首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Cigarette smoking adversely affects endochondral ossification during the course of skeletal growth. Among a plethora of cigarette chemicals, nicotine is one of the primary candidate compounds responsible for the cause of smoking-induced delayed skeletal growth. However, the possible mechanism of delayed skeletal growth caused by nicotine remains unclarified. In the last decade, localization of neuronal nicotinic acetylcholine receptor (nAChR), a specific receptor of nicotine, has been widely detected in non-excitable cells. Therefore, we hypothesized that nicotine affect growth plate chondrocytes directly and specifically through nAChR to delay skeletal growth.

Methodology/Principal Findings

We investigated the effect of nicotine on human growth plate chondrocytes, a major component of endochondral ossification. The chondrocytes were derived from extra human fingers. Nicotine inhibited matrix synthesis and hypertrophic differentiation in human growth plate chondrocytes in suspension culture in a concentration-dependent manner. Both human and murine growth plate chondrocytes expressed alpha7 nAChR, which constitutes functional homopentameric receptors. Methyllycaconitine (MLA), a specific antagonist of alpha7 nAChR, reversed the inhibition of matrix synthesis and functional calcium signal by nicotine in human growth plate chondrocytes in vitro. To study the effect of nicotine on growth plate in vivo, ovulation-controlled pregnant alpha7 nAChR +/− mice were given drinking water with or without nicotine during pregnancy, and skeletal growth of their fetuses was observed. Maternal nicotine exposure resulted in delayed skeletal growth of alpha7 nAChR +/+ fetuses but not in alpha7 nAChR −/− fetuses, implying that skeletal growth retardation by nicotine is specifically mediated via fetal alpha7 nAChR.

Conclusions/Significance

These results suggest that nicotine, from cigarette smoking, acts directly on growth plate chondrocytes to decrease matrix synthesis, suppress hypertrophic differentiation via alpha7 nAChR, leading to delayed skeletal growth.  相似文献   

3.

Introduction

The effect of low-intensity pulsed ultrasound (LIPUS) on cell growth was examined in three-dimensional-cultured chondrocytes with a collagen sponge. To elucidate the mechanisms underlying the mechanical activation of chondrocytes, intracellular signaling pathways through the Ras/mitogen-activated protein kinase (MAPK) and the integrin/phosphatidylinositol 3 kinase (PI3K)/Akt pathways as well as proteins involved in proliferation of chondrocytes were examined in LIPUS-treated chondrocytes.

Methods

Articular cartilage tissue was obtained from the metatarso-phalangeal joints of freshly sacrificed pigs. Isolated chondrocytes mixed with collagen gel and culture medium composites were added to type-I collagen honeycomb sponges. Experimental cells were cultured with daily 20-minute exposures to LIPUS. The chondrocytes proliferated and a collagenous matrix was formed on the surface of the sponge. Cell counting, histological examinations, immunohistochemical analyses and western blotting analysis were performed.

Results

The rate of chondrocyte proliferation was slightly but significantly higher in the LIPUS group in comparison with the control group during the 2-week culture period. Western blot analysis showed intense staining of type-IX collagen, cyclin B1 and cyclin D1, phosphorylated focal adhesion kinase, and phosphorylated Akt in the LIPUS group in comparison with the control group. No differences were detected, however, in the MAPK, phosphorylated MAPK and type-II collagen levels.

Conclusion

LIPUS promoted the proliferation of cultured chondrocytes and the production of type-IX collagen in a three-dimensional culture using a collagen sponge. In addition, the anabolic LIPUS signal transduction to the nucleus via the integrin/phosphatidylinositol 3-OH kinase/Akt pathway rather than the integrin/MAPK pathway was generally associated with cell proliferation.  相似文献   

4.

Introduction

Ankylosing spondylitis (AS) is a chronic autoimmune disease, and the precise pathogenesis is largely unknown at present. Bone marrow-derived mesenchymal stem cells (BMSCs) with immunosuppressive and anti-inflammatory potential and Th17/Treg cells with a reciprocal relationship regulated by BMSCs have been reported to be involved in some autoimmune disorders. Here we studied the biological and immunological characteristics of BMSCs, the frequency and phenotype of CCR4+CCR6+ Th/Treg cells and their interaction in vitro in AS.

