首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a previous study, ammonia-oxidizing bacteria (AOB)-like sequences were detected in the fragmentation layer of acid Scots pine (Pinus sylvestris L.) forest soils (pH 2.9–3.4) with high nitrification rates (>11.0 μg g−1 dry soil week−1), but were not detected in soils with low nitrification rates (<0.5 μg g−1 dry soil week−1). In the present study, we investigated whether this low nitrification rate has a biotic cause (complete absence of AOB) or an abiotic cause (unfavorable environmental conditions). Therefore, two soils strongly differing in net nitrification were compared: one soil with a low nitrification rate (location Schoorl) and another soil with a high nitrification rate (location Wekerom) were subjected to liming and/or ammonium amendment treatments. Nitrification was assessed by analysis of dynamics in NH4 +-N and NO3 -N concentrations, whereas the presence and composition of AOB communities were assessed by polymerase chain reaction–denaturing gradient gel electrophoresis and sequencing of the ammonia monooxygenase (amoA) gene. Liming, rather than ammonium amendment, stimulated the growth of AOB and their nitrifying activity in Schoorl soil. The retrieved amoA sequences from limed (without and with N amendment) Schoorl and Wekerom soils exclusively belong to Nitrosospira cluster 2. Our study suggests that low nitrification rates in acidic Scots pine forest soils are due to pH-related factors. Nitrosospira cluster 2 detected in these soils is presumably a urease-positive cluster type of AOB.  相似文献   

2.
Stream macrophytes are often removed with their sediments to deepen stream channels, stabilize channel banks, or provide habitat for target species. These sediments may support enhanced nitrogen processing. To evaluate sediment nitrogen processing, identify seasonal patterns, and assess sediment processes relative to stream load, we measured denitrification and nitrification rates in a restored third- to fourth-order agricultural stream, Black Earth Creek, Wisconsin, and estimated processing over a 10 km reach. Our results show that sediments with submerged and emergent macrophytes (e.g., Potomageton spp. and Phalaris arudinacea) support greater denitrification rates than bare sediments (1.12 μmol N g−1 h−1 vs. 0.29). Sediments with macrophytes were not carbon limited and organic matter fraction was weakly correlated to denitrification. The highest denitrification potential occurred in macrophyte beds (5.19 μmol N g−1 h−1). Nitrification rates were greater in emergent beds than bare sediments (1.07 μg N ml−1day−1 vs. 0.35) with the greatest nitrification rates during the summer. Total denitrification removal in sediments with macrophytes was equivalent to 43% of the nitrate stream load (463.7 kg N day−1) during spring and nitrification in sediments with macrophytes was equivalent to 247% of summer ammonium load (3.5 kg N day−1). Although the in-channel connectivity to nitrogen rich water was limited, actual stream nitrogen loads could increase with removal of macrophytes. Macrophyte beds and supporting fringing wetted areas are important if nitrogen management is a concern for riparian stream restoration efforts.  相似文献   

3.
Summary The conversion of substantial amounts of ammonia nitrogen into organic nitrogen as a direct result of nitrification at neutral pH-values, was monitored in soil suspensions amended with ammonium nitrogen. The influence of the chemolithotrophic nitrifying bacteria was verified by applying nitrapyrin as a selective inhibitor in control experiments. In addition, the role of phenolic compounds was examined by adding α naphthol. The factors influencing the nitrification processi.e. pH, NH 4 + −N, NO 2 −N, NO 3 −N were measured during a 60 days incubation period. Nitrification started to be active after 5 and 10 days in the normal and the naphthol spiked soil suspensions respectively; it was inhibited in the nitrapyrin controls. Parallel with nitrification, formation of organic nitrogen was observed. The humic matter fractions were extracted and analyzed by I.R. spectroscopy which revealed the valence vibration ranges of nitro and nitroso groups fixed in different positions on aromatic compounds, both for normal and naphthol spiked samples. High resolution gas chromatography combined with mass spectroscopic analysis indicated the formation of nitrosonaphtholes. In addition a novel organic nitro compound was identifiedi.e. an azido nitro benzene. No nitrogen was fixed in the samples treated with nitrification inhibitor. A mechanism for the fixation of nitrite nitrogen during nitrification is proposed.  相似文献   

