首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
B S Riley  D L Cox 《Applied microbiology》1988,54(11):2862-2865
In vitro propagation of Treponema pallidum can be achieved by cocultivation with Sf1Ep cells. This study had two objectives: (i) to achieve suspension cultivation of Sf1Ep cells and (ii) to develop procedures for achieving the replication of T. pallidum in those cell cultures. Seven suspension cultures of Sf1Ep cells yielded an average of 7.2 x 10(8) T. pallidum (36-fold increase) after 12 days.  相似文献   

2.
Lack of endotoxin in Borrelia hispanica and Treponema pallidum   总被引:9,自引:0,他引:9  
Borrelia hispanica from infected guinea pigs and Treponema pallidum from testicular syphilomas of rabbits were assayed for the presence of endotoxin with the Limulus lysate test. A suspension of Borrelia, containing 1.3 X 10(8) spirochetes/ml, was nonreactive both when it was tested as intact organisms, and when tested after disruption of the spirochetes by sonication. Eight different suspensions of treponemes, ranging from 0.6 X 10(9) to 3 X 10(9) treponemes/ml, were negative at a 1:10 dilution and were no more active than control suspensions of normal rabbit testes. Therefore, it was concluded that T. pallidum, as well as the Borrelia, possessed no endotoxin.  相似文献   

3.
The effects of various concentrations of dithiothreitol, molecular oxygen, and several antioxidants upon the in vitro replication of Treponema pallidum were studied. The optimal dithiothreitol concentration was between 0.65 and 1.62 mM, and the optimum oxygen concentration was 3.0% +/- 0.5% in both the presence and absence of additional antioxidants. It was discovered that the reduced sulfhydryl concentration and the oxidation-reduction potential of the medium were stabilized after 5 days. The water-soluble antioxidants cobalt chloride, cocarboxylase, mannitol, and histidine were individually tested for their ability to increase treponemal growth in vitro. The optimum concentrations for these antioxidants were 21 nM, 4.3 nM, 0.55 mM, and 0.23 mM, respectively. When combined at these concentrations, the mixture of antioxidants stimulated the in vitro replication of T. pallidum. The number of treponemes in cultures with the antioxidants averaged a 59-fold increase, compared with a 43-fold increase in cultures lacking the antioxidants. It was further demonstrated that histidine and mannitol were the most critical components of this mixture. Catalase and superoxide dismutase were investigated for their ability to promote the growth and maintain viability of T. pallidum in tissue culture. The optimum concentrations for these enzymes were 10,000 U/liter and 25,000 U/liter, respectively. When these enzymes and the above antioxidants were combined and added to a chemically reduced modified Eagle medium, the treponemes increased an average of 70-fold, compared with an average of 35-fold in cultures lacking them. Furthermore, this medium, T. pallidum culture medium, supported the replication of T. pallidum at oxygen concentrations from 5 to 7% with little loss in yield or viability. The lipid-soluble antioxidants vitamin A and vitamin E acetate were also shown to enhance the in vitro growth of T. pallidum in this medium.  相似文献   

4.
The effects of various concentrations of dithiothreitol, molecular oxygen, and several antioxidants upon the in vitro replication of Treponema pallidum were studied. The optimal dithiothreitol concentration was between 0.65 and 1.62 mM, and the optimum oxygen concentration was 3.0% +/- 0.5% in both the presence and absence of additional antioxidants. It was discovered that the reduced sulfhydryl concentration and the oxidation-reduction potential of the medium were stabilized after 5 days. The water-soluble antioxidants cobalt chloride, cocarboxylase, mannitol, and histidine were individually tested for their ability to increase treponemal growth in vitro. The optimum concentrations for these antioxidants were 21 nM, 4.3 nM, 0.55 mM, and 0.23 mM, respectively. When combined at these concentrations, the mixture of antioxidants stimulated the in vitro replication of T. pallidum. The number of treponemes in cultures with the antioxidants averaged a 59-fold increase, compared with a 43-fold increase in cultures lacking the antioxidants. It was further demonstrated that histidine and mannitol were the most critical components of this mixture. Catalase and superoxide dismutase were investigated for their ability to promote the growth and maintain viability of T. pallidum in tissue culture. The optimum concentrations for these enzymes were 10,000 U/liter and 25,000 U/liter, respectively. When these enzymes and the above antioxidants were combined and added to a chemically reduced modified Eagle medium, the treponemes increased an average of 70-fold, compared with an average of 35-fold in cultures lacking them. Furthermore, this medium, T. pallidum culture medium, supported the replication of T. pallidum at oxygen concentrations from 5 to 7% with little loss in yield or viability. The lipid-soluble antioxidants vitamin A and vitamin E acetate were also shown to enhance the in vitro growth of T. pallidum in this medium.  相似文献   

