首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A green protein from the soluble extract of anaerobically grown Bacillus halodenitrificans cells was purified and determined by non-denaturing procedures or SDS-PAGE to have a molecular mass of 64 kDa. The pyridine hemochromogen was shown to be that of a b-type cytochrome prosthetic group that was soluble in ether. The protein contained 6.2mol protoheme per mol protein-1. Photoreduction of the native protein yielded a product with an electronic absorption spectrum retaining the 559 nm maximum and the 424-nm Soret band displayed in the dithionite-reduced sample. Incubation of a reduced sample in the presence of air failed to return it to the original oxidation state. Electronic spin was not affected by pH. The reduced but not the oxidized form of the cytochrome bound cyanide, carbon monoxide, and nitric oxide, providing spectra resembling those of cytochromes c from several sources. Addition of nitroprusside to the reduced protein yielded a spectrum similar to that of the NO reacted protein. Nitric oxide failed to reduce the green protein. The position of the Soret band in the spectrum of the nitric oxide derivative of the green protein suggested a fifth-coordinate nitrosylheme structure. EPR studies provided g values with the triplet spectral pattern consistent with a five-coordinate ferrous nitrosyl heme. Flushing of the NO-derivative with argon and overnight exposure to air returned the nitrosylheme to the ferric form, and EPR values confirmed the reversion. All these spectral characterizations are strikingly similar to those of soluble guanylate cyclase, including the observation that NO was reversibly bound to the protein. EPR spectra of whole cells also displayed the hyperfine lines typical of a nitrosyl-ferrous heme, accentuated when dithionite was added. In the absence of a definitive physiological role because of its unusual properties, the green protein was named a nitric oxide-binding protein.Abbreviations PMS Phenazine methosulfate - PMSF Phenylmethyl sulfonyl fluoride - SOD Super oxide dismutase - EPR Electron paramagnetic resonance - GP Green protein Department of Biological Sciences, Oakland Univeristy, Rochester, MI 48309-4401  相似文献   

2.
When grown with nitrate as terminal electron acceptor both the soluble (periplasm, cytoplasm) and the membrane fraction of Spirillum strain 5175 exhibited high nitrite reductase activity. The nitrite reductase obtained from the soluble fraction was purified 76-fold to electrophoretical homogeneity. The enzyme reduced nitrite to ammonia with a specific activity of 723 mol NO inf2 sup- × (mg protein × min)-1. The molecular mass was 58±1 kDa by SDS-PAGE compared to 59±2 kDa determined by size exclusion chromatography under nondenaturing conditions. The enzyme (as isolated) contained 5.97±0.15 heme c molecules/Mr 58 kDa. The absorption spectrum was typical for c-type cytochrome with maxima at 280, 408, 532 and 610 nm (oxidized) and at 420, 523 and 553 nm (dithionite-reduced). The enzyme (as isolated) exhibited a complex set of high-spin and lowspin ferric heme resonances with g-values at 9.82, 3,85, 3.31, 2.95, 2.30 and 1.49 in agreement with data reported for electron paramagnetic resonance spectra of nitrite reductases from Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli.Abbreviations DNRA dissimilatory nitrate reduction to ammonia - EPR electron paramagnetic resonance - PAGE polyacrylamide gel electrophoresis - NaPi sodium phosphate - SDS sodium dodecylsulfate  相似文献   

3.
Choline oxidase from the cell-free extract of Cylindrocarpon didymum M-1 showed a molecular weight of 120,000 by the gel filtration method and 145,000 by the sedimentation velocity method. The enzyme exhibited an absorption spectrum characteristic of a flavoprotein with absorption maxima at 276, 370 and 454 nm and a shoulder at 470 nm. Anaerobic addition of choline as well as sodium dithionite to the enzyme produced a disappearance of the peak at 454 nm.

Choline oxidase consists of two identical subunits, which have a molecular weight of 64,000, and contains two mol of FAD per mol of enzyme. The flavin was shown to be covalently bound to the protein.