4.
The spatial distribution of organic soil nitrogen (N) in alpine tundra was studied along a natural environmental gradient, covering five plant communities, at the Latnjajaure Field Station, northern Swedish Lapland. The five communities (mesic meadow, meadow snowbed, dry heath, mesic heath, and heath snowbed) are the dominant types in this region and are differentiated by soil pH. Net N mineralization, net ammonification, and net nitrification were measured using 40-day laboratory incubations based on extractable NH4+ and NO3. Nitrification enzyme activity (NEA), denitrification enzyme activity (DEA), amino acid concentrations, and microbial respiration were measured for soils from each plant community. The results show that net N mineralization rates were more than three times higher in the meadow ecosystems (mesic meadow 0.7 μg N g−1 OM day−1 and meadow snowbed 0.6 μg N g−1 OM day−1) than the heath ecosystems (dry heath 0.2 μg N g−1 OM day−1, mesic heath 0.1 μg N g−1 OM day−1 and heath snowbed 0.2 μg N g−1 OM day−1). The net N mineralization rates were negatively correlated to organic soil C/N ratio (r = −0.652, P < 0.001) and positively correlated to soil pH (r = 0.701, P < 0.001). Net nitrification, inorganic N concentrations, and NEA rates also differed between plant communities; the values for the mesic meadow were at least four times higher than the other plant communities, and the snowbeds formed an intermediate group. Moreover, the results show a different pattern of distribution for individual amino acids across the plant communities, with snowbeds tending to have the highest amino acid N concentrations. The differences between plant communities along this natural gradient also illustrate variations between the dominant mycorrhizal associations in facilitating N capture by the characteristic functional groups of plants. Responsible Editor: Bernard Nicolardot  相似文献   

5.
The effects of temperature (20, 24 and 28 °C) and irradiance (15 and 40 μmol photon m−2 s−1) on the nitrate and ammonium uptake rates of the subtropical red alga, Laurencia brongniartii, were investigated to prepare for tank cultivation. Nitrate uptake followed saturation kinetics and was faster at higher irradiances and temperatures. In contrast, ammonium uptake was linear over the experimental range and was not affected by an increase in temperature. A parameter, β, was calculated to compare substrate uptake rates of nitrate along the linear portion of the uptake curve with that of ammonium. For nitrate, β was lower at low irradiance and higher at high irradiance (β = 0.007 ± 0.003 and 0.030 ± 0.002 [μmol N L−1 (μmol N gww−1 d)−1], respectively). However, β was 0.023 ± 0.002 and 0.034 ± 0.002 [μmol N L−1 (μmol N gww−1 d−1)−1] for ammonium, suggesting a preference for ammonium over nitrate.  相似文献   

6.
Botermans  Yves J. H.  Admiraal  Wim 《Hydrobiologia》1989,188(1):649-658
The rate of in situ nitrification was tested as an indicator of the toxicological quality of the river Rhine. Concentration changes of ammonium ions over 85 to 133 km long reaches of three river branches downstream of the densely populated Ruhr-area (F.R.G.) were calculated from a data base for the period 1972 to 1986. Concentrations of ammonium in the river exceeded values of 1 mg N/l in winter. Because of the very high input of ammonium, bacterial nitrification dominated over other nitrogen processes. Relative rates of nitrification in the three river branches were proportional to the water temperature for the individual years. Nitrification rates in the river increased by a factor of ca. 4 during the period of 1972 to 1986. Toxic substances, whose concentrations decreased in the same period of time, were proposed as inhibitors of in situ nitrification rather than e.g. a low oxygen saturation of the water. The improvement of the conditions in the river, indicated by the in situ rate of nitrification, was also documented by data on macrofauna and fish populations.  相似文献   

7.
Complete granulation of nitrifying sludge was achieved in a sequencing batch reactor. For the granular sludge, batch experiments were conducted to characterize the kinetic features of ammonia oxidizers (AOB) and nitrite oxidizers (NOB) in the granules using the respirometric method. A two-step nitrification model was established to determine the kinetic parameters of both AOB and NOB. In addition to nitrification reactions, the new model also took into account biomass maintenance and mass transfer through the granules. The yield coefficient, maximum specific growth rate, and affinity constant for ammonium for AOB were 0.21 g chemical oxygen demand (COD) g−1 N, 0.09 h−1, and 9.1 mg N L−1, respectively, whereas the corresponding values for NOB were 0.05 g COD g−1 N, 0.11 h−1, and 4.85 mg N L−1, respectively. The model developed in this study performed well in simulating the oxygen uptake rate and nitrogen conversion kinetics and in predicting the oxygen consumption of the AOB and NOB in aerobic granules.  相似文献   

