首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
When platelets are stimulated by thrombin they immediately undergo inositol lipid hydrolysis via phospholipase C activation. However, subsequently an increased production of phosphatidylinositol 4,5-bisphosphate is observed. Phospholipases C were inhibited by lowering the cytoplasmic free calcium concentration by preincubation with Quin-2-tetra(acetoxymethyl) ester. Aggregation and secretion were also totally suppressed. Under these conditions we observed an increased labeling of phosphatidylinositol 4,5-bisphosphate, indicating a stimulation of inositol lipid kinases, independent of lipid hydrolysis by phospholipase C. Conversely the production of phosphatidylinositol 3,4-bisphosphate was totally abolished. These results suggest a different regulation of the kinases/phosphatases responsible for the production of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4-bisphosphate.  相似文献   

2.
Lysophosphatidylinositol 4,5-bisphosphate has been reported to form ion-conducting channels in artificial membranes. If formed in vivo, mechanisms for its removal from cellular membranes would be required. Thus, possible pathways were explored in rat brain and liver microsomes. Since neither lysophosphatidylinositol 4-phosphate nor lysophosphatidylinositol 4,5-bisphosphate were acylated in experiments with [3H]arachidonic acid or [14C]oleoyl CoA, polyphosphoinositides do not participate directly in a deacylation-reacylation cycle as proposed for the postsynthesis enrichment of phosphatidylinositol with arachidonic acid. Similar enrichment in polyphosphoinositides can occur only via the rapid phosphorylation-dephosphorylation cycle linking all three phosphoinositides. Lysophosphatidyl[2-3H]inositol 4,5-bisphosphate and lysophosphatidyl[2-3H]inositol 4-phosphate were rapidly dephosphorylated to 1-acyl-sn-glycero(3)phospho(1)-D-myo-inositol by microsomes from both tissues. Appearance of only trace quantities of radioactive lysophosphatidylinositol monophosphate during the catabolism of lysophosphatidyl[2-3H]inositol 4,5-bisphosphate indicated that the second dephosphorylation step, which was cation independent, was at least as fast as the first step which required Mg2+. In the presence of ATP, CoA, and arachidonic acid, the lysophosphatidylinositol was converted to phosphatidylinositol. This acylation reaction was rate limiting in brain microsomes. Dephosphorylation of lysophosphatidylinositol 4,5-bisphosphate was rate limiting in liver microsomes. Neither the lysopolyphosphoinositides nor the lysophosphatidylinositol produced from them in the reactions were degraded by acyl hydrolases or phosphodiesterases in microsomes from either tissue. Therefore, any lysopolyphosphoinositide formed in vivo would probably be removed by dephosphorylation and recycled to phosphatidylinositol.  相似文献   

3.
The polyphosphoinositide phosphodiesterase of erythrocyte membranes   总被引:94,自引:53,他引:41       下载免费PDF全文
1. A new assay procedure has been devised for measurement of the Ca(2+)-activated polyphosphoinositide phosphodiesterase (phosphatidylinositol polyphosphate phosphodiesterase) activity of erythrocyte ghosts. The ghosts are prepared from cells previously incubated with [(32)P]P(i). They are incubated under appropriate conditions for activation of the phosphodiesterase and the released (32)P-labelled inositol bisphosphate and inositol trisphosphate are separated by anion-exchange chromatography on small columns of Dowex-1 (formate form). When necessary, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate can be deacylated and the released phosphodiesters separated on the same columns. 2. The release of both inositol bisphosphate and inositol trisphosphate was rapid in human ghosts, with half of the labelled membrane-bound phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate broken down in only a few minutes in the presence of 0.5mm-Ca(2+). For both esters, optimum rates of release were seen at pH6.8-6.9. Mg(2+) did not provoke release of either ester. 3. Ca(2+) provoked rapid polyphosphoinositide breakdown in rabbit erythrocyte ghosts and a slower breakdown in rat ghosts. Erythrocyte ghosts from pig or ox showed no release of inositol phosphates when exposed to Ca(2+). 4. In the presence of Mg(2+), the inositol trisphosphate released from phosphatidylinositol 4,5-bisphosphate was rapidly converted into inositol bisphosphate by phosphomonoesterase activity. 5. Neomycin, an aminoglycoside antibiotic that interacts with polyphosphoinositides, inhibited the breakdown of both phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, with the latter process being appreciably more sensitive to the drug. Phenylmethanesulphonyl fluoride, an inhibitor of serine esterases that is said to inhibit phosphatidylinositol phosphodiesterase, had no effect on the activity of the erythrocyte polyphosphoinositide phosphodiesterase. 6. These observations are consistent with the notion that human, and probably rabbit and rat, erythrocyte membranes possess a single polyphosphoinositide phosphodiesterase that is activated by Ca(2+) and that attacks phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate with equal facility. Inhibition of this activity by neomycin seems likely to be due to interactions between neomycin and the polyphosphoinositides, with the greater inhibition of phosphatidylinositol 4,5-bisphosphate breakdown consistent with the greater affinity of the drug for this lipid. In addition, erythrocyte membranes possess Mg(2+)-dependent phosphomonoesterase that converts inositol 1,4,5-triphosphate into inositol bisphosphate.  相似文献   

