首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutations in the MCPH1 gene cause primary microcephaly associated with a unique cellular phenotype of misregulated chromosome condensation. The encoded protein contains three BRCT domains, and accumulating data show that MCPH1 is involved in the DNA damage response. However, most of this evidence has been generated by experiments using RNA interference (RNAi) and cells from non-human model organisms. Here, we demonstrate that patient-derived cell lines display a proficient G2/M checkpoint following ionizing irradiation (IR) despite homozygous truncating mutations in MCPH1. Moreover, chromosomal breakage rates and the relocation to DNA repair foci of several proteins functioning putatively in an MCPH1-dependent manner are normal in these cells. However, the MCPH1-deficient cells exhibit a slight delay in re-entering mitosis and delayed resolution of γH2AX foci following IR. Analysis of chromosome condensation behavior following IR suggests that these latter observations may be related to hypercondensation of the chromatin in cells with MCPH1 mutations. Our results indicate that the DNA damage response in human cells with truncating MCPH1 mutations differs significantly from the damage responses in cells of certain model organisms and in cells depleted of MCPH1 by RNAi. These subtle effects of human MCPH1 deficiency on the cellular DNA damage response may explain the absence of cancer predisposition in patients with biallelic MCPH1 mutations.Key words: chromosome condensation, DNA damage, G2/M checkpoint, ionizing radiation, PCC syndrome, primary microcephaly, repair foci  相似文献   

2.
Saccharomyces cells with one unrepaired double-strand break (DSB) adapt after checkpoint-mediated G2/M arrest. Adaptation is accompanied by loss of Rad53p checkpoint kinase activity and Chk1p phosphorylation. Rad53p kinase remains elevated in yku70delta and cdc5-ad cells that fail to adapt. Permanent G2/M arrest in cells with increased single-stranded DNA is suppressed by the rfa1-t11 mutation, but this RPA mutation does not suppress permanent arrest in cdc5-ad cells. Checkpoint kinase activation and inactivation can be followed in G2-arrested cells, but there is no kinase activation in G1-arrested cells. We conclude that activation of the checkpoint kinases in response to a single DNA break is cell cycle regulated and that adaptation is an active process by which these kinases are inactivated.  相似文献   

3.
DNA damage triggers multiple checkpoint pathways to arrest cell cycle progression. Less is known about the mechanisms that allow resumption of the cell cycle once checkpoint signaling is silenced. Here we show that while in undamaged cells several redundant pathways can promote the onset of mitosis, this redundancy is lost in cells recovering from a DNA damage-induced arrest. We demonstrate that Plk1 is crucial for mitotic entry following recovery from DNA damage. However, Plk1 is no longer required in cells depleted of Wee1, and we could show that Plk1 is involved in the degradation of Wee1 at the onset of mitosis. Thus, our data show that the cell cycle machinery is reset in response to DNA damage and that cells become critically dependent on Plk1-mediated degradation of Wee1 for their recovery.  相似文献   

4.
Mutations in the MCPH1 gene cause primary microcephaly associated with a unique cellular phenotype of misregulated chromosome condensation. The encoded protein contains three BRCT domains, and accumulating data show that MCPH1 is involved in the DNA damage response. However, most of this evidence has been generated by experiments using RNA interference (RNAi) and cells from non-human model organisms. Here, we demonstrate that patient-derived cell lines display a proficient G2/M checkpoint following ionizing irradiation (IR) despite homozygous truncating mutations in MCPH1. Moreover, chromosomal breakage rates and the relocation to DNA repair foci of several proteins functioning putatively in an MCPH1-dependent manner are normal in these cells. However, the MCPH1-deficient cells exhibit a slight delay in re-entering mitosis and delayed resolution of γH2AX foci following IR. Analysis of chromosome condensation behavior following IR suggests that these latter observations may be related to hypercondensation of the chromatin in cells with MCPH1 mutations. Our results indicate that the DNA damage response in human cells with truncating MCPH1 mutations differs significantly from the damage responses in cells of certain model organisms and in cells depleted of MCPH1 by RNAi. These subtle effects of human MCPH1 deficiency on the cellular DNA damage response may explain the absence of cancer predisposition in patients with biallelic MCPH1 mutations.  相似文献   