Methods

The biological and immunomodulation characteristics of BMSCs were examined by induced multiple-differentiation and two-way mixed peripheral blood mononuclear cell (PBMC) reactions or after stimulation with phytohemagglutinin, respectively. The interactions of BMSCs and PBMCs were detected with a direct-contact co-culturing system. CCR4+CCR6+ Th/Treg cells and surface markers of BMSCs were assayed using flow cytometry.

Results

The AS-BMSCs at active stage showed normal proliferation, cell viability, surface markers and multiple differentiation characteristics, but significantly reduced immunomodulation potential (decreased 68 ± 14%); the frequencies of Treg and Fox-P3+ cells in AS-PBMCs decreased, while CCR4+CCR6+ Th cells increased, compared with healthy donors. Moreover, the AS-BMSCs induced imbalance in the ratio of CCR4+CCR6+ Th/Treg cells by reducing Treg/PBMCs and increasing CCR4+CCR6+ Th/PBMCs, and also reduced Fox-P3+ cells when co-cultured with PBMCs. Correlation analysis showed that the immunomodulation potential of BMSCs has significant negative correlations with the ratio of CCR4+CCR6+ Th to Treg cells in peripheral blood.

Conclusions

The immunomodulation potential of BMSCs is reduced and the ratio of CCR4+CCR6+ Th/Treg cells is imbalanced in AS. The BMSCs with reduced immunomodulation potential may play a novel role in AS pathogenesis by inducing CCR4+CCR6+ Th/Treg cell imbalance.  相似文献   

5.
6.

Background

Endochondral ossification, the process through which long bones are formed, involves chondrocyte proliferation and hypertrophic differentiation in the cartilage growth plate. In a previous publication we showed that pharmacological inhibition of the PI3K signaling pathway results in reduced endochondral bone growth, and in particular, shortening of the hypertrophic zone in a tibia organ culture system. In this current study we aimed to investigate targets of the PI3K signaling pathway in hypertrophic chondrocytes.

Methodology/Principal Findings

Through the intersection of two different microarray analyses methods (classical single gene analysis and GSEA) and two different chondrocyte differentiation systems (primary chondrocytes treated with a pharmacological inhibitor of PI3K and microdissected growth plates), we were able to identify a high number of genes grouped in GSEA functional categories regulated by the PI3K signaling pathway. Genes such as Phlda2 and F13a1 were down-regulated upon PI3K inhibition and showed increased expression in the hypertrophic zone compared to the proliferative/resting zone of the growth plate. In contrast, other genes including Nr4a1 and Adamts5 were up-regulated upon PI3K inhibition and showed reduced expression in the hypertrophic zone. Regulation of these genes by PI3K signaling was confirmed by quantitative RT-PCR. We focused on F13a1 as an interesting target because of its known role in chondrocyte hypertrophy and osteoarthritis. Mouse E15.5 tibiae cultured with LY294002 (PI3K inhibitor) for 6 days showed decreased expression of factor XIIIa in the hypertrophic zone compared to control cultures.

Conclusions/Significance

Discovering targets of signaling pathways in hypertrophic chondrocytes could lead to targeted therapy in osteoarthritis and a better understanding of the cartilage environment for tissue engineering.  相似文献   

7.

Background

During pregnancy, women are more susceptible to Plasmodium falciparum infections and frequently have a higher parasitaemia than non-pregnant women. Several mechanisms are responsible for their increased susceptibility, including down-modulation of immune responses that aid in parasite clearance and sequestration of infected erythrocytes in the placenta. Early in pregnancy, a third mechanism may contribute to higher parasitaemia, since it has been reported that addition of human chorionic gonadotropin (hCG) to in vitro cultures of the NF54-strain of P. falciparum results in increased parasite growth rates. The goal of this study was to further examine the effect of hCG on P. falciparum growth.

Methods

The NF54-3D7, FVO and 7G8 strains of P. falciparum were cultured in vitro with various physiological concentrations of hCG purchased from three sources. Infected erythrocytes were also co-cultured with a human cell line that naturally secretes hCG.

Results

Results from 14 experiments using different combinations of parasite strains and concentrations of hCG from different sources, as well as the co-culture studies, failed to provide convincing evidence that hCG enhances parasite growth in vitro.