5.
A physical map of the chromosome of Treponema pallidum subsp. pallidum (Nichols), the causative agent of syphilis, was constructed from restriction fragments produced by NotI, SfiI, and SrfI. These rare-cutting restriction endonucleases cleaved the T. pallidum genome into 16, 8, and 15 fragments, respectively. Summation of the physical lengths of the fragments indicates that the chromosome of T. pallidum subsp. pallidum is approximately 1,030 to 1,080 kbp in size. The physical map was constructed by hybridizing a variety of probes to Southern blots of single and double digests of T. pallidum genomic DNA separated by contour-clamped homogeneous electric field electrophoresis. Probes included cosmid clones constructed from T. pallidum subsp. pallidum genomic DNA, restriction fragments excised from gels, and selected genes. Physical mapping confirmed that the chromosome of T. pallidum subsp. pallidum is circular, as the SfiI and SrfI maps formed complete circles. A total of 13 genes, including those encoding five membrane lipoproteins (tpn47, tpn41, tpn29-35, tpn17, and tpn15), a putative outer membrane porin (tpn50), the flagellar sheath and hook proteins (flaA and flgE), the cytoplasmic filament protein (cfpA), 16S rRNA (rrnA), a major sigma factor (rpoD), and a homolog of cysteinyl-tRNA synthetase (cysS), have been localized in the physical map as a first step toward studying the genetic organization of this noncultivable pathogen.  相似文献   

6.
The surface of Treponema pallidum subsp. pallidum (T. pallidum), the etiologic agent of syphilis, appears antigenically inert and lacks detectable protein, as judged by immunocytochemical and biochemical techniques commonly used to identify the outer membrane (OM) constituents of gram-negative bacteria. We examined T. pallidum by freeze-fracture electron microscopy to visualize the architecture of its OM. Treponema phagedenis biotype Reiter (T. phagedenis Reiter), a nonpathogenic host-associated treponeme, and Spirochaeta aurantia, a free-living spirochete, were studied similarly. Few intramembranous particles interrupted the smooth convex and concave fracture faces of the OM of T. pallidum, demonstrating that the OM of this organism is an unusual, nearly naked lipid bilayer. In contrast, the concave fracture face of the OM of S. aurantia was densely covered with particles, indicating the presence of abundant integral membrane proteins, a feature shared by typical gram-negative organisms. The concentration of particles in the OM concave fracture face of T. phagedenis Reiter was intermediate between those of T. pallidum and S. aurantia. Similar to typical gram-negative bacteria, the OM convex fracture faces of the three spirochetes contained relatively few particles. The unique molecular architecture of the OM of T. pallidum can explain the puzzling in vitro properties of the surface of the organism and may reflect a specific adaptation by which treponemes evade the host immune response.  相似文献   