8.
Nitrification in fixed-bed reactors treating saline wastewater   总被引:2,自引:0,他引:2  
Halophilic nitrifiers belonging to the genus Nitrosomonas and Nitrospira were enriched from seawater and marine sediment samples of the North Sea. The maximal ammonia oxidation rate (AOR) in batch enrichments with seawater was 15.1 mg N L−1 day−1. An intermediate nitrite accumulation was observed. Two fixed-bed reactors for continuous nitrification with either polyethylene/clay sinter lamellas (FBR A) or porous ceramic rings (FBR B) were run at two different ammonia concentrations, three different ammonia loading rates (ALRs), ± pH adjustment, and at an increased upflow velocity. A better overall nitrification without nitrite accumulation was observed in FBR B. However, FBR A revealed a higher AOR and nitrite oxidation rate of 6 and 7 mg N L−1 h−1, compared to FBR B with 5 and 5.9 mg N L−1 h−1, respectively. AORs in the FBRs were at least ten times higher than in suspended enrichment cultures. Whereas a shift within the ammonia-oxidizing population in the genus Nitrosomonas at the subspecies level occurred in FBR B with synthetic seawater at an increasing ALR and a decreasing pH, the nitrite oxidizing Nitrospira population apparently did not change.  相似文献   

9.
Partial nitrification to nitrite (nitritation) can be achieved in a continuous process without sludge retention by wash out of nitrite oxidising bacteria (NOB) while retaining ammonia oxidising bacteria (AOB), at elevated temperatures (the SHARON process) and, as demonstrated in this paper, also at low dissolved oxygen (DO) concentrations. Enriched AOB was attained at a low DO concentration (0.4 mg l−1) and a dilution rate of 0.42 day−1 in a continuous process. A higher oxygen affinity of AOB compared to NOB seemed critical to achieving this. This was verified by determining the oxygen half saturation constant, K o, with similar oxygen mass transfer resistances for enriched AOB and NOB as 0.033 ± 0.003 mg l−1 and 0.43 ± 0.08 mg l−1, respectively. However, the extent of nitritation attained was found to be highly sensitive to process upsets.  相似文献   

10.
During an annual cycle, overlying water and sediment cores were collected simultaneously at three sites (Tavira, Culatra and Ramalhete) of Ria Formosa’s intertidal muddy and subtidal sandy sediments to determine ammonium, nitrates plus nitrites and phosphate. Organic carbon, nitrogen and phosphorus were also determined in superficial sediments. Ammonium and phosphate dissolved in porewater were positively correlated with temperature (P < 0.01) in muddy and sandy sediments, while the nitrogen-oxidized forms had a negative correlation (P < 0.02) in muddy sediments probably because mineralization and nitrification/denitrification processes vary seasonally. Porewater ammonium profiles evidenced a peak in the top-most muddy sediment (380 μM) suggesting higher mineralization rate when oxygen is more available, while maximum phosphate concentration (113 μM) occurred in the sub-oxic layer probably due to phosphorus desorption under reduced conditions. In organically poor subtidal sandy sediments, nutrient porewater concentrations were always lower than in intertidal muddy sediments, ranging annually from 20 μM to 100 μM for ammonium and from 0.05 μM to 16 μM for phosphate. Nutrient diffusive fluxes predicted by a mathematical model were higher during summer, in both muddy (104 nmol cm−2 d−1––NH4+; 8 nmol cm−2 d−1––HPO4−2) and sandy sediments (26 nmol cm−2 d−1––NH4+; 1 nmol cm−2 d−1––HPO4−2), while during lower temperature periods these fluxes were 3–4 times lower. Based on simulated nutrient effluxes, the estimated annual amount of ammonium and phosphate exported from intertidal areas was three times higher than that released from subtidal areas (22 ton year−1––NH4+; 2 ton year−1––HPO4−2), emphasizing the importance of tidal flats to maintain the high productivity of the lagoon. Global warming scenarios simulated with the model, revealed that an increase in lagoon water temperature only produces significant variations (P < 0.05) for NH4+ in porewater and consequent diffusive fluxes, what will probably affect the system productivity due to a N/P ratio unbalance.  相似文献   