The enzyme was inactivated by Ag+, Hg2+, Cu2+ and Zn2+. The enzyme oxidized choline, betaine aldehyde and N, N-dimethylaminoethanol and apparent Km values were 1.3 mm, 5.8 mm and 14 mm, respectively.  相似文献   

4.
ABacillus subtilis amylase gene was inserted into a plasmid which transferred toEscherichia coli. During cloning, a 3 region encoding 171 carboxyterminal amino acids was replaced by a nucleotide sequence that encoded 33 amino acid residues not present in the indigenous protein. The transformed cells produced substantial amylolytic activity. The active protein was purified to apparent homogeneity. Its molecular mass (48 kDa), as estimated in sodium dodecyl sulfate/polyacrylamide gel electrophoresis, was lower than the molecular mass values calculated from the derived amino acid sequences of theB. subtilis complete -amylase (57.7 kDa) and the truncated protein (54.1 kDa). This truncated enzyme form hydrolysed starch with aK m of 3.845 mg/ml. Activity was optimal at pH 6.5 and 50°C, and the purified enzyme was stable at temperatures up to 50°C. While Hg2+, Fe3+ and Al3+ were effective in inhibiting the truncated enzyme Mn2+ and Co2+ considerably enhanced the activity.  相似文献   

5.
A superoxide dismutase has been purified to apparent homogeneity from the muscular tissue of the ark shell, Scapharca broughtonii, by ammonium sulfate fractionation, and consecutive column chromatographies using DEAE-Sephadex and Sephadex G-100. This enzyme has a molecular weight of 71,700 and is composed of two identical subunits of M r 35,800, which are joined by noncovalent interactions. The purified enzyme was stable over the range of pH 5.0-10.0 at 4°C for 24 h and at temperatures below 45°C. Cyanide at 0.1 and 1 mM inhibited the activity of the superoxide dismutase 56 and 100%, but 5 mM azide caused 8% inhibition. The optical spectrum of this enzyme had a maximum at 265 nm, and the amino acid composition of the enzyme was similar to that of the other Cu, Zn superoxide dismutases except for the contents of threonine, serine, proline, and leucine. Atomic absorption spectroscopy showed that this enzyme has approximately 2 atoms of Cu2+ and Zn2+ per mole of enzyme. These results indicate that the purified enzyme from ark shell, Scapharca broughtonii, is a Cu, Zn superoxide dismutase.  相似文献   

6.
Cytochromebc was partially purified from the methanogen,Methanosarcina barkeri. The cytochrome was composed of three subunits with molecular masses of 23.4, 20.9, and 9.1 kDa, respectively, and the 23.4 kDa subunit contained haemc. The absorption spectrum of cytochromebc showed a peak at 411 nm in the oxidized form, and peaks at 554, 524, and 422 nm in the reduced form. The cytochrome reacted with CO, and its low temperature absorption spectrum showed the peak at 552 nm with a shoulder at 557 nm.  相似文献   

7.
The gene encoding α-methylserine aldolase was isolated from Bosea sp. AJ110407. Sequence analysis revealed that the predicted amino acid sequence encoded by the 1320-bp open reading frame was 65.0% similar to the corresponding sequence of the enzyme isolated from Ralstonia sp. AJ110405. The gene was expressed in Escherichia coli, and the recombinant enzyme was purified. Gel filtration revealed the molecular mass of the purified enzyme to be approximately 78 kDa, suggesting that the enzyme is a homodimer. The enzyme exhibited a specific peak at 429 nm in the spectrum and contained 1 mol pyridoxal 5′-phosphate per mole of the subunit. The Vmax value was 1.40 μmol min−1 mg−1, and the Km value was 1.5 mM for the reaction wherein formaldehyde was released from α-methyl-l-serine. This enzyme could also catalyze the reverse reaction, i.e., the synthesis of α-methyl-l-serine from l-alanine and formaldehyde. This activity was inhibited in the excess of formaldehyde; however, α-methyl-l-serine was efficiently produced from l-alanine in the presence of formaldehyde. This method was also applicable for producing α-ethyl-l-serine from l-2-aminobutyric acid.  相似文献   

8.
A new, thermostable superoxide dismutase (SOD) from Bacillus licheniformis M20, isolated from Bulgarian mineral springs, was purified 11-fold with 11% recovery of activity. From native PAGE and SDS-PAGE, the enzyme was composed of two subunits of 21.5 kDa each. The SOD was inhibited only by NaN3, which suggested that this SOD is of the manganese superoxide dismutase type. The purified enzyme had maximum activity at pH 8 and 55°C. The half-life of the SOD was 10 min at 95°C.  相似文献   