5.
In response to ionizing radiation (IR), cell cycle checkpoints are activated to provide time for DNA repair. Several different checkpoint mechanisms have been elucidated. However, mechanisms that regulate the duration of cell cycle arrest are not understood. Previous studies have shown that the retinoblastoma tumor suppressor protein (RB) is required for radiation-induced G1 arrest. Working with primary fibroblasts derived from Rb+/+ and Rb-/- mouse embryos, we show that RB also regulates the duration of G2 arrest. The initial G2 checkpoint response is enhanced in Rb-/- cells due to a defect in G1 arrest. However, the permanent arrest in G2 induced by higher doses of IR does not occur in Rb-/- cells. Rb-/- cells either resumed proliferation or underwent apoptosis at IR doses that caused the majority of Rb+/+ cells to arrest permanently in G2. The prolongation of G2 arrest in Rb+/+ cells correlated with a gradual accumulation of hypophosphorylated RB. Thus, regulation of the RB function may be an important aspect in the maintenance of cell cycle checkpoints in DNA damage response.  相似文献   

6.
DNA damage induced by radiation or DNA-damaging agents leads to apoptosis and cell cycle arrest. However, DNA damage-triggered signal transduction involved in these cellular responses is not well understood. We previously demonstrated an important role for SHP-2, a ubiquitously expressed SH2 domain-containing tyrosine phosphatase, in the DNA damage-induced apoptotic response. Here we report a potential role for SHP-2 in a DNA damage-activated cell cycle checkpoint. Cell cycle analysis and the mitotic index assay showed that following DNA damage induced by cisplatin or gamma-irradiation, the G2 (but not S) arrest response was diminished in SV40 large T antigen-immortalized embryonic fibroblast cells lacking functional SHP-2. Notably, reintroduction of wild-type SHP-2 into the mutant cells fully restored the DNA damage-induced G2 arrest response, suggesting a direct role of SHP-2 in the G2/M checkpoint. Further biochemical analysis revealed that SHP-2 constitutively associated with 14-3-3beta, and that Cdc25C cytoplasmic translocation induced by DNA damage was essentially blocked in SHP-2 mutant cells. Additionally, we showed that following DNA damage, activation of p38 kinase was significantly elevated, while Erk kinase activation was decreased in mutant cells, and treatment of SHP-2 mutant cells with SB203580, a selective inhibitor for p38 kinase, partially restored the DNA damage-induced G2 arrest response. These results together provide the first evidence that SHP-2 tyrosine phosphatase enhances the DNA damage G2/M checkpoint in SV40 large T antigen immortalized murine embryonic fibroblast cells.  相似文献   

