首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A C-to-U RNA editing event creates a functional initiation codon for translation of the psbL mRNA in tobacco plastids. Small trans-acting guide RNAs (gRNAs) have been shown to be involved in editing site selection in kinetoplastid mitochondria. A computer search of the tobacco plastid genome (ptDNA) identified such a putative gRNA, a 14-nucleotide sequence motif that is complementary to the psbL mRNA, including the A nucleotide required to direct the C-to-U change. The critical A nucleotide of the putative gRNA gene was changed to G by plastid transformation. We report here that the introduced mutation did not abolish psbL editing. Since no other region of the plastid genome contains significant complementarity to the psbL editing site we suggest that, if gRNAs serve as trans-acting factors for plastid psbL mRNA editing, they either have only a limited complementarity to the editing site, or are encoded in the nuclear genome.  相似文献   

2.
Transformation of potato plastids is limited by low transformation frequencies and low transgene expression in tubers. In order to improve the transformation efficiency, we modified the regeneration procedure and prepared novel vectors containing potato flanking sequences for transgene integration by homologous recombination in the Large Single Copy region of the plastome. Vector delivery was performed by the biolistic approach. By using the improved regeneration procedure and the potato flanking sequences, we regenerated about one shoot every bombardment. This efficiency corresponds to 15–18-fold improvement compared to previous results with potato and is comparable to that usually achieved with tobacco. Further, we tested five promoters and terminators, and four 5′-UTRs, to increase the expression of the gfp transgene in tubers. In leaves, accumulation of GFP to about 4% of total soluble protein (TSP) was obtained with the strong promoter of the rrn operon, a synthetic rbcL-derived 5′-UTR and the bacterial rrnB terminator. GFP protein was detected in tubers of plants transformed with only four constructs out of eleven. Best results (up to approximately 0.02% TSP) were achieved with the rrn promoter and rbcL 5′-UTR construct, described above, and another containing the same terminator, but with the promoter and 5′-UTR from the plastid clpP gene. The results obtained suggest the potential use of clpP as source of novel regulatory sequences in constructs aiming to express transgenes in amyloplasts and other non-green plastids. Furthermore, they represent a significant advancement of the plastid transformation technology in potato, of relevance to its implementation in potato breeding and biotechnology.  相似文献   

3.
4.
Homologous recombination within plastids directs plastid genome transformation for foreign gene expression and study of plastid gene function. Though transgenes are generally efficiently targeted to their desired insertion site, unintended homologous recombination events have been observed during plastid transformation. To understand the nature and abundance of these recombination events, we analyzed transplastomic tobacco lines derived from three different plastid transformation vectors utilizing two different loci for foreign gene insertion. Two unintended recombinant plastid DNA species were formed from each regulatory plastid DNA element included in the transformation vector. Some of these recombinant DNA species accumulated to as much as 10–60% of the amount of the desired integrated transgenic sequence in T0 plants. Some of the recombinant DNA species undergo further, “secondary” recombination events, resulting in an even greater number of recombinant plastid DNA species. The abundance of novel recombinant DNA species was higher in T0 plants than in T1 progeny, indicating that the ancillary recombination events described here may have the greatest impact during selection and regeneration of transformants. A line of transplastomic tobacco was identified containing an antibiotic resistance gene unlinked from the intended transgene insertion as a result of an unintended recombination event, indicating that the homologous recombination events described here may hinder efficient recovery of plastid transformants containing the desired transgene. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
Generation of fertile transplastomic soybean   总被引:26,自引:0,他引:26  
We describe here the development of a plastid transformation method for soybean, a leguminous plant of major agronomic interest. Chloroplasts from embryogenic tissue of Glycine max have been successfully transformed by bombardment. The transforming DNA carries a spectinomycin resistance gene (aadA) under the control of tobacco plastid regulatory expression elements, flanked by two adjacent soybean plastome sequences allowing its targeted insertion between the trnV gene and the rps12/7 operon. All generated spectinomycin resistant plants were transplastomic and no remaining wild type plastome copies were detected. No spontaneous mutants were obtained. The transformation efficiency is similar to that of tobacco plastids. All transplastomic T0 plants were fertile and T1 progeny was uniformly spectinomycin resistant, showing the stability of the plastid transgene. This is the first report on the generation of fertile transplastomic soybean.  相似文献   

6.
Although most plastid transformation studies have focused on chloroplast expression, plastid transformation can also be used to express genes in plastids of a wide variety of plant tissues by using appropriate plastid promoters. Based on the sequence of the Gossypium hirsutum chloroplast genome, we developed primers and amplified segments of 20 different plastid genes. The PCR products were labeled and used in filter dot blot hybridization studies to characterize their expression levels and patterns in total RNA isolated from light- and dark-grown cotton tissues at different developmental stages. A subset of 6 genes among these was further characterized by real time PCR. Highest expression levels were observed for rrn16 and psbA. Four genes were expressed in all samples at relatively constant levels: accD, atpA, matK and rrn16. Expression in root tissue was generally low. The results of our study can be used to predict which operons and promoters are most likely to be preferentially expressed in the plastids of tissues of interest at levels that would result in the desired phenotype, facilitating the development of plastid transformation vectors.  相似文献   