4.
Subcellular localisation of inositol lipid kinases in rat liver   总被引:5,自引:0,他引:5  
The subcellular distribution of the enzymes which phosphorylate phosphatidylinositol sequentially to form phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate was investigated in rat liver. We demonstrate that whilst phosphatidylinositol kinase is present in Golgi, lysosomes and plasma membranes, the kinase that forms phosphatidylinositol 4,5-bisphosphate is localised predominantly at the plasma membrane. The role of the inositol lipid kinases in cell function is discussed.  相似文献   

5.
The molecular mechanisms underlying the ability of muscarinic agonists to enhance the metabolism of inositol phospholipids were studied using rat parotid gland slices prelabelled with tracer quantities of [3H]inositol and then washed with 10 mM unlabelled inositol. Carbachol treatment caused rapid and marked increases in the levels of radioactive inositol 1-phosphate, inositol 1,4-bisphosphate, inositol 1,4,5-trisphosphate and an accumulation of label in the free inositol pool. There were much less marked changes in the levels of [3H]phosphatidylinositol, [3H]phosphatidylinositol 4-phosphate and [3H]phosphatidylinositol 4,5-bisphosphate. At 5 s after stimulation with carbachol there were large increases in [3H]inositol 1,4-bisphosphate and [3H]inositol 1,4,5-trisphosphate, but not in [3H]inositol 1-phosphate. After stimulation with carbachol for 10 min the levels of radioactive inositol 1,4-bisphosphate and inositol 1,4,5-trisphosphate greatly exceeded the starting level of radioactivity in phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate respectively. When carbachol treatment was followed by addition of sufficient atropine to block all the muscarinic receptors the radioactive inositol phosphates rapidly returned towards control levels. The carbachol-evoked changes in radioactive inositol phosphate and phospholipid levels were blocked in the presence of 2,4-dinitrophenol (an uncoupler of oxidative phosphorylation). The results suggest that muscarinic agonists stimulate a polyphosphoinositide-specific phospholipase C and that these lipids are continuously replenished from the labelled phosphatidylinositol pool. [3H]Inositol 1-phosphate in the stimulated glands probably arises via hydrolysis of inositol 1,4-bisphosphate and not directly from phosphatidylinositol.  相似文献   

6.
Phosphoinositides of chick and rat retina were labelled with [3H]inositol. Exposure of retinal preparations to light for 30 s caused loss of labelled phosphatidylinositol 4,5-bisphosphate and to a smaller extent of the other phosphoinositides. Similar light-induced changes were seen when rod outer segment preparations were used and, when these were illuminated in calcium-free media, phosphatidylinositol 4,5-bisphosphate was the only lipid affected. No inositol 1,4,5-trisphosphate was seen after either 30 s or 5 s of illumination of retina or 30 s illumination of rod outer segments. It is concluded that this compound plays no direct part in vertebrate photoreceptor light transduction, though phosphoinositide metabolism might relate to adaptation mechanisms.  相似文献   

7.
The effect of prolactin action on nuclear polyphosphoinositide synthesis was investigated in isolated rat liver nuclei. An increased uptake of phosphate from [gamma 32P] adenosinetriphosphate was observed in both phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate with a maximum response at 10(-12) M concentration of hormone. Pulse-chase experiments in isolated nuclei following prolactin treatment indicate that the observed increase in accumulation of phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate is mainly due to a decrease in their rate of turnover possibly induced by a change in activity of polyphosphoinositide-specific monoesterases. In vitro prolactin also reduces the activity of nuclear phospholipase C specific for phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Moreover, this feature is strongly supported by the concomitant decrease in nuclear diacylglycerol mass. Thus these data suggest that once prolactin reaches the nucleus an intranuclear signalling is evoked through inositol lipid metabolism.  相似文献   

