required for the regulation of stem cells, formation and maintenance of germline stem cells, and gametogenesis in many metazoans. Planarians can change their reproductive mode seasonally, both asexually and sexually, and develop and maintain germ cells and sexual organs. They have many pluripotent stem cells (neoblasts) that can differentiate into both somatic and germline stem cells. Thus, we searched for a piwi subfamily in the planarian Dugesia ryukyuensis. Four piwi homologs, identified as Drpiwi-1, -2, -3, and -4, were expressed in sexually reproductive worms. We then selectively destroyed the neoblasts by irradiating the worms with X-rays. In such worms, Drpiwi-1, -2, and -3 were not expressed at all, whereas Drpiwi-4 was expressed to the same degree as that in non-irradiated controls, indicating that Drpiwi-1, -2, and -3, but not Drpiwi-4, are expressed in neoblasts. During the regeneration process, Drpiwi-2(RNAi) and -3(RNAi) worms failed to regenerate after ablation, but Drpiwi-1 and -4(RNAi) worms regenerated. During the sexualizing process, Drpiwi-1(RNAi) worms failed to develop ovaries and testes, but somatic sexual organs were unaffected. Germ cell development was normal in Drpiwi-4(RNAi) worms. Therefore, Drpiwi-2 and -3 may be related to the regulation of neoblasts important for maintaining homeostasis, and Drpiwi-1 is essential for the development of germ cells but not somatic sexual organs. DrPiwi-1 is localized in the cytoplasm of stem cells and germline cells and may be involved in regulating some gene expression. We suggest that planarian Piwi controls germline formation via RNA silencing mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号