9.
A manganese-containing superoxide dismutase (EC 1.15.1.1) was fully characterized from leaves of the higher plant Pisum sativum L., var. Lincoln. The amino acid composition determined for the enzyme was compared with that of a wide spectrum of superoxide dismutases and found to have a highest degree of homology with the mitochondrial manganese superoxide dismutases from rat liver and yeast. The enzyme showed an apparent pH optimum of 8.6 and at 25°C had a maximum stability at alkaline pH values. By kinetic competition experiments, the rate constant for the disproportionation of superoxide radicals by pea leaf manganese superoxide dismutase was found to be 1.61 × 109 molar−1·second−1 at pH 7.8 and 25°C. The enzyme was not sensitive to NaCN or to H2O2, but was inhibited by N3. The sulfhydryl reagent p-hydroxymercuribenzoate at 1 mm concentration produced a nearly complete inhibition of the manganese superoxide dismutase activity. The metal chelators o-phenanthroline, EDTA, and diethyldithiocarbamate all inhibited activity slightly in decreasing order of intensity. A comparative study between this higher plant manganese superoxide dismutase and other dismutases from different origins is presented.  相似文献   

10.
Spinach (Spinacia oleracea L.) plants were acclimated to 1° C or maintained at 18° C under the same light regime (260–300 mol photons·m–2·s–1). The cold acclimation led to several metabolic and biochemical changes that apparently include improved protection of the photosynthetic apparatus against active oxygen species. In particular, cold-acclimated leaves exhibited a considerably higher ascorbate content and significantly increased activities of superoxide dismutase, ascorbate peroxidase, and monodehydroascorbate reductase in the chloroplasts. The level of dehydroascorbate reductase did not alter. Catalase activity decreased. The photosynthetic pigment composition of cold-acclimated spinach was characterized by increased levels of the xanthophylls lutein + zeaxanthin and violaxanthin. The observed changes are discussed in terms of their possible relevance for plant resistance to photoinhibition at chilling temperatures.Abbreviations DHA dehydroascorbate - GSH reduced glutathione - MDA monodehydroascorbate - SOD superoxide dismutase The authors thank the Deutsche Forschungsgemeinschaft for financial support of this study.  相似文献   

11.
Bacillus subtilis, likeEscherichia coli, possesses several sets of genes involved in the utilization of-glucosides. InE. coli, all these genes are cryptic, including the genes forming thebgl operon, thus leading to a Bgl phenotype. We screened forB. subtilis chromosomal DNA fragments capable of reverting the Bgl+ phenotype associated with anE. coli hns mutant to the Bgl wild-type phenotype. OneB. subtilis chromosomal fragment having this property was selected. It contained a putative Ribonucleic AntiTerminator binding site (RAT sequence) upstream from thebglP gene. Deletion studies as well as subcloning experiments allowed us to prove that the putativeB. subtilis bglP RAT sequence was responsible for the repression of theE. coli bgl operon. We propose that this repression results from the titration of the BglG antiterminator protein ofE. coli bgl operon by our putativeB. subtilis bglP RAT sequence. Thus, we report evidence for a new cross interaction between heterologous RAT-antiterminator protein pairs.  相似文献   

12.
Effect of quality, quantity and minimum duration of light on the process of recovery was investigated in the photoinhibited cells of the green alga Chlamydomonas reinhardtii. Complete and rapid reactivation of photosynthesis took place in diffuse white light of 25 mol m–2 s–1. The recovery was partial (< 10%) in the dark. Far red (725 nm), red (660 nm) and blue light (480 nm) in the range of 10 to 75 mol m–2 s–1 did not enhance the process of reactivation. Photoinhibited cells incubated in dark for 15 min when exposed for 5 min to diffuse light (25 mol m–2 s–1) showed complete reactivation. Even exposure of 15 min dark incubated photoinhibited cells to photoinhibitory light (2500 mol m–2 s–1) for 5 s fully regained the photosynthesis. The study indicated a very precise and triggering effect of light in the process of reactivation. The dark respiratory inhibitor KCN and uncouplers FCCP and CCCP increased the susceptibility of C. reinhardtii to photoinhibition and also prevented photoinhibited cells to reactivate fully even after longer period of incubation under suitable reactivating conditions. Of the various possibilities envisaged to assign the role of dark respiration in recovery process, supply of ATP by mitochondrial respiration appeared sound and pertinent.Abbreviations CCCP- carbonyl cyanide m-chlorophenylhydrazone - D1- 32 kDa protein of PS II reaction center - FCCP- carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone - KCN- potassium cyanide - PBQ- phenyl-p-benzoquinone - PFD- photon flux density - SHAM- salicylhydroxamic acid NBRI Research Publication No. 431.  相似文献   