7.
SHP-2, a tyrosine phosphatase implicated in diverse signaling pathways induced by growth factors and cytokines, is also involved in DNA damage-triggered signaling and cellular responses. We previously demonstrated that SHP-2 played an important role in DNA damage-induced apoptosis and G2/M cell cycle checkpoint. In the present studies, we have provided evidence that SHP-2 functions in DNA damage apoptosis and G2/M arrest in catalytically dependent and independent manners, respectively. Mutant embryonic fibroblasts with the Exon 3 deletion mutation in SHP-2 showed decreased apoptosis and diminished G2/M arrest in response to cisplatin treatment. Wild type (WT), but not catalytically inactive mutant SHP-2 (SHP-2 C459S), rescued the apoptotic response of the mutant cells. Interestingly, both WT and SHP-2 C459S efficiently restored the G2/M arrest response. Furthermore, inhibition of the catalytic activity of endogenous SHP-2 in WT cells by overexpression of SHP-2 C459S greatly decreased cell death but not G2/M arrest induced by cisplatin. Biochemical analyses revealed that activation of c-Abl kinase was decreased in SHP-2 C459S-overexpressing cells. However, DNA damage-induced translocation of Cdc25C from the nucleus to the cytoplasm was fully restored in both WT and SHP-2 C459S "rescued" cells. Additionally, we demonstrated that the role of SHP-2 in DNA damage-induced cellular responses was independent of the tumor suppressor p53. Embryonic stem cells with the SHP-2 deletion mutation showed markedly decreased sensitivity to cisplatin-induced apoptosis, attributed to impaired induction of p73 but not p53. In agreement with these results, DNA damage-induced apoptosis and G2/M arrest were also decreased in SHP-2/p53 double mutant embryonic fibroblasts. Collectively, these studies have further defined the mechanisms by which SHP-2 phosphatase regulates DNA damage responses.  相似文献   

8.
Chromosomal replication is sensitive to the presence of DNA-damaging alkylating agents, such as methyl methanesulfonate (MMS). MMS is known to inhibit replication though activation of the DNA damage checkpoint and through checkpoint-independent slowing of replication fork progression. Using Xenopus egg extracts, we now report an additional pathway that is stimulated by MMS-induced damage. We show that, upon incubation in egg extracts, MMS-treated DNA activates a diffusible inhibitor that blocks, in trans, chromosomal replication. The downstream effect of the inhibitor is a failure to recruit proliferating cell nuclear antigen, but not DNA polymerase alpha, to the nascent replication fork. Thus, alkylation damage activates an inhibitor that intercepts the replication pathway at a point between the polymerase alpha and proliferating cell nuclear antigen execution steps. We also show that activation of the inhibitor does not require the DNA damage checkpoint; rather, stimulation of the pathway described here results in checkpoint activation. These data describe a novel replication arrest pathway, and they also provide an example of how subpathways within the DNA damage response network are integrated to promote efficient cell cycle arrest in response to damaged DNA.  相似文献   

9.
In Saccharomyces strains in which homologous recombination is delayed sufficiently to activate the DNA damage checkpoint, Rad53p checkpoint kinase activity appears 1 hr after DSB induction and disappears soon after completion of repair. Cells lacking Srs2p helicase fail to recover even though they apparently complete DNA repair; Rad53p kinase remains activated. srs2Delta cells also fail to adapt when DSB repair is prevented. The recovery defect of srs2Delta is suppressed in mec1Delta strains lacking the checkpoint or when DSB repair occurs before checkpoint activation. Permanent preanaphase arrest of srs2Delta cells is reversed by the addition of caffeine after cells have arrested. Thus, in addition to its roles in recombination, Srs2p appears to be needed to turn off the DNA damage checkpoint.  相似文献   

10.
Fanconi anemia (FA) is a complex, heterogeneous genetic disorder composed of at least 11 complementation groups. The FA proteins have recently been found to functionally interact with the cell cycle regulatory proteins ATM and BRCA1; however, the function of the FA proteins in cell cycle control remains incompletely understood. Here we show that the Fanconi anemia complementation group C protein (Fancc) is necessary for proper function of the DNA damage-induced G2/M checkpoint in vitro and in vivo. Despite apparently normal induction of the G2/M checkpoint after ionizing radiation, murine and human cells lacking functional FANCC did not maintain the G2 checkpoint as compared with wild-type cells. The increased rate of mitotic entry seen in Fancc-/-mouse embryo fibroblasts correlated with decreased inhibitory phosphorylation of cdc2 kinase on tyrosine 15. An increased inability to maintain the DNA damage-induced G2 checkpoint was observed in Fancc -/-; Trp53 -/-cells compared with Fancc -/-cells, indicating that Fancc and p53 cooperated to maintain the G2 checkpoint. In contrast, genetic disruption of both Fancc and Atm did not cooperate in the G2 checkpoint. These data indicate that Fancc and p53 in separate pathways converge to regulate the G2 checkpoint. Finally, fibroblasts lacking FANCD2 were found to have a G2 checkpoint phenotype similar to FANCC-deficient cells, indicating that FANCD2, which is activated by the FA complex, was also required to maintain the G2 checkpoint. Because a proper checkpoint function is critical for the maintenance of genomic stability and is intricately related to the function and integrity of the DNA repair process, these data have implications in understanding both the function of FA proteins and the mechanism of genomic instability in FA.  相似文献   

