首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
S phase is characterized by the replication of DNA and assembly of chromatin. This requires the synthesis of large amounts of histone proteins to package the newly replicated DNA. Histone mRNAs are the only mRNAs that do not have polyA tails, ending instead in a conserved stemloop sequence. The stemloop binding protein (SLBP) that binds the 3' end of histone mRNA is cell cycle regulated and SLBP is required in all steps of histone mRNA metabolism. Activation of cyclin E/cdk2 prior to entry into S phase is critical for initiation of DNA replication and histone mRNA accumulation. At the end of S phase SLBP is rapidly degraded as a result of phosphorylation of SLBP by cyclin A/cdk1 and CK2 effectively shutting off histone mRNA biosynthesis. E2F1, which is required for expression of many S-phase genes, is regulated in parallel with SLBP and its degradation also requires a cyclin binding site, suggesting that it may also be regulated by the same pathway. It is likely that activation of cyclin A/cdk1 so helps inhibit both DNA replication and histone mRNA accumulation, marking the end of S phase and entry into G2 phase.  相似文献   

3.
4.
5.
6.
7.
8.
Although messenger RNAs encoding the histone proteins are among the most abundant in mammalian oocytes, the mechanism regulating their translation has not been identified. The stem-loop binding protein (SLBP) binds to a highly conserved sequence in the 3'-untranslated region (utr) of the non-polyadenylated histone mRNAs in somatic cells and mediates their stabilization and translation. We previously showed that SLBP, which is expressed only during S-phase of proliferating cells, is expressed in growing oocytes at G2 of the cell cycle and accumulates substantially during meiotic maturation. We report here that elevating the amount of SLBP in immature (G2) oocytes is sufficient to increase translation of a reporter mRNA bearing the histone 3'-utr and endogenous histone synthesis and that this effect is not mediated through increased stability of the encoding mRNAs. We further report that translation of the reporter mRNA increases dramatically during meiotic maturation coincident with the accumulation of SLBP. Conversely, when SLBP accumulation during maturation is prevented using RNA interference, both translation of the reporter mRNA and synthesis of endogenous histones are significantly reduced. This effect is not mediated by a loss of the encoding mRNAs. Moreover, following fertilization, SLBP-depleted oocytes also show a significant decrease in pronuclear size and in the amount of acetylated histone detectable on the chromatin. These results demonstrate that histone synthesis in immature and maturing oocytes is governed by a translational control mechanism that is directly regulated by changes in the amount of SLBP.  相似文献   

9.
The expression of a transgene NI-ROSA LacZ (LacZtg) trapped into the genes for two presumably untranslated, ubiquitously expressed RNAs, was studied in preimplantation mouse embryos with respect to penetrance (fraction of expressing embryos) and to localisation of beta-galactosidase activity. With maternal origin in NMRI mice beta-galactosidase was first detected within one dot in the cytoplasm of zygotes at 30 h post-hCG. The staining pattern progressed to small clusters and to dense, homogeneous staining of the entire cytoplasm during further development. Within the NMRI background, penetrance in utero was delayed by at least 6 h when the transgene was of paternal as compared with maternal origin. Paternal transgene expression increased marginally during culture to 50 h after explantation of embryos at 30-48 h post-hCG and remained low or decreased in the '2-cell block'. Expression of a paternal transgene in preimplantation embryos developing in utero was further delayed in the maternal MF1 as compared with the NMRI background. In contrast to NMRI x NMRI embryos with paternally derived transgene, expression increased with time during the 2-cell block in MF1 x NMRI embryos. Thus, in the earliest phase of mammalian development expression of this LacZtg is influenced by parental origin, maternal genetic background and environment. The spatial distribution of the gene product is developmentally controlled.  相似文献   

