首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To achieve a thorough understanding of plant-aphid interactions, it is necessary to investigate in detail both the plant and insect side of the interaction. The pea aphid (PA; Acyrthosiphon pisum) has been selected by an international consortium as the model species for genetics and genomics studies, and the model legume Medicago truncatula is a host of this aphid. In this study, we identified resistance to PA in a M. truncatula line, 'Jester', with well-characterized resistance to a closely related aphid, the bluegreen aphid (BGA; Acyrthosiphon kondoi). The biology of resistance to the two aphid species shared similarity, with resistance in both cases occurring at the level of the phloem, requiring an intact plant and involving a combination of antixenosis, antibiosis, and plant tolerance. In addition, PA resistance cosegregated in 'Jester' with a single dominant gene for BGA resistance. These results raised the possibility that both resistances may be mediated by the same mechanism. This was not supported by the results of gene induction studies, and resistance induced by BGA had no effect on PA feeding. Moreover, different genetic backgrounds containing a BGA resistance gene from the same resistance donor differ in resistance to PA. These results suggest that distinct mechanisms are involved in resistance to these two aphid species. Resistance to PA and BGA in the same genetic background in M. truncatula makes this plant an attractive model for the study of both plant and aphid components of resistant and susceptible plant-aphid interactions.  相似文献   

2.
3.
Aphids are phloem-feeding insects that damage many important crops throughout the world yet, compared to plant-pathogen interactions, little is known about the mechanisms by which plants become resistant to aphids. Medicago truncatula (barrel medic) is widely considered as the pre-eminent model legume for genetic and biological research and in Australia is an important pasture species. Six cultivars of M. truncatula with varying levels of resistance to two pests of pasture and forage legumes, the bluegreen aphid Acyrthosiphon kondoi Shinji and the spotted alfalfa aphid Therioaphis trifolii f. maculata. (Buckton) are investigated. Two resistance phenotypes against T. trifolii f. maculata are described, one of which is particularly effective, killing most aphids within 24 h of infestation. Each resistance phenotype provided a similar but somewhat less effective degree of resistance to the closely-related spotted clover aphid Therioaphis trifolii (Monell). In the case of A. kondoi only one resistance phenotype was observed, which did not vary among different genetic backgrounds. None of the observed resistance against A. kondoi or T. trifolii f. maculata significantly affected the performance of green peach aphid Myzus persicae (Sulzer) or cowpea aphid Aphis craccivora Koch. The existence of multiple aphid resistance mechanisms in similar genetic backgrounds of this model plant provides a unique opportunity to characterize the fundamental basis of plant defence to these serious agricultural pests.  相似文献   

4.
Aphids are a major family of plant insect pests. Medicago truncatula and Acyrthosiphon pisum (pea aphid, PA) are model species with a suite of resources available to help dissect the mechanism underlying plant-aphid interactions. A previous study focused on monogenic and relatively strong resistance in M. truncatula to PA and other aphid species. In this study a moderate resistance to PA was characterized in detail in the M. truncatula line A17 and compared with the highly susceptible line A20 and the more resistant line Jester. The results show that PA resistance in A17 involves both antibiosis and tolerance, and that resistance is phloem based. Quantitative trait locus (QTL) analysis using a recombinant inbred line (RIL) population (n=114) from a cross between A17 and A20 revealed that one locus, which co-segregated with AIN (Acyrthosiphon-induced necrosis) on chromosome 3, is responsible for the reduction of aphid biomass (indicator of antibiosis) for both PA and bluegreen aphid (BGA, A. kondoi), albeit to a lesser degree for PA than BGA. Interestingly, two independent loci on chromosomes 5 and 3 were identified for the plant biomass reduction (indicator of plant tolerance) by PA and BGA, respectively, demonstrating that the plant's tolerance response to these two closely related aphid species is distinct. Together with previously identified major resistant (R) genes, the QTLs identified in this study are powerful tools to understand fully the spectrum of plant defence against sap-sucking insects and provide opportunities for breeders to generate effective and sustainable strategies for aphid control.  相似文献   