13.
Anl-amino-acid oxidase (EC 1.4.3.1) that catalyzes the oxidative deamination of twelvel-amino acids has been purified 21-fold and with 14% yield to electrophoretic homogeneity fromChlamydomonas reinhardtii cells by ammonium-sulfate fractionation, gel filtration through Sephacryl and Superose, anion-exchange chromatography and preparative electrophoresis in polyacrylamide gels. The native enzyme is a protein of 470 kDa and consists of eight identical or similarsized subunits of 60 kDa each. Optimum pH and temperature were 8.2 and 55° C, respectively, with a Q10 (45–55° C) of 1.7 and an activation energy of 45 kJ · mol–1. Its absorption spectrum showed, in the visible region, maxima at 360 and 444 nm, characteristic of a flavoprotein with a calculated flavin content of 7.7 mol FAD per mol of native enzyme. ApparentK m values of the twelvel-amino acids which can act as substrates ofl-amino-acid oxidase ranged between 31 M for phenylalanine and 176 M for methionine. The effect of several specific group reagents, chelating agents and bivalent cations on enzyme activity has also been studied.This work was supported by Grant 780-CO2-01 from CICYT, Spain. The skillful secretarial assistance of C. Santos and I. Molina is gratefully acknowledged.  相似文献   

14.
Primycin, an antibiotic active against Gram-positive microorganisms increased the permeability ofBacillus subtilis cell membranes when used in bacteriostatic concentrations. On addition of the antibiotic to the washed cell suspension, a dose-dependent increase in the conductivity was observed. Furthermore, an enhanced leakage of the nucleotides (measured by the32P-ATP release from the32P-labelled culture) could be detected.To get more information about the mechanism of the primycin-membrane interaction, the effect of the antibiotic on the ATPase activity of membrane vesicles prepared from bothBacillus subtilis andEscherichia coli B was studied. Activation was found at about 0.5 nmol antibiotic/g protein and its extent was approximately the same as with sonicated membranes used as controls. Stimulation of ATPase activity was also achieved with vesicles prewashed with 3 mM Tris-HCl buffer.Purified membrane ATPase fromBacillus subtilis could not be activated by primycin at all; above 0.3 nmol/g protein concentration the enzyme was inhibited. When acting on membrane vesicles isolated fromEscherichia coli B, inhibition without previous activation was observed, although sonication caused a substantial activation on the ATPase of these membranes.These observations confirmed our suggestion that the primary target of primycin action is the cell membrane in Gram-positive microorganisms.Abbreviations OD Optical density  相似文献   

15.
We studied the changes in superoxide dismutase activity in organs of Galleria mellonella larvae infected with two strains of Bacillus thuringiensis. A considerable increase in superoxide dismutase activity was observed at the initial stages of infection, later the enzyme activity decreased and this decrease was timed to cessation of feeding and development of sepsis in the infected larvae. Changes in the enzyme activity in the organs of larvae infected with a highly virulent strain of B. thuringiensis correlated with the stages of infection. Involvement of superoxide dismutase in prevention of oxidative stress in the infected larvae is discussed.Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 1, 2005, pp. 63–68.Original Russian Text Copyright © 2005 by Khvoshchevskaya, Dubovskii, Glupov.  相似文献   

16.
A method of isolation and purification of lipase (EC 3.1.1.3) from the germ of wheat (Triticum aestivumL.) is described. An electrophoretically homogeneous preparation of the enzyme (specific activity, 622.5 × 10–3 mol/min per mg protein) was obtained after 61-fold purification. The molecular weight of the enzyme, determined by gel chromatography, was 143 ± 2 kDa. The optimal conditions for the enzyme were 37°C and pH 8.0. The homogeneous preparation of the lipase exhibited high thermal stability: over 20% of the original activity was retained after incubation of the preparation at high temperatures (60–90°C) for 1 h at pH 8.0.  相似文献   