Conclusion

Based on these data, it seems unlikely that hCG has a direct effect on the rate of parasite growth early in pregnancy.  相似文献   

8.
In our quest to standardize our formula for a clinical trial, transforming growth factor-beta3 (TGF-β3) alone and in combination with bone morphogenetic protein-6 (BMP-6) were evaluated for their effectiveness in cartilage differentiation. Bone Marrow Stem Cells (BMSCs) and Adipose Derived Stem Cells (ADSCs) were induced to chondrogenic lineage using two different media. Native chondrocytes served as positive control. ADSCs and BMSCs proved multipotency by tri-lineage differentiations. ADSC has significantly higher growth kinetics compare to Chondrocyte only p ≤ 0.05. Using TGF-β3 alone, BMSC revealed higher expressions for hyaline cartilage genes compare to ADSCs. Chondrocyte has significantly higher early chondrogenic markers expression to ADSCs and BMSCs, while BMSCs was only higher to ADSC at chondroadherin, p ≤ 0.0001. On mature chondrogenic markers, chondrocytes were significantly higher to ADSCs and BMSCs for aggrecan, collagen IX, sry (sex determining region y)-box9, collagen II and fibromodullin; and only to ADSC for collagen XI. BMSC was higher to ADSC for aggrecan and collagen IX, p ≤ 0.0001. The combination of TGF-β3 + BMP-6 revealed increased gene expressions on both BMSCs and ADSCs for early and mature chondrogenic markers, but no significance difference. For dedifferentiation markers, ADSC was significantly higher to chondrocyte for collagen I. Glycosaminoglycan evaluations with both formulas revealed that chondrocytes were significantly higher to ADSCs and BMSCs, but none was significant to each other, p ≤ 0.0001. Combination of 10 ng TGF-β3 with 10 ng of BMP-6 enhanced chondrogenic potentials of BMSCs and ADSCs compare to TGF-β3 alone. This could be the ideal cocktail for either cell’s chondrogenic induction.  相似文献   

9.

Background

Transplantation with bone marrow-derived mesenchymal stem cells (BMSCs) improves the survival of neurons and axonal outgrowth after stroke remains undetermined. Here, we investigated whether PI3K/AKT signaling pathway is involved in these therapeutic effects of BMSCs.

Methodology/Principal Findings

(1) BMSCs and cortical neurons were derived from Sprague-Dawley rats. The injured neurons were induced by Oxygen–Glucose Deprivation (OGD), and then were respectively co-cultured for 48 hours with BMSCs at different densities (5×103, 5×105/ml) in transwell co-culture system. The average length of axon and expression of GAP-43 were examined to assess the effect of BMSCs on axonal outgrowth after the damage of neurons induced by OGD. (2) The injured neurons were cultured with a conditioned medium (CM) of BMSCs cultured for 24 hours in neurobasal medium. During the process, we further identified whether PI3K/AKT signaling pathway is involved through the adjunction of LY294002 (a specific phosphatidylinositide-3-kinase (PI3K) inhibitor). Two hours later, the expression of pAKT (phosphorylated AKT) and AKT were analyzed by Western blotting. The length of axons, the expression of GAP-43 and the survival of neurons were measured at 48 hours.

Results

Both BMSCs and CM from BMSCs inreased the axonal length and GAP-43 expression in OGD-injured cortical neurons. There was no difference between the effects of BMSCs of 5×105/ml and of 5×103/ml on axonal outgrowth. Expression of pAKT enhanced significantly at 2 hours and the neuron survival increased at 48 hours after the injured neurons cultured with the CM, respectively. These effects of CM were prevented by inhibitor LY294002.

Conclusions/Significance

BMSCs promote axonal outgrowth and the survival of neurons against the damage from OGD in vitro by the paracrine effects through PI3K/AKT signaling pathway.  相似文献   

10.
11.
12.

Introduction

The existence of a graft-versus-lymphoma effect is well established. When lacking a firm diagnosis, however, the clinician is challenged to to weigh the potential benefits of the graft-versus-lymphoma effect against potential dangers of graft-versus-host disease as well as against generalized (viral) infections.