5.
Host resistance to aphids is poorly understood. Medicago truncatula, a model legume and cultivated pasture species, was used to elucidate defense against two aphid species, Therioaphis trifolii f. maculata (spotted alfalfa aphid, SAA) and Acyrthosiphon kondoi (bluegreen aphid, BGA). Aphid performance and plant damage were compared between near-isogenic cultivars, Mogul and Borung, that differ in resistance to both aphids. Analyses of aphid resistance in Mogul x Borung F2 plants and their progeny revealed modes of action and chromosome locations of resistance genes. Separate genes were identified for SAA resistance (TTR) and BGA resistance (AKR); both mapped to chromosome 3 but were found to act independently to reduce survival and growth of their target aphid species. The TTR locus controls distinct, and contrasting, local and systemic plant responses between the near-isogenic cultivars. TTR-mediated plant responses imply interaction between a resistance factor(s) in vascular tissue and a bioactive component(s) of SAA saliva. Features of both resistance traits suggest homology to aphid resistance in other legumes; elucidation of their molecular mechanisms will likely apply to other aphid-plant interactions.  相似文献   

6.
The effect of a previous infestation by the green peach aphid Myzus persicae (Sulzer) on the settling behaviour and reproduction of the same aphid species was investigated in the resistant peach cultivar Rubira, and compared with that observed in the susceptible control cultivar GF305. A previous infestation of 48 h triggered induced resistance in Rubira. There were significantly fewer aphids settling on preinfested than on uninfested plants, indicating an increased rejection of Rubira as a host plant. The level of induced resistance in preinfested plants was positively related to the duration of the first infestation. In GF305, previous infestation had no detrimental effect on aphid settlement and even slightly enhanced larviposition by adult females. The aphid probing behaviour after a 48-h preinfestation was also monitored for 8 h with the electrical peneration graph (EPG) technique. On preinfested GF305, most EPG parameters indicated an enhanced host plant acceptance. On preinfested GF305, aphids produced less sieve element salivation and more continuous sap ingestion than on uninfested GF305, indicating that the previous aphids provoked changes in plant properties beneficial to the test aphids. In Rubira, a major induced factor of resistance was thought to be expressed in the sieve element as phloem sap ingestion was 4-fold shorter on preinfested than on uninfested plants. The time taken by the aphid stylets to reach a sieve element was also significantly increased on preinfested Rubira, suggesting the induction of resistance factors outside the phloem. The originality of the Rubira/M. persicae interaction is discussed in the perspective of a better understanding of plant induced responses to aphids.  相似文献   

7.
Soil-based growth cabinet and greenhouse experiments were designed to determine whether a resistance response previously noted in Trifolium repens to the clover cyst nematode Heterodera trifolii was systemic and also effective against a pest from a different taxon. Root applications of benzo(1,2,3)thiadiazole-7-carbothioic acid-S-methyl ester (BTH) or a Pseudomonas -like bacterial strain P29 to white clover seedlings induced resistance to the blue-green aphid, Acyrthosiphon kondoi . A similar response was observed in the annual medic, Medicago truncatula var truncatula . Estimation of lignin and callose content of whole plants at the termination of the bioassay showed no differences between treated and control plants. The significance of these findings is discussed.  相似文献   

8.
The feeding behaviour, excretion rate, and life history traits of the cotton-melon aphid, Aphis gossypii (Glover) (Homoptera, Aphididae), were measured on a resistant melon, Cucumis melo L., breeding line, AR 5. The site of resistance detection by the aphids was determined using the electrical penetration graph (EPG) technique. EPG recordings showed that resistance is expressed within the host plant, rather than on its surface, because the time to first stylet penetration was not significantly different between AR 5 and the closely related susceptible breeding line, PMR 5. EPG patterns associated with stylet pathway activities of the aphids were not significantly different between the resistant and susceptible lines. Significant behavioural differences were observed only after stylets contacted phloem sieve elements. On AR 5, the duration of salivation after sieve element puncture (waveform E1) was significantly longer, and the number of aphids showing phloem sap ingestion (waveform E2) was significantly reduced. We conclude that the resistance mechanism producing the effects seen in this study acts within the phloem sieve elements. Monitoring of excretion rates on the two genotypes showed that aphid feeding was delayed and greatly reduced on the resistant genotype. Comparisons of aphid life history traits and population development between host plant genotypes showed that the effects of resistance act throughout aphid development and are highly effective at slowing down population increase.  相似文献   