17.
An inducible sulfite reductase was purified from Clostridium pasteurianum. The pH optimum of the enzyme is 7.5 in phosphate buffer. The molecular weight of the reductase was determined to be 83,600 from sodium dodecyl sulfate gel electrophoresis with a proposed molecular structure: 22. Its absorption spectrum showed a maximum at 275 nm, a broad shoulder at 370 nm and a very small absorption maximum at 585 nm. No siroheme chromophore was isolated from this reductase. The enzyme could reduced the following substrates in preferential order: NH2OH> SeO 3 2- >NO 2 2- at rates 50% or less of its preferred substrate SO 3 2- . The proposed dissimilatory intermediates, S3O 6 2- or S2O 3 2- , were not utilized by this reductase while KCN inhibited its activity. Varying the substrate concentration [SO 3 2- ] from 1 to 2.5 mol affected the stoichiometry of the enzyme reaction by alteration of the ratio of H2 uptake to S2- formed from 2.5:1 to 3.1:1. The inducible sulfite reductase was found to be linked to ferredoxin which could be completely replaced by methyl viologen or partially by benzyl viologen. Some of the above-mentioned enzyme properties and physiological considerations indicated that it was a dissimilatory type sulfite reductase.Abbreviations SDS sodium dodecyl sulfate - BSA bovine serum albumin - LDH Lactate dehydrogenase  相似文献   

18.
Escherichia coli Hmp is a homologue of Ralstonia eutropha FHP, the first reported bacterial flavohaemoglobin, and functions in NO detoxification. Photolysis of CO-ligated Hmp in the presence of oxygen gave a photodissociable oxy species with kon 2.82×107 M–1 s–1 and koff 4.49×103 s–1. The dissociation constant of the primary O2 compound was 160 M (25°C, pH 7.0). In order to detect superoxide formation, ferric horseradish peroxidase was used. Hmp formed the oxy compound within milliseconds, followed by formation of compound III, arising from superoxide formation. The rate of superoxide formation was independent of oxygen concentration between 0.05 and 0.7 mM oxygen, suggesting a Km <0.05 mM. During prolonged oxidation of NADH, the spectral signals of Hmp decayed and iron was released in a process prevented by superoxide dismutase or catalase. NADH oxidation by purified Hmp was characterised by progressive slowing of oxygen uptake. Inclusion of NO, superoxide dismutase or catalase during NADH oxidation partially protected oxygen uptake, consistent with the formation, in the absence of NO, of reactive oxygen species that inhibit Hmp function. The results are discussed in relation to the tight control exerted on Hmp synthesis in vivo.This paper is dedicated to Professor Dr Hans G. Schlegel, on the occasion of his 80th birthday.  相似文献   

19.
Bacillus stearothermophilus L1 was isolated by enrichment culture using an alkaline extract of pulp as the carbon source at 65°C and pH 9.0. The bacterium produced extracellular xylanase and -l-arabinofuranosidase (EC 3.2.1.55). The xylanase activity was high when the cells were grown in the presence of d-xylose, whereas the arabinofuranosidase activity was high when grown in media containing l-arabinose. The arabinofuranosidase was purified 59-fold with an 80% yield by DEAE Sephacel and Sephadex G-100 chromatography. The purified enzyme had an apparent molecular mass of 110 000 kDa and consisted of two subunits of 52 500 kDa and 57 500 kDa. Using p-nitrophenyl--l-arabinofuranosidase as the substrate, the enzyme had a Michaelis constant (K m) of 2.2 × 10–4 m, maximum reaction velocity (Vmax) of 11o mol min–1 mg–1, temperature optimum of 70°C and pH optimum of 7.0 (50% activity at pH 8.0). The enzyme was specific for the furanoside configuration. The purified enzyme partially delignified softwood Kraft pulp. Treatment of the pulp with 38 units ml–1 of -l-arabinofuranosidase at 65°C for 2 h at pH 8.0 and 9.0 led to lignin releases of 2.3% and 2.1%, respectively. The enzyme acted synergistically with a thermophilic xylanase in the delignification process, yielding a 19.2% release of lignin. Correspondence to: Eugene Rosenberg  相似文献   

20.
We have characterized the general properties of the heat shock response of the Gram-positive hardy bacteriumEnterococcus faecalis. The heat resistance (60°C or 62.5°C, 30 min) of log phase cells ofE. faecalis grown at 37°C was enhanced by exposing cells to a prior heat shock at 45°C or 50°C for 30 min. These conditioning temperatures also induced ethanol (22%, v/v) tolerance. The onset of thermotolerance was accompanied by the synthesis of a number of heat shock proteins. The most prominent bands had molecular weights in the range of 48 to 94kDa. By Western blot analysis two of them were found to be immunologically related to the well known DnaK (72 kDa) and GroEL (63 kDa) heat shock proteins ofEscherichia coli. Four other proteins showing little or no variations after exposure to heat are related to DnaJ, GrpE and Lon (La)E. coli proteins and to theBacillus subtilis 43 factor. Ethanol (2% or 4%, v/v) treatments elicited a similar response although there was a weaker induction of heat shock proteins than with heat shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号