Case presentation

We present evidence for a graft-versus-lymphoma effect in a 64-year-old caucasian woman with a transplanted peripheral blood-stem-cell graft from her Human Leukocyte Antigen-identical sister, and propose diagnostic measures to distinguish between graft-versus-host effect, and against viral disease or drug-induced reactions.

Conclusion

We were able to identify an allogeneic graft-reaction against progressive lymphoma alongside an erythema consistent with acute graft-versus-host disease of the skin. Establishing a firm diagnosis enabled us to decide against T-cell suppression (such as by using cyclosporine). Anti-lymphoma activity was favoured, by means of the allogeneic graft, local radiation and immunotherapy. This illustrates the importance of a sound differential diagnosis of erythema after allogeneic stem-cell transplantation, including assessment of viral disease of the affected tissue.  相似文献   

13.
14.

Objective

To study the effects of recombinant neuritin expressed by Pichia pastoris GS115 on the senescence, apoptosis, proliferation, and migration associated with rat bone marrow-derived mesenchymal stem cells (BMSCs).

Results

Recombinant neuritin was purified by Ni-affinity chromatography and identified by western blot and MALDI-TOF spectrometry. The effects of recombinant neuritin on senescence, apoptosis, proliferation, and migration of rat BMSCs WERE investigated. β-Galactosidase staining indicated that recombinant neuritin administration significantly inhibited BMSCs senescence at 1 μg neuritin/ml. Additionally, recombinant neuritin reduced the number of apoptotic cells at the early stage according to Annexin V/propidium iodide staining and inhibited cell proliferation according to MTT assay results. Moreover wound healing assay results showed that recombinant neuritin promoted BMSCs migration in the neuritin-treatment group.

Conclusion

Recombinant neuritin affects the senescence, apoptosis, proliferation, migration of rat BMSCs. Our findings offer insight into neuritin function outside of the nervous system.
  相似文献   

15.

Background

Alloreactive T-cell responses are known to result in the production of large amounts of proinflammatory cytokines capable of activating and maturing dendritic cells (DC). However, it is unclear whether these allogeneic responses could also act as an adjuvant for concurrent antigen-specific responses.

Objective

To examine effects of simultaneous alloreactive and antigen-specific T-cell responses induced by semi-allogeneic DC.

Methods

Semi-allogeneic DC were generated from the F1 progeny of inbred strains of mice (C57BL/6 and C3H, or C57BL/6 and DBA). We directly primed antigen-specific CD8+ and CD4+ T-cells from OT-I and OT-II mice, respectively, in the absence of allogeneic responses, in vitro, and in the presence or absence of alloreactivity in vivo.

Results

In vitro, semi-allogeneic DC cross-presented ovalbumin (OVA) to naïve CD8+ OT-I transgenic T-cells, primed naïve CD4+ OT-II transgenic T-cells and could stimulate strong alloreactive T-cell proliferation in a primary mixed lymphocyte reaction (MLR). In vivo, semi-allogeneic DC migrated efficiently to regional lymph nodes but did not survive there as long as autologous DC. In addition, they were not able to induce cytotoxic T-lymphocyte (CTL) activity to a target peptide, and only weakly stimulated adoptively transferred OT-II cells. The CD4+ response was unchanged in allo-tolerized mice, indicating that alloreactive T-cell responses could not provide help for concurrently activated antigen-specific responses. In an EL4 tumour-treatment model, vaccination with semi-allogeneic DC/EL4 fusion hybrids, but not allogeneic DC/EL4 hybrids, significantly increased mouse survival.

Conclusion

Expression of self-Major histocompatibility complex (MHC) by semi-allogeneic DC can cause the induction of antigen-specific immunity, however, concurrently activated allogeneic bystander responses do not provide helper or adjuvant effects.  相似文献   

16.
17.

Background

Accumulating evidences have identified the immunoregulatory features of stem cells. In this study, the immunoregulation of bone marrow-derived stem cells (BMSCs) transplanted into patients with HBV-related decompensated cirrhosis and mouse model of liver injury induced by carbon tetrachloride (CCl4) administration was observed.