9.
The Mi‐1.2 gene in tomato, Solanum lycopersicum L. (Solanaceae), confers resistance against several herbivores, including the potato aphid, Macrosiphum euphorbiae (Thomas) (Hemiptera: Sternorrhyncha: Aphididae) and the sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Sternorrhyncha: Aleyrodidae). Previous studies on the tissue localization of resistance have given varying results; whitefly resistance was attributed to factors localized in the mesophyll or epidermis, whereas aphid resistance was attributed to factors localized in the phloem. Our study utilizes the direct current electrical penetration graph (DC‐EPG) technique to compare aphid feeding behavior on resistant (Mi‐1.2+) and susceptible (Mi‐1.2?) tomato plants. This study also compares the impact of resistance on the feeding behavior of two aphid clones that vary in their virulence, or their ability to survive and reproduce on resistant plants. Previous work had shown that the avirulent WU11 clone is almost completely inhibited by resistance, whereas the semi‐virulent WU12 clone can colonize resistant hosts. Here, DC‐EPG analysis shows that both aphid clones take longer to initiate cell sampling and to establish a confirmed sieve element phase on resistant plants than on susceptible hosts, and have shorter ingestion periods on resistant plants. However, the magnitude of these deterrent effects is far less for the semi‐virulent clone than for the avirulent aphids. In particular, the WU12 clone is less sensitive to factors that limit sieve element ingestion, showing shorter non‐probe duration and rapidly establishing sustained phloem ingestion on resistant plants when compared to the WU11 clone. We conclude that, in addition to previously described factors in the phloem that inhibit ingestion, Mi‐mediated aphid resistance also involves factors (possibly in the mesophyll and/or epidermis) that delay initiation of phloem salivation, and that act in the intercellular spaces to deter the first cell sampling. Furthermore, the relative effectiveness of these components of resistance differs among insect populations.  相似文献   

10.
Resistance of the melon line TGR‐1551 to the aphid Aphis gossypii is based on preventing aphids from ingesting phloem sap. In electrical penetration graphs (EPGs), this resistance has been characterized with A. gossypii showing unusually long phloem salivation periods (waveform E1) mostly followed by pathway activities (waveform C) or if followed by phloem ingestion (waveform E2), ingestion was not sustained for more than 10 min. Stylectomy with aphids on susceptible and resistant plants was performed during EPG recording while the stylet tips were phloem inserted. This was followed by dissection of the penetrated leaf section, plant tissue fixation, resin embedding, and ultrathin sectioning for transmission electron microscopic observation in order to study the resistance mechanism in the TGR. The most obvious aspect appeared to be the coagulation of phloem proteins inside the stylet canals and the punctured sieve elements. Stylets of 5 aphids per genotype were amputated during sieve element (SE) salivation (E1) and SE ingestion (E2). Cross‐sections of stylet bundles in susceptible melon plants showed that the contents of the stylet canals were totally clear and also, no coagulated phloem proteins occurred in their punctured sieve elements. In contrast, electron‐dense coagulations were found in both locations in the resistant plants. Due to calcium binding, aphid saliva has been hypothesized to play an essential role in preventing/suppressing such coagulations that cause occlusion of sieves plate and in the food canal of the aphid's stylets. Doubts about this role of E1 salivation are discussed on the basis of our results.  相似文献   

11.
Laboratory bioassays and field trials were used to characterize resistance to three aphid species (Myzus persicae (Sulzer), Acyrthosiphon kondoi Shinji, Aphis craccivora (Koch) in two aphid-resistant varieties (Kalya, Tanjil) and one susceptible variety (Tallerack) of Lupinus angustifolius L., and in one resistant variety (Teo) and one susceptible variety (Wodjil) of L. luteus L. Host selection tests in the glasshouse showed that alates of all three species preferred L. luteus to L. angustifolius, but provided no evidence that alates selected susceptible varieties over resistant. These results were supported by a field trial, which showed no difference in the number of colonizing A. kondoi alates collected from the resistant and susceptible lines of each lupin species, but there were significantly more late-instar nymphs and apterous adults on the susceptible lines. In laboratory host suitability experiments, there was much greater suppression of aphid growth and survival on Teo than on Kalya and Tanjil. In field trials, the numbers of aphids were generally lower on resistant compared to susceptible lines of both lupin species with one notable exception: M. persicae numbers were not lower on the resistant variety Tanjil compared to the susceptible variety Tallerack (L. angustifolius). These results suggest that the resistance mechanisms in both lupin species do not affect the selection of hosts by colonizing aphids, but rather are affecting the growth, survival and possibly reproduction of aphids after settling.  相似文献   