10.
11.
The Bex1/Rex3 gene was recently identified as an X-linked gene that is differentially expressed between parthenogenetic and normal fertilized, preimplantation stage mouse embryos. The Bex1/Rex3 gene appears to be expressed preferentially from the maternal X chromosome in blastocysts, but from either X chromosome in later stage embryonic tissues and adult tissues. To investigate whether differential expression of the Bex1/Rex3 gene between normal and parthenogenetic blastocyst stage embryos reflects genomic imprinting at the Bex1/Rex3 locus itself, or instead is the result of preferential inactivation of the paternal X chromosome or differences in timing of cellular differentiation, we examined in detail the expression pattern of the Bex1/Rex3 mRNA in normal preimplantation stage embryos, and compared its expression between androgenetic, gynogenetic, and normal fertilized embryos. Expression data reveal that the Bex1/Rex3 gene is initially transcribed at the 2-cell stage, transiently induced at the 8-cell stage, and then increases in expression again at the blastocyst stage. Very little expression is observed in isolated inner cell masses, indicating selective expression in the trophectoderm. Comparisons of Bex1/Rex3 mRNA expression between male and female androgenetic and control embryos and gynogenetic embros failed to reveal any significant difference in expression between the different classes of embryos at the 8-cell stage, or the expanding blastocyst stage (121 hr post-hCG). At the late blastocyst stage (141 hr post-hCG), expression was significantly lower in XY control embryos as compared with XX controls. Bex1/Rex3 mRNA expression did not differ between XX and XY androgenones at the blastocyst stage or between gynogenones and XX control embryos. Thus, the Bex1/Rex3 gene does not appear to be regulated directly by genomic imprinting during the preimplantation period, just as it is not regulated by imprinting at later stages. Apparent differences in gene expression may arise through the effects of trophectoderm-specific expression coupled with differences in timing of trophectoderm differentiation between the different classes of embryos and effects of preferential paternal X chromosome inactivation (XCI).  相似文献   

12.
The levels of replication-dependent histone mRNAs are coordinately regulated with DNA synthesis. A major regulatory step in histone mRNA metabolism is regulation of the half-life of histone mRNAs. Replication-dependent histone mRNAs are the only metazoan mRNAs that are not polyadenylated. Instead, they end with a conserved stem-loop structure, which is recognized by the stem-loop binding protein (SLBP). SLBP is required for histone mRNA processing, as well as translation. We show here, using histone mRNAs whose translation can be regulated by the iron response element, that histone mRNAs need to be actively translated for their rapid degradation following the inhibition of DNA synthesis. We also demonstrate the requirement for translation using a mutant SLBP which is inactive in translation. Histone mRNAs are not rapidly degraded when DNA synthesis is inhibited or at the end of S phase in cells expressing this mutant SLBP. Replication-dependent histone mRNAs have very short 3' untranslated regions, with the stem-loop located 30 to 70 nucleotides downstream of the translation termination codon. We show here that the stability of histone mRNAs can be modified by altering the position of the stem-loop, thereby changing the distance from the translation termination codon.  相似文献   

13.
Cytoplasmic poly(A) elongation is one mechanism that regulates translational recruitment of maternal mRNA in early development. In Xenopus laevis, poly(A) elongation is controlled by two cis elements in the 3' untranslated regions of responsive mRNAs: the hexanucleotide AAUAAA and a U-rich structure with the general sequence UUUUUAAU, which is referred to as the cytoplasmic polyadenylation element (CPE). B4 RNA, which contains these sequences, is polyadenylated during oocyte maturation and maintains a poly(A) tail in early embryos. However, cdk2 RNA, which also contains these sequences, is polyadenylated during maturation but deadenylated after fertilization. This suggests that cis-acting elements in cdk2 RNA signal the removal of the poly(A) tail at this time. By using poly(A) RNA-injected eggs, we showed that two elements which reside 5' of the CPE and 3' of the hexanucleotide act synergistically to promote embryonic deadenylation of this RNA. When an identical RNA lacking a poly(A) tail was injected, these sequences also prevented poly(A) addition. When fused to CAT RNA, the cdk2 3' untranslated region, which contains these elements, as well as the CPE and the hexanucleotide, promoted poly(A) addition and enhanced chloramphenicol acetyltransferase activity during maturation, as well as repression of these events after fertilization. Incubation of fertilized eggs with cycloheximide prevented the embryonic inhibition of cdk2 RNA polyadenylation but did not affect the robust polyadenylation of B4 RNA. This suggests that a maternal mRNA, whose translation occurs only after fertilization, is necessary for the cdk2 deadenylation or inhibition of RNA polyadenylation. This was further suggested when poly(A)+ RNA isolated from two-cell embryos was injected into oocytes that were then allowed to mature. Such oocytes became deficient for cdk2 RNA polyadenylation but remained proficient for B4 RNA polyadenylation. These data show that CPE function is developmentally regulated by multiple sequences and factors.  相似文献   

