首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The mammalian metanephric kidney is derived from the intermediate mesoderm. In this report, we use molecular fate mapping to demonstrate that the majority of cell types within the metanephric kidney arise from an Osr1+ population of metanephric progenitor cells. These include the ureteric epithelium of the collecting duct network, the cap mesenchyme and its nephron epithelia derivatives, the interstitial mesenchyme, vasculature and smooth muscle. Temporal fate mapping shows a progressive restriction of Osr1+ cell fates such that at the onset of active nephrogenesis, Osr1 activity is restricted to the Six2+ cap mesenchyme nephron progenitors. However, low-level labeling of Osr1+ cells suggests that the specification of interstitial mesenchyme and cap mesenchyme progenitors occurs within the Osr1+ population prior to the onset of metanephric development. Furthermore, although Osr1+ progenitors give rise to much of the kidney, Osr1 function is only essential for the development of the nephron progenitor compartment. These studies provide new insights into the cellular origins of metanephric kidney structures and lend support to a model where Osr1 function is limited to establishing the nephron progenitor pool.  相似文献   

5.
Mammalian palate development is a multistep process, involving initial bilateral downward outgrowth of the palatal shelves from the oral side of the maxillary processes, followed by stage-specific palatal shelf elevation to the horizontal position above the developing tongue and subsequent fusion of the bilateral palatal shelves at the midline to form the intact roof of the oral cavity. While mutations in many genes have been associated with cleft palate pathogenesis, the molecular mechanisms regulating palatal shelf growth, patterning, and elevation are not well understood. Genetic studies of the molecular mechanisms controlling palate development in mutant mouse models are often complicated by early embryonic lethality or gross craniofacial malformation. We report here the development of a mouse strain for tissue-specific analysis of gene function in palate development. We inserted an IresCre bicistronic expression cassette into the 3' untranslated region of the mouse Osr2 gene through gene targeting. We show, upon crossing to the R26R reporter mice, that Cre expression from the Osr2(IresCre) knockin allele activated beta-galactosidase expression specifically throughout the developing palatal mesenchyme from the onset of palatal shelf outgrowth. In addition, the Osr2(IresCre) mice display exclusive Cre-mediated recombination in the glomeruli tissues derived from the metanephric mesenchyme and complete absence of Cre activity in other epithelial and mesenchymal tissues in the developing metanephric kidney. These data indicate that the Osr2(IresCre) knockin mice provide a unique tool for tissue-specific studies of the molecular mechanisms regulating palate and kidney development.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Runx1 is expressed in medial edge epithelial (MEE) cells of the palatal shelf. Conditionally rescued Runx1−/− mice showed limited clefting in the anterior junction between the primary and the secondary palatal shelves, but not in the junction between the secondary palates. In wild type mice, the fusing epithelial surface exhibited a rounded cobblestone-like appearance, while such cellular prominence was less evident in the Runx1 mutants. We also found that Fgf18 was expressed in the mesenchyme underlying the MEE and that locally applied FGF18 induced ectopic Runx1 expression in the epithelium of the palatal explants, indicating that Runx1 was induced by mesenchymal Fgf18 signaling. On the other hand, unpaired palatal explant cultures revealed the presence of anterior-posterior (A-P) differences in the MEE fates and fusion mechanism. Interestingly, the location of anterior clefting in Runx1 mutants corresponded to the region with different MEE behavior. These data showed a novel function of Runx1 in morphological changes in the MEE cells in palatal fusion, which is, at least in part, regulated by the mesenchymal Fgf signaling via an epithelial-mesenchymal interaction.  相似文献   

14.
15.
16.
17.
18.
Cleft palate results from a mixture of genetic and environmental factors and occurs when the bilateral palatal shelves fail to fuse. The objective of this study was to search for new genes involved in mouse palate formation. Gene expression of murine embryonic palatal tissue was analyzed at various developmental stages before, during, and after palate fusion using GeneChip® microarrays. Ceacam1 was one of the highly up-regulated genes during palate formation, and this was confirmed by quantitative real-time PCR. Immunohistochemical staining showed that CEACAM1 was present in prefusion palatal epithelium and was degraded during fusion. To investigate the developmental role of CEACAM1, function-blocking antibody was added to embryonic mouse palate in organ culture. Palatal fusion was inhibited by this function-blocking antibody. To investigate the subsequent developmental role of CEACAM1, we characterized Ceacam1-deficient (Ceacam1 −/−) mice. Epithelial cells persisted abnormally at the midline of the embryonic palate even on day E16.0, and palatal fusion was delayed in Ceacam1 −/− mice. TGFβ3 expression, apoptosis, and cell proliferation in palatal epithelium were not affected in the palate of Ceacam1−/−mice. However, CEACAM1 expression was retained in the remaining MEE of TGFβ-deficient mice. These results suggest that CEACAM1 has roles in the initiation of palatal fusion via epithelial cell adhesion.  相似文献   

19.
R-spondins are a recently characterized family of secreted proteins that activate Wnt/β-catenin signaling. Herein, we determine R-spondin2 (Rspo2) function in craniofacial development in mice. Mice lacking a functional Rspo2 gene exhibit craniofacial abnormalities such as mandibular hypoplasia, maxillary and mandibular skeletal deformation, and cleft palate. We found that loss of the mouse Rspo2 gene significantly disrupted Wnt/β-catenin signaling and gene expression within the first branchial arch (BA1). Rspo2, which is normally expressed in BA1 mesenchymal cells, regulates gene expression through a unique ectoderm–mesenchyme interaction loop. The Rspo2 protein, potentially in combination with ectoderm-derived Wnt ligands, up-regulates Msx1 and Msx2 expression within mesenchymal cells. In contrast, Rspo2 regulates expression of the Dlx5, Dlx6, and Hand2 genes in mesenchymal cells via inducing expression of their upstream activator, Endothelin1 (Edn1), within ectodermal cells. Loss of Rspo2 also causes increased cell apoptosis, especially within the aboral (or caudal) domain of the BA1, resulting in hypoplasia of the BA1. Severely reduced expression of Fgf8, a survival factor for mesenchymal cells, in the ectoderm of Rspo2−/− embryos is likely responsible for increased cell apoptosis. Additionally, we found that the cleft palate in Rspo2−/− mice is not associated with defects intrinsic to the palatal shelves. A possible cause of cleft palate is a delay of proper palatal shelf elevation that may result from the small mandible and a failure of lowering the tongue. Thus, our study identifies Rspo2 as a mesenchyme-derived factor that plays critical roles in regulating BA1 patterning and morphogenesis through ectodermal–mesenchymal interaction and a novel genetic factor for cleft palate.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号