7.
Antibody and complement immobilize (kill) Treponema pallidum in vitro. Recent evidence also documents immobilization by soluble factors released by activated macrophages and lymphocytes. Immune-mediated lysis of treponemes, however, has not been reported. The findings in this paper focus on apparent treponemal lysis by rabbit splenic cell preparations. Using cells from animals infected testicularly for 9 to 12 days, unfractionated splenic preparations, as well as adherent and nonadherent preparations, killed and lysed T. pallidum. Phagocytosis alone could not explain the detrimental effects of adherent cells. When cytochalasin B was used to block phagocytosis, decreases in treponemal numbers were still detected. In related studies, immune rabbit sera did not enhance treponemicidal activity of the adherent cells. To assess the specificity of these reactions, T. pallidum was incubated with two monocyte-like cell lines (human U937 and mouse P388D1). Neither cell line was detrimental, and treponemal numbers were not lowered. The soluble nature of the treponemicidal factors from adherent and nonadherent preparations was shown by physically separating these cells from the organisms and demonstrating treponemal killing and lysis. In summary, clearance of T. pallidum from infected tissues is probably at least partially attributed to macrophage phagocytosis. Our findings suggest another mechanism involving lytic factors secreted by activated adherent and nonadherent cells.  相似文献   

8.
Two new tprD alleles have been identified in Treponema pallidum: tprD2 is found in 7 of 12 T. pallidum subsp. pallidum isolates and 7 of 8 non-pallidum isolates, and tprD3 is found in one T. pallidum subsp. pertenue isolate. Antibodies against TprD2 are found in persons with syphilis, demonstrating that tprD2 is expressed during infection.  相似文献   

9.
A fundamental ultrastructural feature shared by the spirochetal pathogens Treponema pallidum subsp. pallidum (T. pallidum) and Borrelia burgdorferi, the etiological agents of venereal syphilis and Lyme disease, respectively, is that their most abundant membrane proteins contain covalently attached fatty acids. In this study, we identified the fatty acids covalently bound to lipoproteins of B. burgdorferi and T. pallidum and examined potential acyl donors to these molecules. Palmitate was the predominant fatty acid of both B. burgdorferi and T. pallidum lipoproteins. T. pallidum lipoproteins also contained substantial amounts of stearate, a fatty acid not typically prevalent in prokaryotic lipoproteins. In both spirochetes, the fatty acids of cellular lipids differed from those of their respective lipoproteins. To characterize phospholipids in these organisms, spirochetes were metabolically labeled with [3H]palmitate or [3H]oleate; B. burgdorferi contained only phosphatidylglycerol and phosphatidylcholine, while T. pallidum contained phosphatidylglycerol, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, phosphatidylinositol, and cardiolipin. Although palmitate predominated in the lipoproteins, there were no apparent differences in the incorporation of these two fatty acids into phospholipids (putative acyl donors). Phospholipase A1 and A2 digestion of phosphatidylcholine from B. burgdorferi and T. pallidum labeled with either [3H]palmitate or [3H]oleate also revealed that neither fatty acid was incorporated preferentially into the 1 and 2 positions (potential acyl donor sites) of the glycerol backbone. The combined findings suggest that fatty acid utilization during lipoprotein synthesis is determined largely by the fatty acid specificities of the lipoprotein acyl transferases. These findings also provide the basis for ongoing efforts to elucidate the relationship between lipoprotein acylation and the physiological functions and inflammatory activities of these molecules.  相似文献   

10.
A mutant, PN6017, of the cellular slime mold Polysphondylium pallidum was selected by cell-surface labeling with a monoclonal antibody, mAb 293, and fluorescence-activated cell sorting. The antibody was directed against an L-fucose-containing epitope on glycoproteins, designated ep 293, and the mutant showed reduced and delayed expression of this epitope. PN6017 was distinguished from other mutants of this kind by extensive microcyst formation on agar plates under conditions where the wild type formed only sparse microcysts. In suspension cultures transformation of cells into microcysts was negligible in the wild type, and close to 100% in the mutant. Under these conditions microcyst formation in the mutant began at 5-7 h of starvation. At the same time expression of ep 293 and also of a developmentally regulated cytoplasmic protein, pallidin, became detectable. This coincidence in time suggests that microcyst formation in PN6017 is coupled to the same control mechanism as the two other developmentally regulated processes.  相似文献   