12.
Locating a resistance mechanism to the cabbage aphid in two wild Brassicas   总被引:1,自引:0,他引:1  
Feeding behaviour of the cabbage aphid,Brevicoryne brassicae, was monitored electronically on two resistantBrassica species,B. fruticulosa andB. spinescens, and compared with a susceptible controlB. oleracea var.capitata cv. Offenham Compacta. Aphids, monitored for 10 h on the under side of leaves, performed recognizable feeding behaviour on all species. Electrical Penetration Graphs (EPGs) of aphids on resistant and susceptible plants showed no difference in behaviour for aphids on resistantBrassica species compared to susceptible until stylets penetrated the phloem sieve elements when a large reduction in the duration of passive phloem uptake (E2 pattern) onB. fruticulosa was indicated. Although feeding behaviour on 6 week-old plants ofB. spinescens was similar to the susceptible controls, behaviour on 10 week-old plants was similar to that recorded forB. fruticulosa. The mechanism of resistance is thought to be located in the sieve element as the normal sieve element salivation (E1) signal was either quickly terminated by withdrawal of the stylets from the sieve element or continued as a disrupted E2 pattern. Analysis of secondary plant compounds in the threeBrassica species only identified significant differences in the glucosinolate profile. No reproducible differences were detected in the concentration of phenolics or anthocyanins. The major glucosinolate component ofB. fruticulosa andB. spinescens was gluconapin rather than glucobrassicin and glucoiberin as found in the susceptible host plant. However, both pure glucosinolates and glucosinolate extracts from all three species did not reduce aphid survival on chemically-defined artificial diets. These results suggest that the mechanism of resistance may be a mechanical blocking of the sieve element or stylets rather than a difference in the secondary plant chemistry of glucosinolates and phenolics.  相似文献   

13.
Plant genes participating in the recognition of aphid herbivory in concert with plant genes involved in defense against herbivores mediate plant resistance to aphids. Several such genes involved in plant disease and nematode resistance have been characterized in detail, but their existence has only recently begun to be determined for arthropod resistance. Hundreds of different genes are typically involved and the disruption of plant cell wall tissues during aphid feeding has been shown to induce defense responses in Arabidopsis, Triticum, Sorghum, and Nicotiana species. Mi‐1.2, a tomato gene for resistance to the potato aphid, Macrosiphum euphorbiae (Thomas), is a member of the nucleotide‐binding site and leucine‐rich region Class II family of disease, nematode, and arthropod resistance genes. Recent studies into the differential expression of Pto‐ and Pti1‐like kinase genes in wheat plants resistant to the Russian wheat aphid, Diuraphis noxia (Mordvilko), provide evidence of the involvement of the Pto class of resistance genes in arthropod resistance. An analysis of available data suggests that aphid feeding may trigger multiple signaling pathways in plants. Early signaling includes gene‐for‐gene recognition and defense signaling in aphid‐resistant plants, and recognition of aphid‐inflicted cell damage in both resistant and susceptible plants. Furthermore, signaling is mediated by several compounds, including jasmonic acid, salicylic acid, ethylene, abscisic acid, giberellic acid, nitric oxide, and auxin. These signals lead to the development of direct chemical defenses against aphids and general stress‐related responses that are well characterized for a number of abiotic and biotic stresses. In spite of major plant taxonomic differences, similarities exist in the types of plant genes expressed in response to feeding by different species of aphids. However, numerous differences in plant signaling and defense responses unique to specific aphid–plant interactions have been identified and warrant further investigation.  相似文献   

14.
Aphids are dependent on the phloem sap of plants as their only source of nutrients. Host‐plant resistance in lettuce, Lactuca sativa L. (Asteraceae), mediated by the Nr gene is used to control the lettuce aphid Nasonovia ribisnigri (Mosely) (Hemiptera: Aphididae). The resistance is located in the phloem; however, the exact mechanism of resistance is unknown. In this study, we investigated whether the resistance factor (or factors) is synthesized in the root or in the shoot. The feeding behavior and performance of avirulent N. ribisnigri were studied on grafts of resistant and susceptible lettuce. In addition, the persistence of resistance in excised lettuce tissue was measured, by studying the feeding behavior and performance of N. ribisnigri on detached leaves and leaf disks of resistant lettuce. It appears that the resistance factor encoded by the Nr gene is produced in the shoots: aphid feeding was reduced on resistant shoots grafted on susceptible roots, whereas aphids were able to feed on grafts of susceptible shoots on resistant roots. Partial loss of resistance was observed after detachment of leaves and excision of leaf disks from resistant plants. Aphids fed longer on excised resistant plant tissue compared with intact resistant plants; however, compared with excised plant tissue of the susceptible cultivar, the time spent on feeding was shorter, indicating resistance was not completely lost. Our findings caution against the use of excised leaf material for aphid resistance bioassays.  相似文献   