11.
The oxygen and nutrient dynamics of the zooxanthellate, upside down jellyfish (Cassiopea sp.), were determined both in situ and during laboratory incubations under controlled light conditions. In the laboratory, Cassiopea exhibited a typical Photosynthesis–Irradiance (P–I) curve with photosynthesis increasing linearly with irradiance, until saturation was reached at an irradiance of ~400 μE m−2 s−1, with photosynthetic compensation (photosynthesis = respiration) being achieved at an irradiance of ~50 μE m−2 s−1. Under saturating irradiation, gross photosynthesis attained a rate of almost 3.5 mmol O2 kg WW−1 h−1, whereas the dark respiration rate averaged 0.6 mmol O2 kg WW−1 h−1. Based upon a period of saturating irradiance of 9 h, the ratio of daily gross photosynthesis to daily respiration was 2.04. Thus, photosynthetic carbon fixation was not only sufficient to meet the carbon demand of respiration, but also to potentially support a growth rate of ~3% per day. During dark incubations Cassiopea was a relatively minor source of inorganic N and P, with the high proportion of NO X (nitrate + nitrite) produced indicating that the jellyfish were colonised by nitrifying bacteria. Whereas, under saturating irradiance the jellyfish assimilated ammonium, NO X and phosphate from the bathing water. However, the quantities of inorganic nitrogen assimilated were small by comparison to carbon fixation rates and the jellyfish would need to exploit other sources of nitrogen, such as ingested zooplankton, in order to maintain balanced growth. During in situ incubations the presence of Cassiopea had major effects on benthic oxygen and nutrient dynamics, with jellyfish occupied patches of sediment having 3.6-fold higher oxygen consumption and 4.5-fold higher ammonium regeneration rates than adjacent patches of bare sediment under dark conditions. In contrast at saturating irradiance, jellyfish enhanced benthic photosynthetic oxygen production almost 100-fold compared to the sediment alone and created a small sink for inorganic nutrients, whereas unoccupied sediment patches were sources of inorganic nutrients to the water column. Overall, Cassiopea greatly enhanced the spatial and temporal heterogeneity of benthic fluxes and processes by creating “hotspots” of high activities which switched between being sources or sinks for oxygen and nutrients over diurnal irradiance cycles, as the metabolism of the jellyfish swapped between heterotrophy and net autotrophy.  相似文献   

12.
An integrated field and laboratory study was conducted to quantify the effect of environmental determinants on the activity of sulfate reducers in a freshwater aquifer contaminated with petroleum hydrocarbons (PHC). Within the contaminated zone, PHC-supported in␣situ sulfate reduction rates varied from 11.58±3.12 to 636±53 nmol cm−3 d−1 and a linear increase (R 2=0.98) in reduction rate was observed with increasing in situ sulfate concentrations suggesting sulfate limitation. Half-saturation concentration (K s) for sulfate reduction coupled to PHC mineralization was determined for the first time. At two different sites within the␣aquifer, maximum sulfate reduction rate under␣non-limiting conditions (R max) was 5,000 nmol cm−3 d−1, whereas the retrieved K s values were 3.5 and 7.5 mM, respectively. The K s values are the highest ever reported from a natural environment. Furthermore, the K s values were significantly higher than in situ sulfate concentrations confirming sulfate limited growth. On addition of lactate and formate, sulfate reduction rate increased indicating that reactivity and bioavailability of organic substrate may also have played a role in rate inhibition in certain parts of the aquifer. Experiments with sulfide amendments show statistically minor decrease in sulfate reduction rates on addition of sulfide and analogous increase in sulfide toxicity with increasing sulfide concentrations (0.5–10 mM) was not apparent.  相似文献   

13.
In situ experiments were conducted to measure sulfate reduction rates and identify rate-limiting factors in a shallow, alluvial aquifer contaminated with municipal landfill leachate. Single-well, push–pull tests conducted in a well adjacent to the landfill with >8 mM dissolved organic carbon (DOC) exhibited a sulfate reduction rate of 3.2 μmol SO4 −2 (L sediment)−1 day−1, a value in close agreement with laboratory-derived estimates. Identical tests conducted in wells located 90 m downgradient where DOC levels remained high (>3 mM) showed no detectable sulfate consumption, and laboratory assays confirmed this observation. However, the rates of sulfate reduction in sediment samples obtained from this site were three times larger when they were amended with filter-sterilized groundwater from the upgradient location. The effect of various amendments on sulfate reduction rates was further examined in laboratory incubations using sediment collected from the downgradient site amended with 35S sulfate. Unamended sediments showed only weak conversion of the tracer to 35S sulfide (5 to 7 cpm/cm2), whereas the addition of Desulfovibrio cells increased 35S sulfide production to 44 cpm/cm2. However, the application of heat-killed Desulfovibrio had a similar stimulatory effect, as did a lactate amendment. Collectively, these findings indicate that the lack of measurable sulfate reduction at the downgradient site was not due to the absence of the necessary metabolic potential, the presence of lower sulfate concentration, or the quantity of electron donor, but by its biodegradability. The findings also indicate that field bioaugmentation attempts should be interpreted with caution.  相似文献   