11.
12.
The outer membranes from Treponema pallidum subsp. pallidum and Treponema vincentii were isolated by a novel method. Purified outer membranes from T. pallidum and T. vincentii following sucrose gradient centrifugation banded at 7 and 31% (wt/wt) sucrose, respectively. Freeze fracture electron microscopy of purified membrane vesicles from T. pallidum and T. vincentii revealed an extremely low density of protein particles; the particle density of T. pallidum was approximately six times less than that of T. vincentii. The great majority of T. vincentii lipopolysaccharide was found in the outer membrane preparation. The T. vincentii outer membrane also contained proteins of 55 and 65 kDa. 125I-penicillin V labeling demonstrated that t. pallidum penicillin-binding proteins were found exclusively with the protoplasmic cylinders and were not detectable with purified outer membrane material, indicating the absence of inner membrane contamination. Isolated T. pallidum outer membrane was devoid of the 19-kDa 4D protein and the normally abundant 47-kDa lipoprotein known to be associated with the cytoplasmic membrane; only trace amounts of the periplasmic endoflagella were detected. Proteins associated with the T. pallidum outer membrane were identified by one- and two-dimensional electrophoretic analysis using gold staining and immunoblotting. Small amounts of strongly antigenic 17- and 45-kDa proteins were detected and shown to correspond to previously identified lipoproteins which are found principally with the cytoplasmic membrane. Less antigenic proteins of 65, 31 (acidic pI), 31 (basic pI), and 28 kDa were identified. Compared with whole-organism preparations, the 65- and the more basic 31-kDa proteins were found to be highly enriched in the outer membrane preparation, indicating that they may represent the T. pallidum rare outer membrane proteins. Reconstitution of solubilized T. pallidum outer membrane into lipid bilayer membranes revealed porin activity with two estimated channel diameters of 0.35 and 0.68 nm based on the measured single-channel conductances in 1 M KCl of 0.40 and 0.76 nS, respectively.  相似文献   

13.
Syphilis, a sexually transmitted infection caused by the spirochetal bacterium Treponema pallidum, remains a global public health problem. T. pallidum is believed to be an extracellular pathogen and, as such, the identification of T. pallidum outer membrane proteins that could serve as targets for opsonic or bactericidal antibodies has remained a high research priority for vaccine development. However, the identification of T. pallidum outer membrane proteins has remained highly elusive. Recent studies and bioinformatics have implicated four treponemal proteins as potential outer membrane proteins (TP0155, TP0326, TP0483 and TP0956). Indirect immunofluorescence assays performed on treponemes encapsulated within agarose gel microdroplets failed to provide evidence that any of these four molecules were surface-exposed in T. pallidum. Second, recombinant fusion proteins corresponding to all four candidate outer membrane proteins were used separately, or in combination, to vaccinate New Zealand White rabbits. Despite achieving high titers (>1:50,000) of serum antibodies, none of the rabbits displayed chancre immunity after intradermal challenge with viable T. pallidum.  相似文献   

14.
The genomes of eight treponemes including T. p. pallidum strains (Nichols, SS14, DAL-1 and Mexico A), T. p. pertenue strains (Samoa D, CDC-2 and Gauthier), and the Fribourg-Blanc isolate, were amplified in 133 overlapping amplicons, and the restriction patterns of these fragments were compared. The approximate sizes of the genomes investigated based on this whole genome fingerprinting (WGF) analysis ranged from 1139.3-1140.4 kb, with the estimated genome sequence identity of 99.57-99.98% in the homologous genome regions. Restriction target site analysis, detecting the presence of 1773 individual restriction sites found in the reference Nichols genome, revealed a high genome structure similarity of all strains. The unclassified simian Fribourg-Blanc isolate was more closely related to T. p. pertenue than to T. p. pallidum strains. Most of the genetic differences between T. p. pallidum and T. p. pertenue strains were accumulated in six genomic regions. These genome differences likely contribute to the observed differences in pathogenicity between T. p. pallidum and T. p. pertenue strains. These regions of sequence divergence could be used for the molecular detection and discrimination of syphilis and yaws strains.  相似文献   