8.
Phosphorylation of phosphatidylinositol (PI), phosphatidylinositol monophosphate (PIP) and diacylglycerol (DAG) was studied in rat brain cortex myelin, synaptosomal and mitochondrial fractions, with ATP as phosphate donor and endogenous phospholipids as substrate. All fractions had PI, PIP and DAG phosphorylating activity with their own characteristic subcellular distribution. However, in the mitochondrial fraction an unidentified lipid was phosphorylated, which had a slower Rf value than PIP2 on TLC. After hydrolysis of the polar head group of the lipid and separation on anion exchange columns, it appeared to be a phosphoinositide. The elution profile showed that it was not phosphatidylinositol trisphosphate, or a lyso-compound. The available evidence suggests that the unknown inositol phospholipid in rat brain mitochondria is a phosphatidylinositol 4,5-bisphosphate isomer, although the possibility of it being a glycosyl-phosphoinositide cannot be excluded.  相似文献   

9.
When the erythrocyte plasma membrane Ca2+ pump is reconstituted into phosphatidylcholine liposomes, the inclusion of small amounts of phosphatidic acid or phosphatidylinositol 4,5-bisphosphate stimulates the enzyme's activity. Other lipids of the phosphatidylinositol cycle (diacylglycerol, phosphatidylinositol) have little effect. The stimulatory effect of phosphatidylinositol 4,5-bisphosphate is greater than that of calmodulin; this lipid also stimulates the plasma membrane Ca2+ ATPase from rat brain.  相似文献   

10.
Decapitation-induced changes in inositol phosphates in rat brain   总被引:3,自引:0,他引:3  
Decapitation resulted in a time-dependent production of inositol phosphates in rat brain. This production was analyzed by measuring both the radioactivity and the concentrations of inositol phosphates generated from [3H]inositol-labeled phospholipids. Both measurements produced the same time-dependent changes, including a rapid decrease in inositol 1,4,5-trisphosphate within 1.5 min, a 6-fold increase in inositol 1,4-bisphosphate to a maximum at 1.5 min, a 5-fold rise in inositol 4-monophosphate to a maximum at 2.5 min, and little change in inositol 1-monophosphate. The temporal changes in the mass and radioactivity of these compounds, together with the decrease in labeling of phosphatidylinositol 4,5-bisphosphates, support the idea that the inositol phosphates originate from the hydrolysis of phosphatidylinositol 4,5-bisphosphates and not from either the direct hydrolysis of phosphatidylinositol 4-phosphates or phosphatidylinositols.  相似文献   

11.
Phosphatidylinositol Cycle Metabolites in Samanea saman Pulvini   总被引:9,自引:8,他引:1       下载免费PDF全文
The major metabolites of the phosphatidylinositol cycle from extracts of [32PO4]- and [3H]-inositol-labeled Samanea saman pulvini were separated. The membrane localized phosphoinositides were separated by thin layer chromatography, identified by comparison with purified lipid standards, and quantitated based on incorporation of radiolabel. The ratio of radioactivity in phosphatidylinositol:phosphatidylinositol 4-phosphate:phosphatidylinositol 4,5-bisphosphate is about 32:8:1. The aqueous inositol phosphates were separated by anion exchange chromatography using conventional liquid chromatography and by high performance liquid chromatography (HPLC) and were identified by comparison with standards. Analysis by HPLC reveals that 32P-labeled pulvini have inositol 1-phosphate, inositol 1,4-bisphosphate, and inositol 1,4,5-trisphosphate that co-migrate with red blood cell inositol phosphates, but 3H-inositol-labeled pulvini appear to have a variant profile.  相似文献   

12.
We report the cDNA cloning and characterization of a novel human inositol polyphosphate 5-phosphatase (5-phosphatase) that has substrate specificity unlike previously described members of this large gene family. All previously described members hydrolyze water soluble inositol phosphates. This enzyme hydrolyzes only lipid substrates, phosphatidylinositol 3,4,5-trisphosphate and phosphatidylinositol 4,5-bisphosphate. The cDNA isolated comprises 3110 base pairs and predicts a protein product of 644 amino acids and M(r) = 70,023. We designate this 5-phosphatase as type IV. It is a highly basic protein (pI = 8.8) and has the greatest affinity toward phosphatidylinositol 3,4,5-trisphosphate of known 5-phosphatases. The K(m) is 0.65 micrometer, 1/10 that of SHIP (5.95 micrometer), another 5-phosphatase that hydrolyzes phosphatidylinositol 3,4,5-trisphosphate. The activity of 5-phosphatase type IV is sensitive to the presence of detergents in the in vitro assay. Thus the enzyme hydrolyzes lipid substrates in the absence of detergents or in the presence of n-octyl beta-glucopyranoside or Triton X-100, but not in the presence of cetyltriethylammonium bromide, the detergent that has been used in other studies of the hydrolysis of phosphatidylinositol 4,5-bisphosphate. Remarkably SHIP, a 5-phosphatase previously characterized as hydrolyzing only substrates with d-3 phosphates, also readily hydrolyzed phosphatidylinositol 4,5-bisphosphate in the presence of n-octyl beta-glucopyranoside but not cetyltriethylammonium bromide. We used antibodies prepared against a peptide predicted by the cDNA to identify the 5-phosphatase type IV enzyme in human tissues and find that it is highly expressed in the brain as determined by Western blotting. We also performed Western blotting of mouse tissues and found high levels of expression in the brain, testes, and heart with lower levels of expression in other tissues. mRNA was detected in many tissues and cell lines as determined by Northern blotting.  相似文献   