15.
The aphid Amphorophora agathonica Hottes (Hemiptera: Aphididae) is an important virus vector in red (Rubus idaeus L.) and black (Rubus occidentalis L.) raspberries in North America. Raspberry resistance to A. agathonica in the form of a single dominant gene named Ag1 has been relied upon to help control aphid-transmitted plant viruses; however, the mechanism of resistance to the insect is poorly understood. Aphid feeding was monitored using an electrical penetration graph on the resistant red raspberry 'Tulameen' and compared with a susceptible control, 'Vintage'. There were no differences in pathway feeding behaviors of aphids as they moved toward the phloem. Once in the phloem, however, aphids feeding on resistant plants spent significantly more time salivating than on susceptible plants, and ingested significantly less phloem sap. This suggests that a mechanism for resistance to A. agathonica is located in the phloem. Reduced ingestion of phloem may result in inefficient acquisition of viruses and is a likely explanation for the lack of aphid-transmitted viruses in plantings of resistant cultivars.  相似文献   

16.
Plant penetration by the stylets of six clones of the pea aphid, Acyrthosiphon pisum, on Vicia faba (acceptable to all clones) and Pisum sativum (acceptable to 3/6 clones) was investigated by the DC electrical penetration graph technique. In a 10 h recording period, 93% of 144 aphids exhibited sustained feeding on phloem sap. Significant interclonal differences were observed for the incidence of potential drops (indicative of brief punctures of plant cells) and the duration of waveform E1 (insect salivation into a sieve element). In addition, the total duration of the sieve element phase and the duration of completed bouts of sustained feeding differed between the two test plants, in a fashion varying between clones. However, these differences could not be related to the acceptability of plants to the different aphid clones. The duration of the stylet pathway phase preceding the first sustained feeding on phloem sap did not vary significantly with either aphid clone or plant. It is concluded that the resistance of P. sativum to certain A. pisum clones does not arise from factors impeding either stylet penetration through the plant tissues or the maintenance of feeding from the sieve elements. It is proposed that host plant affiliation of A. pisum may be mediated primarily by specific olfactory or gustatory cues, before the aphid initiates stylet penetration of the plant.  相似文献   

17.
Experiments were conducted to locate the plant tissue where resistance is expressed against silverleaf whitefly, Bemisia argentifolii Bellows and Perring (Homoptera: Aleyrodidae), in alfalfa, Medicago sativa L. (Fabaceae), genotypes previously shown to have high levels of resistance against this pest. Previous work demonstrated that resistance in the resistant alfalfa genotypes was expressed primarily as high first‐instar mortality; consequently this study focused on first‐instar nymphs. Examination of stylets in cleared leaf tissue indicated that first‐instar nymphs located vascular bundles with equal success on resistant and susceptible alfalfa genotypes. Furthermore, direct current electrical penetration graphs (DC‐EPG) indicated that sieve elements were penetrated and phloem ingestion behavior was initiated with equal success on resistant and susceptible genotypes. Thus, the mechanism of resistance does not reside in tissues encountered by the stylets prior to penetrating a phloem sieve element. Honeydew production (as a proxy for ingestion) was greatly reduced on two resistant genotypes compared to the two susceptible genotypes. The frequency distribution of honeydew production was bimodal, indicating that most individuals on the resistant genotypes produced little or no honeydew while some produced as much honeydew as whiteflies on the susceptible genotypes. This indicates that expression of resistance is an all‐or‐nothing phenomenon; an individual nymph either encounters resistance and cannot sustain ingestion or it does not encounter resistance and ingests just as well as on a susceptible plant. Intermediates are rare. DC‐EPGs indicate that phloem ingestion behavior is significantly reduced on two of the resistant genotypes compared to the susceptible genotypes. The primary reason for this appears to be more frequent termination of phloem ingestion behavior on at least one of the resistant genotypes. On one of the resistant genotypes, the productivity of EPG‐measured phloem ingestion behavior (honeydew produced per min of phloem ingestion behavior) was reduced compared to a susceptible control.  相似文献   