14.
An infiltration community was the dominating ice algal community in pack-ice off Queen Maud Land, Southern Ocean, in January 1993. The community was dominated by autotrophic processes, and the most common species were the prymnesiophyte Phaeocystis antarctica and the diatoms Chaetoceros neglectus and Fragilariopsis cylindrus. The concentration of chlorophyll a was 1.3–47.9 μg l−1, and the inner part of the community was nitrate depleted. Uptake rates of nitrate, nitrite, ammonium, urea and amino acids were measured using 15N. Nitrate was the major nitrogen source for ice algal growth (67 ± 6% nitrate uptake). It is suggested that % nitrate uptake in the infiltration community decreases during the growth season, from 92% during spring (literature data) to 67% during summer. Scalar irradiance in the infiltration community was high and variable. It reached ca. 2000 μmol m−2 s−1 at some locations, and nitrate uptake rate was potentially photoinhibited at irradiances >500 μmol m−2 s−1. Nitrate uptake rate in an average infiltration community (0.6 m of snow cover) was lowered by 13% over a 2-week period due to photoinhibition. Received: 16 December 1996 / Accepted: 5 January 1998  相似文献   

15.
Changing environmental conditions and increased water consumption have transformed many historically perennial stream systems into intermittent systems. Multiple drying and wetting events throughout the year might impact many stream processes including nitrification and denitrification, key components of the nitrogen (N) cycle. During summer 2007, an experimental stream was used to dry and then rewet stream sediments to determine the effects of desiccation and rewetting of stream sediment on nitrification and denitrification potentials. Mean (±SE) nitrification and denitrification rates in sediment not dried (controls) were 0.431 ± 0.017 μg NO3 –N/cm2/h and 0.016 ± 0.002 μg N2O–N/cm2/h, respectively. As sediment samples dried, nitrification rates decreased. Rates in sediments dried less than 7 d recovered to levels equal or greater than those in the controls within 1 d of being rewetted. Denitrification rates were not affected by 1 d of drying, but samples dried greater than 1 d experienced reduced rates of denitrification. Denitrification in sediments dried 7 d or less recovered by day seven of being rewetted. Nitrification and denitrification processes failed to fully recover in sediments dried more than 7 d. These results demonstrate that alterations in stream’s hydrology can significantly affect N-cycle processes.  相似文献   

16.
Simultaneous measurements of nitrification in the Baltic Sea were made at 10- to 30-m intervals in the months of June and November by three isotope techniques: [15N]nitrate dilution, N-serve sensitive [14C]bicarbonate incorporation, and [15N]ammonium oxidation to nitrite and nitrate. Nitrification rates of 1 to 280 nmol liter−1 day−1 were recorded, and each method showed that the highest rates of nitrification occurred below the halocline. Even in the presence of ammonium, dark incubations of mixed layer (above ca. 50 m) waters never yielded nitrification rates exceeding 45 nmol liter−1 day−1. The rates measured by the ammonium oxidation method were two- to sevenfold greater than those obtained by 14C incorporation or 15N dilution. The merits of each technique are discussed, and it is suggested that the [15N]ammonium oxidation method should be used in conjunction with the [14C]bicarbonate incorporation method.  相似文献   

17.
We studied the effect of water exchange on the depletion (or accumulation) of bacterioplankton, dissolved organic matter and inorganic nutrients in small open framework cavities (50–70 l) at 15 m depth on the coral reef along Curaçao, Netherlands Antilles. The bacterioplankton removal rate in cavities increased with increasing water exchange rates up to a threshold of 0.0045 s−1, reaching values of 50–100 mg C m−2 total interior cavity surface area (CSA) per day. Beyond the threshold, bacterioplankton removal dropped. The cryptic community is apparently adapted to the average water exchange in these cavities (0.0041 s−1). Dissolved inorganic nitrogen (DIN), nitrate + nitrite (NO x ) in particular, accumulated in cavity water and the accumulation decreased with increasing water exchange. Net NO x effluxes exceeded net DIN effluxes from cavities (average efflux rate of 1.9 mmol NO x vs. 0.8 mmol DIN m−2 interior CSA per day). The difference is ascribed to net ammonium losses (NH4) in cavities at reef concentrations >0.025 μM NH4, possibly due to enhanced nitrification. Dissolved inorganic phosphate accumulated in cavities, but was not related to water exchange. The cryptic biota in cavities depend on water exchange for optimization of consumption of bacterioplankton and removal of inorganic nitrogen. Coral cavities are an evident sink of bacterioplankton and a source of NO x and PO 4 3− .  相似文献   