Results

Compared with healthy controls, patients with HBV-related decompensated cirrhosis showed significantly higher levels of TNF-alpha, IL-12, TGF-beta1, IL-17, and IL-8. However, only IL-17 was markedly decreased after autologous BMSCs transplantation during their follow-up. The same results were found in the CCl4-treated mice. Furthermore, we found that exogenous IL-17 partly abolished the therapeutic effect of BMSCs whereas IL-17-specific antibody promoted improvement of liver injury in CCl4-treated mice, resembling the therapeutic effect of BMSCs transplantation.

Conclusions

These data suggested that BMSCs transplantation induces a decrease of IL-17 level, which at least in part delineates the mechanisms of stem cells-mediated therapeutic benefit on liver disease.
  相似文献   

18.
19.

Background

Sevoflurane has been demonstrated to vasodilate the foeto-placental vasculature. We aimed to determine the contribution of modulation of potassium and calcium channel function to the vasodilatory effect of sevoflurane in isolated human chorionic plate arterial rings.

Methods

Quadruplicate ex vivo human chorionic plate arterial rings were used in all studies. Series 1 and 2 examined the role of the K+ channel in sevoflurane-mediated vasodilation. Separate experiments examined whether tetraethylammonium, which blocks large conductance calcium activated K+ (KCa++) channels (Series 1A+B) or glibenclamide, which blocks the ATP sensitive K+ (KATP) channel (Series 2), modulated sevoflurane-mediated vasodilation. Series 3 – 5 examined the role of the Ca++ channel in sevoflurane induced vasodilation. Separate experiments examined whether verapamil, which blocks the sarcolemmal voltage-operated Ca++ channel (Series 3), SK&F 96365 an inhibitor of sarcolemmal voltage-independent Ca++ channels (Series 4A+B), or ryanodine an inhibitor of the sarcoplasmic reticulum Ca++ channel (Series 5A+B), modulated sevoflurane-mediated vasodilation.

Results

Sevoflurane produced dose dependent vasodilatation of chorionic plate arterial rings in all studies. Prior blockade of the KCa++ and KATP channels augmented the vasodilator effects of sevoflurane. Furthermore, exposure of rings to sevoflurane in advance of TEA occluded the effects of TEA. Taken together, these findings suggest that sevoflurane blocks K+ channels. Blockade of the voltage-operated Ca++channels inhibited the vasodilator effects of sevoflurane. In contrast, blockade of the voltage-independent and sarcoplasmic reticulum Ca++channels did not alter sevoflurane vasodilation.

Conclusion

Sevoflurane appears to block chorionic arterial KCa++ and KATP channels. Sevoflurane also blocks voltage-operated calcium channels, and exerts a net vasodilatory effect in the in vitro foeto-placental circulation.  相似文献   

20.

Background

While gross morphological changes in the skeleton between males and females are well know, differences between sexes in the histomorphology are less known. It is important to have knowledge on the bone structure of rabbits, as this is a widely used species in biomedical research. A study was performed to evaluate the association between sex and the compact bone morphology of the femoral diaphysis in juvenile rabbits.

Methods

Seventeen clinically healthy 2–3 month-old rabbits (9 females, 8 males) were included in the study. The rabbits were euthanized and the right femur was sampled for analysis. 70–80 microns thick bone sections of the femoral diaphysis were prepared using standard histological equipment. The qualitative histological characteristics were determined according to internationally accepted classification systems while the quantitative parameters were assessed using the software Scion Image. Areas, perimeters, minimum and maximum diameters of primary osteons' vascular canals, Haversian canals and secondary osteons were measured. Additionally, blood plasma concentrations of progesterone, corticosterone, IGF-I, testosterone and estradiol were analyzed.

Results

Qualitative histological characteristics were similar for both sexes. However, variations of certain quantitative histological characteristics were identified. Measured parameters of the primary osteons' vascular canals were higher in males than for females. On the other hand, females had significant higher values of secondary osteons parameters. Differences in Haversian canals parameters were only significant for minimum diameter.

Conclusion

The study demonstrated that quantitative histological characteristics of compact bone tissue of the femoral diaphysis in juvenile rabbits were sex dependent. The variations may be associated with different growth and modeling of the femur through influence by sex-specific steroids, mechanical loads, genetic factors and a multitude of other sources. The results can be applied in experimental studies focusing on comparison of the skeletal biology of the sexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号