18.
Feeding behavior and plant response to feeding were studied for the aphid Aphis gossypii Glover on susceptible and resistant melons(cv.Iroquois and TGR-1551,respectively).Average phloem phase bout duration on TGR-1551 was<7% of the duration on Iroquois.Sixty-seven percent of aphids on TGR-1551 never produced a phloem phase that attained ingestion(EPG waveform E2)in contrast to only 7% of aphids on Iroquois.Average bout duration of waveform E2(scored as zero if phloem phase did not attain E2)on TGR-1551 was<3% of the duration on Iroquois.Conversely,average bout duration of EPG waveform El(sieve element salivation)was 2.8 times greater on TGR-1551 than on Iroquois.In a second experiment,liquid nitrogen was used to rapidly cryofix leaves and aphids within a few minutes after the aphids penetrated a sieve element.Phloem near the penetration site was then examined by confocal laser scanning microscopy.Ninety-six percent of penetrated sieve elements were occluded by protein in TGR-1551 in contrast to only 28% in Iroquois.Usually in TGR-1551,occlusion was also observed in nearby nonpenetrated sieve elements.Next,a calcium channel blocker,trivalent lanthanum,was used to prevent phloem occlusion in TGR-1551,and A.gossypii feeding behavior and the plants phloem response were compared between lanthanum-treated and control TGR-1551.Lanthanum treatment eliminated the sieve element protein occlusion response and the aphids readily ingested phloem sap from treated plants.This study provides strong evidence that phloem occlusion is a mechanism for resistance against A.gossypii in TGR-1551.  相似文献   

19.
The behaviour ofSitobion avenae (F.), was compared on resistant wheat lines ofTriticum monococcum (L.) and a susceptible variety ofTriticum aestivum (L.). Firstly, stylet penetration activities were monitored with the Electrical Penetration Graph (EPG) technique and subsequently analysed using flow charts combined with correspondence analysis. Plant resistance was shown to be associated with repeated penetrations without access to either the xylem or the phloem, and with numerous failures in starting a sustained sap ingestion (as represented by pattern E2). Access to sieve elements of the phloem did not seem to be much affected on resistant plants but it took the aphid three times as long to produce a sap ingestion pattern when maintained on the resistant lineT. monococcum no 44 (Tm44) as compared with aphids maintained on susceptible plants. As a result the total time spent in ingesting from sieve elements was reduced by 72% on Tm44. Secondly, direct observations of freely-moving apterous adults were performed. Aphids did not discriminate between resistant and susceptible wheat during the first 30 min of access to test leaves, but only 4 out of 25 aphids were still probing after eight hours on resistant Tm44. The relevance of these results to possible location of the resistance factor(s) are discussed. Although detection of plant resistance before sieve elements are reached can not be rigorously excluded, the factors involved inT. monococcum resistance toS. avenae undoubtedly occur within the phloem vessels.  相似文献   

20.
Sauge MH  Lambert P  Pascal T 《Heredity》2012,108(3):292-301
The architecture and action of quantitative trait loci (QTL) contributing to plant resistance mechanisms against aphids, the largest group of phloem-feeding insects, are not well understood. Comparative mapping of several components of resistance to the green peach aphid (Myzus persicae) was undertaken in Prunus davidiana, a wild species related to peach. An interspecific F(1) population of Prunus persica var. Summergrand × P. davidiana clone P1908 was scored for resistance (aphid colony development and foliar damage) and 17 aphid feeding behaviour traits monitored by means of the electrical penetration graph technique. Seven resistance QTLs were detected, individually explaining 6.1-43.1% of the phenotypic variation. Consistency was shown over several trials. Nine QTLs affecting aphid feeding behaviour were identified. All resistance QTLs except one co-located with QTLs underlying aphid feeding behaviour. A P. davidiana resistance allele at the major QTL was associated with drastic reductions in phloem sap ingestion by aphids, suggesting a phloem-based resistance mechanism. Resistance was also positively correlated with aphid salivation into sieve elements, suggesting an insect response to restore the appropriate conditions for ingestion after phloem occlusion. No significant QTL was found for traits characterising aphid mouthpart activity in plant tissues other than phloem vessels. Two QTLs with effects on aphid feeding behaviour but without effect on resistance were identified. SSR markers linked to the main QTLs involved in resistance are of potential use in marker-assisted selection for aphid resistance. Linking our results with the recent sequencing of the peach genome may help clarify the physiological resistance mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号