15.
Characterization of monoclonal antibodies to Treponema pallidum   总被引:19,自引:0,他引:19  
Thirteen hybrid cell lines which produce mouse monoclonal antibodies to Treponema pallidum, the causative agent of syphilis, have been established. All of the monoclonal antibodies react with T. pallidum, Nichols strain, in ELISA and in immunofluorescence assays, but do not react with normal rabbit testicular tissue in the ELISA. Two of these antibodies were demonstrated to react with the nonpathogenic treponemes T. phagedenis, biotype Reiter, T. refringens (Noguchi strain), T. vincentii, and T. denticola (strains 11 and W), as well as with Borrelia recurrentis, Leptospira interrogans, serogroup Canicola, and the swine pathogen T. hyodysenteriae. The remaining 11 antibodies react with four recently isolated strains of T. pallidum, but with none of the related nonpathogens nor with Borrelia or Leptospira. Thus, our results to date indicate that these monoclonal antibodies may identify antigenic determinants that are specific either for T. pallidum alone or for those treponemes which are pathogenic for humans. The molecular specificities of six of the 13 antibodies were determined by Western blotting. We anticipate potential usefulness of these antibodies in the investigation of the antigenic structure of T. pallidum, the taxonomic study of the pathogenic and nonpathogenic treponemes, and in the diagnosis of syphilis.  相似文献   

16.
In this study, we report the cloning, sequencing, and expression of the gene encoding a 28-kDa Treponema pallidum subsp. pallidum rare outer membrane protein (TROMP), designated Tromp2. The tromp2 gene encodes a precursor protein of 242 amino acids including a putative signal peptide of 24 amino acids ending in a type I signal peptidase cleavage site of Leu-Ala-Ala. The mature protein of 218 amino acids has a calculated molecular weight of 24,759 and a calculated pI of 7.3. The predicted secondary structure of Tromp2 shows nine transmembrane segments of amphipathic beta-sheets typical of outer membrane proteins. Recombinant Tromp2 (rTromp2) was expressed with its native signal peptide, using a tightly regulated T7 RNA polymerase expression vector. Under high-level expression conditions, rTromp2 fractionated exclusively with the Escherichia coli outer membrane. Antiserum raised against rTromp2 was generated and used to identify native Tromp2 in cellular fractionations. Following Triton X-114 extraction and phase separation of T. pallidum, the 28-kDa Tromp2 protein was detected prominently in the detergent phase. Alkali and high-salt treatment of purified outer membrane from T. pallidum, conditions which remove peripherally associated membrane proteins, demonstrated that Tromp2 is an integral membrane protein. Whole-mount immunoelectron microscopy of E. coli cells expressing rTromp2 showed specific surface antibody binding. These findings demonstrate that Tromp2 is a membrane-spanning outer membrane protein, the second such protein to be identified for T. pallidum.  相似文献   

17.
梅毒螺旋体苍白亚种( Tp)引起的梅毒是一种严重危害人类健康的慢性性传播性疾病,其发病具有多阶段、进行性的特点。由于Tp尚不能体外培养,抗原获取困难,其致病机制研究尚不清楚。随着Tp全基因序列的解析,重组Tp膜蛋白的成功表达及蛋白功能结构日益明确,为Tp发病机制的研究及疫苗的研制奠定了良好的基础。对于Tp主要外膜蛋白的结构、功能研究进展进行了综述。  相似文献   