14.
Cell division in mammalian cells is regulated by Aurora kinases. The activity of Aurora A is indispensable for correct function of centrosomes and proper spindle formation, while Aurora B for chromosome biorientation and separation. Aurora B is also responsible for the phosphorylation of histone H3 serine 10 (H3S10Ph) from G2 to metaphase. Data concerning the Aurora B activity and H3S10Ph in embryonic cells are limited to primordial and maturing oocytes and advanced pronuclei in zygotes. In the present study we have analyzed H3S10Ph in 1- and 2-cell mouse embryos. We show that H3S10 remains phosphorylated at anaphase and telophase of the second meiotic division, as well as during the anaphase and telophase of the first and second embryonic mitoses. At late G1 H3S10 is dephosphorylated and subsequently phosphorylated de novo at late S phase of the first and second cell cycle. These results show that the H3S10 phosphorylation/dephosphorylation cycle in embryonic cells is different than in somatic cells. The behaviour of thymocyte G0 nuclei introduced into ovulated oocytes and early 1-cell parthenogenotes confirms that kinases responsible for de novo H3S10 phosphorylation, most probably Aurora B, are active until G1 of the first cell cycle of mouse embryo. The inhibition of Aurora kinases by ZM447439 caused abnormalities both in the first and second mitoses. However, the disturbances in each division differed, suggesting important differences in the control of these mitoses. In ZM447439-treated mitotic zygotes Mad2 protein remained continuously present on kinetochores, what confirmed that spindle checkpoint remained active.  相似文献   

15.
In eukaryotes, bulk histone expression occurs in the S phase of the cell cycle. This highly conserved system is crucial for genomic stability and proper gene expression. In metazoans, Stem-loop binding protein (SLBP), which binds to 3′ ends of canonical histone mRNAs, is a key factor in histone biosynthesis. SLBP is mainly expressed in S phase and this is a major mechanism to limit bulk histone production to the S phase. At the end of S phase, SLBP is rapidly degraded by proteasome, depending on two phosphorylations on Thr 60 and Thr 61. Previously, we showed that SLBP fragment (aa 51–108) fused to GST, is sufficient to mimic the late S phase (S/G2) degradation of SLBP. Here, using this fusion protein as bait, we performed pull-down experiments and found that DCAF11, which is a substrate receptor of CRL4 complexes, binds to the phosphorylated SLBP fragment. We further confirmed the interaction of full-length SLBP with DCAF11 and Cul4A by co-immunoprecipitation experiments. We also showed that DCAF11 cannot bind to the Thr61/Ala mutant SLBP, which is not degraded at the end of S phase. Using ectopic expression and siRNA experiments, we demonstrated that SLBP expression is inversely correlated with DCAF11 levels, consistent with the model that DCAF11 mediates SLBP degradation. Finally, we found that ectopic expression of the S/G2 stable mutant SLBP (Thr61/Ala) is significantly more toxic to the cells, in comparison to wild type SLBP. Overall, we concluded that CRL4-DCAF11 mediates the degradation of SLBP at the end of S phase and this degradation is essential for the viability of cells.  相似文献   

16.
17.
The cleavage cycle, which is initiated by fertilization, consists of only S and M phases, and the gap phases (G1 and G2) appear after the midblastula transition (MBT) in the African clawed frog, Xenopus laevis. During early development in Xenopus, we examined the E2F activity, which controls transition from the G1 to S phase in the somatic cell cycle. Gel retardation and transactivation assays revealed that, although the E2F protein was constantly present throughout early development, the E2F transactivation activity was induced in a stage-specific manner, that is, low before MBT and rapidly increased after MBT. Introduction of the recombinant dominant negative E2F (dnE2F), but not the control, protein into the 2-cell stage embryos specifically suppressed E2F activation after MBT. Cells in dnE2F-injected embryos appeared normal before MBT, but ceased to proliferate and eventually died at the gastrula. These cells contained decreased cdk activity with enhanced inhibitory phosphorylation of Cdc2 at Tyr15. Thus, E2F activity is required for cell cycle progression and cell viability after MBT, but not essential for MBT transition and developmental progression during the cleavage stage.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号