11.
ATM、ATR和DNA损伤介导的细胞周期阻滞   总被引:9,自引:0,他引:9  
朱虹  缪泽鸿  丁健 《生命科学》2007,19(2):139-148
ATM和ATR属于PIKK家族,是DNA损伤检查点的主要成员。它们被不同类型的DNA损伤所激活,通过磷酸化相应的下游蛋白Chk1和Chk2等,调节细胞周期各个检查点,引起细胞周期阻滞,使DNA损伤得以修复。ATM和ATR在维持基因组的稳定性中起到至关重要的作用。本文着重综述有关ATM和ATR在DNA损伤介导的细胞周期阻滞中发挥的作用以及相互关系的最新研究进展。  相似文献   

12.
13.
The role of filamins in actin cross-linking and membrane stabilization is well established, but recently their ability to interact with a variety of transmembrane receptors and signaling proteins has led to speculation of additional roles in scaffolding and signal transduction. Here we report a direct interaction between filamin-A and Kir2.1, an isoform of inwardly rectifying potassium channel expressed in vascular smooth muscle and an important regulator of vascular tone. Yeast two-hybrid screening of a porcine coronary artery cDNA library using the carboxyl terminus of Kir2.1 as bait yielded cDNA encoding a fragment of filamin-A (residues 2481-2647). Interaction between filamin-A and Kir2.1 was confirmed by in vitro overlay assay of membrane-bound Kir2.1 with glutathione S-transferase fusion protein of the isolated filamin clone. Additionally, antibodies directed against Kir2.1 coimmunoprecipitated filamin-A from arterial smooth muscle cell lysates, and immunocytochemical analysis of individual arterial smooth muscle cells showed that Kir2.1 and filamin co-localize in "hotspots" at the cell membrane. Interaction with filamin-A was found to have no effect on Kir2.1 channel behavior but, rather, increased the number of functional channels resident within the membrane. We conclude that filamin-A is potentially an important regulator of Kir2.1 surface expression and location within vascular smooth muscle.  相似文献   

14.
T Sudo  Y Ota  S Kotani  M Nakao  Y Takami  S Takeda  H Saya 《The EMBO journal》2001,20(22):6499-6508
Anaphase-promoting complex (APC) is activated by two regulatory proteins, Cdc20 and Cdh1. In yeast and Drosophila, Cdh1-dependent APC (Cdh1-APC) activity targets mitotic cyclins from the end of mitosis to the G1 phase. To investigate the function of Cdh1 in vertebrate cells, we generated clones of chicken DT40 cells disrupted in their Cdh1 loci. Cdh1 was dispensable for viability and cell cycle progression. However, similarly to yeast and Drosophila, loss of Cdh1 induced unscheduled accumulation of mitotic cyclins in G1, resulting in abrogation of G1 arrest caused by treatment with rapamycin, an inducer of p27(Kip1). Further more, we found that Cdh1(-/-) cells fail to maintain DNA damage-induced G2 arrest and that Cdh1-APC is activated by X-irradiation-induced DNA damage. Thus, activation of Cdh1-APC plays a crucial role in both cdk inhibitor-dependent G1 arrest and DNA damage-induced G2 arrest.  相似文献   