18.
The periplasmic flagella of many spirochetes contain multiple proteins. In this study, two-dimensional electrophoresis, Western blotting (immunoblotting), immunoperoxidase staining, and N-terminal amino acid sequence analysis were used to characterize the individual periplasmic flagellar proteins of Treponema pallidum subsp. pallidum (Nichols strain) and T. phagedenis Kazan 5. Purified T. pallidum periplasmic flagella contained six proteins (Mrs = 37,000, 34,500, 33,000, 30,000, 29,000, and 27,000), whereas T. phagedenis periplasmic flagella contained a major 39,000-Mr protein and a group of two major and two minor 33,000- to 34,000-Mr polypeptide species; 37,000- and 30,000-Mr proteins were also present in some T. phagedenis preparations. Immunoblotting with monospecific antisera and monoclonal antibodies and N-terminal sequence analysis indicated that the major periplasmic flagellar proteins were divided into two distinct classes, designated class A and class B. Class A proteins consisted of the 37-kilodalton (kDa) protein of T. pallidum and the 39-kDa polypeptide of T. phagedenis; class B included the T. pallidum 34.5-, 33-, and 30-kDa proteins and the four 33- and 34-kDa polypeptide species of T. phagedenis. The proteins within each class were immunologically cross-reactive and possessed similar N-terminal sequences (67 to 95% homology); no cross-reactivity or sequence homology was evident between the two classes. Anti-class A or anti-class B antibodies did not react with the 29- or 27-kDa polypeptides of T. pallidum or the 37- and 30-kDa T. phagedenis proteins, indicating that these proteins are antigenically unrelated to the class A and class B proteins. The lack of complete N-terminal sequence homology among the major periplasmic flagellar proteins of each organism indicates that they are most likely encoded by separate structural genes. Furthermore, the N-terminal sequences of T. phagedenis and T. pallidum periplasmic flagellar proteins are highly conserved, despite the genetic dissimilarity of these two species.  相似文献   

19.
The ability of mammalian cells in tissue culture to protect against oxygen toxicity for Treponema pallidum was examined. Addition of catalase to the incubation medium enhanced T. pallidum survival when co-incubation was carried out under aerobic conditions. When co-incubation was carried out under 3% oxygen, catalase had no enhancing effect on survival despite the fact it was still highly stimulatory when T. pallidum was incubated under 3% oxygen in the same medium with no tissue culture cells present. Inactivation of the catalase present endogenously in the mammalian cells by the addition of the catalase inhibitor 3-amino-1,2,4-triazole largely eliminated the enhancing effect of mammalian cells on the survival of T. pallidum under 3% oxygen. Increasing the oxygen consumption of the host mammalian cells with 0.1 mM 2,4-dinitrophenol enhanced T. pallidum under both aerobic and microaerobic conditions; a much greater effect was seen under aerobic conditions. The results indicated that mammalian cells offer significant protection against toxic oxygen reduction products for T. pallidum in vitro under microaerobic conditions.  相似文献   

20.
In the rabbit model of syphilis, infection phenotypes associated with the Nichols and Chicago strains of Treponema pallidum (T. pallidum), though similar, are not identical. Between these strains, significant differences are found in expression of, and antibody responses to some candidate virulence factors, suggesting the existence of functional genetic differences between isolates. The Chicago strain genome was therefore sequenced and compared to the Nichols genome, available since 1998. Initial comparative analysis suggested the presence of 44 single nucleotide polymorphisms (SNPs), 103 small (≤3 nucleotides) indels, and 1 large (1204 bp) insertion in the Chicago genome with respect to the Nichols genome. To confirm the above findings, Sanger sequencing was performed on most loci carrying differences using DNA from Chicago and the Nichols strain used in the original T. pallidum genome project. A majority of the previously identified differences were found to be due to errors in the published Nichols genome, while the accuracy of the Chicago genome was confirmed. However, 20 SNPs were confirmed between the two genomes, and 16 (80.0%) were found in coding regions, with all being of non-synonymous nature, strongly indicating action of positive selection. Sequencing of 16 genomic loci harboring SNPs in 12 additional T. pallidum strains, (SS14, Bal 3, Bal 7, Bal 9, Sea 81-3, Sea 81-8, Sea 86-1, Sea 87-1, Mexico A, UW231B, UW236B, and UW249C), was used to identify "Chicago-" or "Nichols -specific" differences. All but one of the 16 SNPs were "Nichols-specific", with Chicago having identical sequences at these positions to almost all of the additional strains examined. These mutations could reflect differential adaptation of the Nichols strain to the rabbit host or pathoadaptive mutations acquired during human infection. Our findings indicate that SNPs among T. pallidum strains emerge under positive selection and, therefore, are likely to be functional in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号