18.
Summary The sensitivity of the mineralization of nitrogen by a range of soils contaminated with heavy metals (up to 340 μg Cd g−1, 7500 μg Pb g−1 and 34000 μg Zn g−1) to the addition of heavy metals in solution were studied using pot incubations (ammonification) and a soil perfusion technique (nitrification). The ammonification of peptone showed little correlation between treatments with Cd, Zn (1000 and 5000 μg g−1) and Pb (10000 and 20000 μg g−1) and origin of the soil. Nitrification was considerably more sensitive to heavy metals than ammonification. All the soils had active, often large, populations of ammonifying and nitrifying organisms which showed substantial similarities between the soils. The rate of nitrifying activity (NO3−N production) was logrithmic in most cases. The presence of tolerant populations of nitrifying organisms in the contaminated soils was demonstrated. Tolerance was also eventually acquired after a longer lag phase, by the non-contaminated soil populations although the rate of activity was often reduced. Metals added in solution were adsorbed by the soil within 4 hours. Differences in toxicity between metal salts (chlorides, sulphates and acetate) were attributed to the amount left in solution. However, in many instances, acetate was found to stimulate all the stages in the mineralisation of nitrogen.  相似文献   

19.
Gross rates of N mineralization and nitrification, and soil–atmosphere fluxes of N2O, NO and NO2 were measured at differently grazed and ungrazed steppe grassland sites in the Xilin river catchment, Inner Mongolia, P. R. China, during the 2004 and 2005 growing season. The experimental sites were a plot ungrazed since 1979 (UG79), a plot ungrazed since 1999 (UG99), a plot moderately grazed in winter (WG), and an overgrazed plot (OG), all in close vicinity to each other. Gross rates of N mineralization and nitrification determined at in situ soil moisture and soil temperature conditions were in a range of 0.5–4.1 mg N kg−1 soil dry weight day−1. In 2005, gross N turnover rates were significantly higher at the UG79 plot than at the UG99 plot, which in turn had significantly higher gross N turnover rates than the WG and OG plots. The WG and the OG plot were not significantly different in gross ammonification and in gross nitrification rates. Site differences in SOC content, bulk density and texture could explain only less than 15% of the observed site differences in gross N turnover rates. N2O and NO x flux rates were very low during both growing seasons. No significant differences in N trace gas fluxes were found between plots. Mean values of N2O fluxes varied between 0.39 and 1.60 μg N2O-N m−2 h−1, equivalent to 0.03–0.14 kg N2O-N ha−1 y−1, and were considerably lower than previously reported for the same region. NO x flux rates ranged between 0.16 and 0.48 μg NO x -N m−2 h−1, equivalent to 0.01–0.04 kg NO x -N ha−1 y−1, respectively. N2O fluxes were significantly correlated with soil temperature and soil moisture. The correlations, however, explained only less than 20% of the flux variance.  相似文献   

20.
Nitrification rates were measured along a salinity gradient in the Rhône River estuary, using specific inhibitors (allylthiourea and chlorate) coupled with the measurement of change in nitrite concentration and inorganic carbon uptake by nitrifiers. Rates of ammonium and nitrite oxidation were similar up to 15 practical salinity units (from 1 to 2 mol N oxidized liter-1 day-1). For higher salinities, nitrite and ammonium oxidation rates were 0.14 and 0.23 mol N oxidized liter-1 day-1, respectively. Ammonium oxidizers assimilated 19–150 × 10–3 mol C liter-1 day-1, while nitrite oxidizers fixed 4.8–72.6 × 10–3 mol C liter-1 day-1. The amounts of nitrogen oxidized and C incorporated demonstrated a linear correlation (r 2 > 0.99). The ratio of N oxidized to C incorporated ranged between 14.3 to 12.3 for ammonium oxidizers, and between 31.6 and 29 for nitrite oxidizers, the lower values being measured in seawater. Offprint requests to: M. Bianchi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号