13.
A phospholipase C which hydrolyses phosphatidylinositol 4,5-bisphosphate to release inositol trisphosphate was detected in a sedimentable fraction from celery and from some other higher plants. The particulate enzyme also hydrolyses phosphatidylinositol, whereas the soluble phosphatidylinositol phosphodiesterase described previously [Irvine, Letcher & Dawson (1980) Biochem. J. 192, 279-283] acts only on phosphatidylinositol, and we were unable to detect activity of this soluble activity on phosphatidylinositol 4,5-bisphosphate. Activity of the particulate enzyme is markedly enhanced in the presence of deoxycholate, but not of other detergents; the particulate enzyme can also be solubilized by extraction with deoxycholate.  相似文献   

14.
Incubation of rat hippocampal formation slices under steady-state conditions with [3H]inositol leads to only three phospholipids becoming labelled: phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. All three lipids incorporate [32P]Pi into their phosphodiester phosphate group with the polyphosphoinositides also incorporating this tracer into their monoester phosphate groups. As the concentrations of these lipids remain constant during these labelling processes we conclude that the phosphodiester phosphate, the inositol moiety, and the monoester phosphate groups undergo metabolic turnover in hippocampal formation slices incubated in vitro. The rate of incorporation of [3H]inositol into all three inositol phospholipids was stimulated by the addition of methacholine to the medium. Moreover, following steady-state labelling of the inositol lipids with [3H]inositol, methacholine in the presence of 10 mM LiCl caused a transient fall of 13% in the radiochemical concentration of phosphatidylinositol 4,5-bisphosphate after only 30 s stimulation and a fall of 15% in the radiochemical concentration of phosphatidylinositol after 30 min. Concomitantly, there was an approximately stoichiometric rise in the radiochemical concentration of inositol phosphates. Thus, we suggest that methacholine stimulates an inositol phospholipid phosphoinositidase C in rat hippocampal formation slices.  相似文献   

15.
In this paper we demonstrate that human platelets contain an acylphosphatase isoenzyme. We then investigated the effect of exogenously added human muscle and erythrocyte acylphosphatases on inositol lipid content in human platelets permeabilized with saponin. Alterations in the level of the polyphosphoinositides were observed: in particular, the levels of phosphatidylinositol 4,5-bisphosphate, and of phosphatidylinositol 4-monophosphate were decreased, whereas the level of phosphatidylinositol was increased. These results suggest that acylphosphatases promote polyphosphoinositide dephosphorylation, possibly through intracellular Ca2+ mobilization.  相似文献   

16.
The effects of carbachol on polyphosphoinositides and 1,2-diacylglycerol metabolism were investigated in bovine tracheal smooth muscle by measuring both lipid mass and the turnover of [3H]inositol-labeled phosphoinositides. Carbachol induces a rapid reduction in the mass of phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate and a rapid increase in the mass of 1,2-diacylglycerol and phosphatidic acid. These changes in lipid mass are sustained for at least 60 min. The level of phosphatidylinositol shows a delayed and progressive decrease during a 60-min period of carbachol stimulation. The addition of atropine reverses these responses completely. Carbachol stimulates a rapid loss in [3H]inositol radioactivity from phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 4-monophosphate associated with production of [3H]inositol trisphosphate. The carbachol-induced change in the mass of phosphoinositides and phosphatidic acid is not affected by removal of extracellular Ca2+ and does not appear to be secondary to an increase in intracellular Ca2+. These results indicate that carbachol causes phospholipase C-mediated polyphosphoinositide breakdown, resulting in the production of inositol trisphosphate and a sustained increase in the actual content of 1,2-diacylglycerol. These results strongly suggest that carbachol-induced contraction is mediated by the hydrolysis of polyphosphoinositides with the resulting generation of two messengers: inositol 1,4,5-trisphosphate and 1,2-diacylglycerol.  相似文献   