15.
E Ciejek  J Thorner 《Cell》1979,18(3):623-635
Radioactive alpha factor is degraded to discrete biologically inactive fragments by the target a cells of S. cerevisiae, but not by alpha cells which make the pheromone. The pattern of cleavage products and sequence analysis of one fragment indicated that the first scission occurred between leucine 6 and lysine 7. The protease inhibitors tosyl-L-argininyl-methyl ester (TAME), tosyl-L-lysyl-chloromethylketone (TLCK) and N-acetyl-L-leucyl-L-leucyl-L-argininal (leupeptin) markedly prolonged the period of G1 arrest in a cells exposed to alpha factor, while other standard protease inhibitors had little or no effect. The presence of TAME and leupeptin, or TLCK, reduced the rate of degradation of radioactively labeled alpha factor by a cells. Intact yeast cells have apparent esterase and amidase activities that are blocked by the same spectrum of inhibitors that potentiate alpha factor action. Purified alpha factor is a competitive inhibitor of these hydrolytic activities. The activities are present in yeast mutants which have greatly reduced levels of the three major vacuole-associated proteases (A, B and C) or which carry an ochre mutation in the major neutral protease (B). These observations indicate that the inactivation of alpha factor is due to endoproteolytic cleavage, the destruction of the pheromone is required to overcome its effects on growth and that degradation of the molecule may involve surface bound endopeptidase(s).  相似文献   

16.
Through a detailed study of cell cycle progression, protein expression, and kinase activity in gamma-irradiated synchronized cultures of human skin fibroblasts, distinct mechanisms of initiation and maintenance of G2-phase and subsequent G1-phase arrests have been elucidated. Normal and E6-expressing fibroblasts were used to examine the role of TP53 in these processes. While G2 arrest is correlated with decreased cyclin B1/CDC2 kinase activity, the mechanisms associated with initiation and maintenance of the arrest are quite different. Initiation of the transient arrest is TP53-independent and is due to inhibitory phosphorylation of CDC2 at Tyr15. Maintenance of the G2 arrest is dependent on TP53 and is due to decreased levels of cyclin B1 mRNA and a corresponding decline in cyclin B1 protein level. After transiently arresting in G2 phase, normal cells chronically arrest in the subsequent G1 phase while E6-expressing cells continue to cycle. The initiation of this TP53-dependent G1-phase arrest occurs despite the presence of substantial levels of cyclin D1/CDK4 and cyclin E/CDK2 kinase activities, hyperphosphoryated RB, and active E2F1. CDKN1A (also known as p21(WAF1/CIP1)) levels remain elevated during this period. Furthermore, CDKN1A-dependent inhibition of PCNA activity does not appear to be the mechanism for this early G1 arrest. Thus the inhibition of entry of irradiated cells into S phase does not appear to be related to DNA-bound PCNA complexed to CDKN1A. The mechanism of chronic G1 arrest involves the down-regulation of specific proteins with a resultant loss of cyclin E/CDK2 kinase activity.  相似文献   

17.
Nishioka T  Yamamoto D  Zhu T  Guo J  Kim SH  Chen CY 《PloS one》2011,6(4):e18619
As an addictive substance, nicotine has been suggested to facilitate pro-survival activities (such as anchorage-independent growth or angiogenesis) and the establishment of drug resistance to anticancer therapy. Tobacco smoking consists of a variety of carcinogens [such as benzopyrene (BP) and nitrosamine derivatives] that are able to cause DNA double strand breaks. However, the effect of nicotine on DNA damage-induced checkpoint response induced by genotoxins remains unknown. In this study, we investigated the events occurred during G(1) arrest induced by γ-radiation or BP in nicotine-treated murine or human lung epithelial cells. DNA synthesis was rapidly inhibited after exposure to γ-radiation or BP treatment, accompanied with the activation of DNA damage checkpoint. When these cells were co-treated with nicotine, the growth restriction was compromised, manifested by upregulation of cyclin D and A, and attenuation of Chk2 phosphorylation. Knockdown of cyclin D or Chk2 by the siRNAs blocked nicotine-mediated effect on DNA damage checkpoint activation. However, nicotine treatment appeared to play no role in nocodazole-induced mitotic checkpoint activation. Overall, our study presented a novel observation, in which nicotine is able to override DNA damage checkpoint activated by tobacco-related carcinogen BP or γ-irradiation. The results not only indicates the potentially important role of nicotine in facilitating the establishment of genetic instability to promote lung tumorigenesis, but also warrants a dismal prognosis for cancer patients who are smokers, heavily exposed second-hand smokers or nicotine users.  相似文献   

18.
Checkpoint kinases Chk1 and Chk2 are two key components in the DNA damage-activated checkpoint signaling pathways. To distinguish the roles of Chk1 and Chk2 in S and G2 checkpoints after DNA damage, derivatives of the human breast cancer cell line MDA-MB-231 were established that express short hairpin RNAs to selectively suppress Chk1 or Chk2 expression. DNA damage was induced with the topoisomerase I inhibitor SN38 which arrests cells in S or G2 phase depending on concentration. Depletion of Chk1 resulted in loss of S phase arrest upon incubation with SN38, but the cells still arrested in G2. Suppression of Chk2 had no impact on cell cycle arrest, while cells concurrently suppressed for both Chk1 and Chk2 still arrested primarily in G2 suggesting the presence of an alternate checkpoint regulator. One critical target for Chk1 is Cdc25A which is phosphorylated and degraded to prevent cell cycle progression. Cells arrested in G2 in the absence of Chk1/Chk2 still showed regulation of Cdc25A consistent with the action of an alternate kinase. One candidate for an alternate checkpoint kinase is MAPKAPK2 (MK2), yet this kinase was minimally activated by DNA damage and its inhibition did not facilitate either S or G2 progression. Furthermore, we were unable to substantiate the recent observation that the Chk1 inhibitor UCN-01 inhibits MK2. These results show that Chk1, but neither Chk2 nor MK2, is an important regulator of S phase arrest, and suggest that an additional kinase can contribute to the G2 arrest.  相似文献   

19.
20.
The Rb protein is known to exert its activity at decision points in the G1 phase of the cell cycle. To investigate whether it may also play some role(s) at later points in the cell cycle, we used a system of rapid inducible gene amplification to conditionally overexpress Rb protein during G2 phase. A cell line expressing a temperature-sensitive simian virus 40 large T antigen (T-Ag) was stably transfected with plasmids containing the Rb cDNA linked to the simian virus 40 origin of replication: pRB-wt, pRB-fs, and pRB-Dra, carrying wild-type murine Rb cDNA, a frameshift mutation close to the beginning of the Rb coding region, and a single-amino-acid deletion in the E1A/T-Ag binding pocket, respectively. Numerous independent cell lines were isolated at the nonpermissive temperature; cell lines displaying a high level of episomal amplification of an intact Rb expression cassette following shiftdown to the permissive temperature were chosen for further analysis. Plasmid pRB-fs did not express detectable Rb antigen, while pRB-Dra expressed full-length Rb protein. The Dra mutation has previously been shown to abrogate phosphorylation as well as T-Ag binding. Fluorescence-activated cell sorting (FACS) analysis revealed that cultures induced to overexpress either wild-type or Dra mutant Rb proteins were significantly enriched for cells with a G2 DNA content. Cultures that amplified pRB-fs or rearranged pRB-wt and did not express Rb protein had normal cell cycle profiles. Double-label FACS analysis showed that cells overexpressing Rb or Rb-Dra proteins were uniformly accumulating in G2, whereas cells expressing endogenous levels of Rb were found throughout the cell cycle. These results indicate that Rb protein is interacting with some component(s) of the cell cycle-regulatory machinery during G2 phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号