17.
Preimplantation rabbit embryos collected at the early morula stage were cultured to blastocysts in the presence of [3H]inositol. The blastocysts were lysed, and both the aqueous and lipid portions were analysed for incorporated radioactivity. Thin-layer chromatographic separation of the lipid portion indicated that [3H]inositol was incorporated into phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate. HPLC anion-exchange chromatography indicated that [3H]inositol was incorporated into inositol phosphates, including the two second messengers, inositol 1,4,5-trisphosphate and inositol 1,3,4,5-tetrakisphosphate, and also inositol monophosphate and inositol 1,4-bisphosphate. These results provide evidence that rabbit blastocysts may have an active phosphatidylinositol second messenger system, which may be responsive to intrauterine factors or intraembryonic paracrine factors. © 1993 Wiley-Liss, Inc.  相似文献   

18.
An accumulation of 3H-labelled inositol phosphates is observed when prelabelled rat superior cervical sympathetic ganglia are exposed to [8-arginine]vasopressin or to muscarinic cholinergic stimuli. The response to vasopressin is much greater than the response to cholinergic stimuli. The response to vasopressin is blocked by a V1-vasopressin antagonist, and oxytocin is a much less potent agonist than vasopressin. Vasopressin causes no increase in the cyclic AMP content of ganglia. These ganglia therefore appear to have functional V1-vasopressin receptors that are capable of activating inositol lipid breakdown, but no V2-receptors coupled to adenylate cyclase. The first [3H]inositol-labelled products to accumulate in stimulated ganglia are inositol trisphosphate and inositol bisphosphate, suggesting that the initiating reaction in stimulated inositol lipid metabolism is a phosphodiesterase-catalysed hydrolysis of phosphatidylinositol 4,5-bisphosphate (and possibly also phosphatidylinositol 4-phosphate). This response to exogenous vasopressin occurs in ganglia incubated in media of reduced Ca2+ concentration. The physiological functions of the V1-vasopressin receptors of these ganglia remain unknown.  相似文献   

19.
A simple high-performance liquid chromatographic method for the determination of endogenous phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) in brain has been developed. PIP and PIP2 were derivatized with 9-anthryldiazomethane to yield (9-anthryl)PIP and di(9-anthryl)-PIP2. The derivatives were separated on a reversed-phase column using isocratic elution and detected with a uv detector. The detection limits of PIP and PIP2 were 0.25 micrograms. The method with uv detection was sufficiently sensitive to measure the concentrations of PIP and PIP2 in rat brain. The levels of PIP and PIP2 were increased in developing rat brain and were decreased after 10 min of ischemia.  相似文献   

20.
Addition of 1 mM-carbachol to [3H]inositol-labelled rat parotid slices stimulated rapid formation of [3H]inositol 1,3,4,5-tetrakisphosphate, the accumulation of which reached a peak 20 s after stimulation, and then declined rapidly towards a new steady state. The initial rate of formation of inositol 1,3,4,5-tetrakisphosphate was slower than that for inositol 1,4,5-trisphosphate. The radioactivity in [3H]inositol 1,3,4,5-tetrakisphosphate fell quickly in carbachol-stimulated and then atropine-blocked parotid slices, suggesting that it is rapidly metabolized during stimulation. Parotid homogenates rapidly dephosphorylated inositol 1,4,5-trisphosphate, inositol 1,3,4,5-tetrakisphosphate and, less rapidly, inositol 1,3,4-trisphosphate. Inositol 1,3,4,5-tetrakisphosphate was specifically hydrolysed to a compound with the chromatographic properties of inositol 1,3,4-trisphosphate. The only 3H-labelled phospholipids that we could detect in parotid slices labelled with [3H]inositol for 90 min were phosphatidylinositol, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Parotid homogenates synthesized inositol tetrakisphosphate from inositol 1,4,5-trisphosphate. This activity was dependent on the presence of ATP. We suggest that, during carbachol stimulation of parotid slices, the key event in inositol lipid metabolism is the activation of phosphatidylinositol 4,5-bisphosphate-specific phospholipase C. The inositol 1,4,5-trisphosphate thus liberated is metabolized in two distinct ways; by direct hydrolysis of the 5-phosphate to form inositol 1,4-bisphosphate and by phosphorylation to form inositol 1,3,4,5-tetrakisphosphate and hence, by hydrolysis of this tetrakisphosphate, to form inositol 1,3,4-trisphosphate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号