7.
Shaw DJ  Gray JC 《Planta》2011,233(5):961-970
Stromules are stroma-filled tubules that extend from the plastids in all multicellular plants examined to date. To facilitate the visualisation of stromules on different plastid types in various tissues of bread wheat (Triticum aestivum L.), a chimeric gene construct encoding enhanced yellow fluorescent protein (EYFP) targeted to plastids with the transit peptide of wheat granule-bound starch synthase I was introduced by Agrobacterium-mediated transformation. The gene construct was under the control of the rice Actin1 promoter, and EYFP fluorescence was detected in plastids in all cell types throughout the transgenic plants. Stromules were observed on all plastid types, although the stromule length and abundance varied markedly in different tissues. The longest stromules (up to 40 μm) were observed in epidermal cells of leaves, whereas only short beak-like stromules were observed on chloroplasts in mesophyll cells. Epidermal cells in leaves and roots contained the highest proportion of plastids with stromules, and stromules were also abundant on amyloplasts in the endosperm tissue of developing seeds. The general features of stromule morphology and distribution were similar to those shown previously for tobacco (Nicotiana tabacum L.) and arabidopsis (Arabidopsis thaliana (L.) Heynh.).  相似文献   

8.
Plants have been recognized as a promising production platform for recombinant pharmaceutical proteins. The human immunodeficiency virus Gag (Pr55gag) structural polyprotein precursor is a prime candidate for developing a HIV-1 vaccine, but, so far, has been expressed at very low level in plants. The aim of this study was to investigate factors potentially involved in Pr55gag expression and increase protein yield in plant cells. In transient expression experiments in various subcellular compartments, the native Pr55gag sequence could be expressed only in the chloroplast. Experiments with truncated subunits suggested a negative role of the 5′-end on the expression of the full gene in the cytosol. Stable transgenic plants were produced in tobacco by Agrobacterium-mediated nuclear transformation with protein targeted to plastids, and biolistic-mediated plastid transformation. Compared to the nuclear genome, the integration and expression of the gag transgene in the plastome resulted in significantly higher protein accumulation levels (up to 7–8% TSP, equivalent to 312–363 mg/kg FW). In transplastomic plants, a 25-fold higher protein accumulation was obtained by translationally fusing the Pr55gag polyprotein to the N-terminus of the plastid photosynthetic RbcL protein. In chloroplasts, the Pr55gag polyprotein was processed in a pattern similar to that achieved by the viral protease, the processing being more extended in older leaves of mature plants. The Gag proteins produced in transgenic plastids were able to assemble into particles resembling VLPs produced in baculovirus/insect cells and E. coli systems. These results indicate that plastid transformation is a promising tool for HIV antigen manufacturing in plant cells. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. IGV publication no. 330  相似文献   

9.
Although leaf chloroplast transformation technology was developed more than a decade ago, no reports exist of stable transformation of undeveloped plastids or other specialized plastid types, such as proplastids, etioplasts, or amyloplasts. In this work we report development of a dark-grown tobacco suspension cell model system to investigate the transformation potential of undeveloped plastids. Electron microscope analysis confirmed that the suspension cells carry plastids that are significantly smaller (approximately 50-fold less in volume) and have a very different subcellular localization and developmental state than leaf cell chloroplasts. Using antibiotic selection in the light, we demonstrated that both plastid and nuclear transformation of these cell suspensions is efficient and reproducible, with plastid transformation frequency at least equal to that of leaf chloroplast transformation. Homoplasmic plastid transformants are readily obtained in cell colonies, or in regenerated plants, providing a more consistent and versatile model than the leaf transformation system. Because of the uniformity of the cell suspension model, we could further show that growth rate, selection scheme, particle size, and DNA amount influence the frequency of transformation. Our results indicate that the rate-limiting steps for nuclear and plastid transformation are different, and each must be optimized separately. The suspension cell system will be useful as a model for understanding transformation in those plant species that utilize dark-grown embryogenic cultures and for characterizing the steps that lead to homoplasmic plastid transformation.  相似文献   

10.
ULTRASTRUCTURE OF PLASTID INHERITANCE: GREEN ALGAE TO ANGIOSPERMS   总被引:2,自引:0,他引:2  
1. Plastid inheritance in most green algae and land plants is uniparental. In oogamous species, plastids are usually derived from the maternal parent; even when inheritance is biparental, maternal plastids usually predominate. Only a few species of conifer are known to have essentially paternal plastid inheritance. In spite of the overall strong maternal bias, there exists a spectrum of species in which plastid inheritance ranges from purely maternal to predominantly paternal. 2. Factors that influence the pattern of plastid inheritance operate both before (often long before) and after fertilization. For example, several different mechanisms for exclusion of plastids from particular cells, none of which is completely effective on its own, may operate sequentially during both gametogenesis and embryo-genesis. There appears to exist a general trend such that the more highly evolved the organism, the more numerous the mechanisms employed and the earlier they first come into operation. The pattern of plastid inheritance shown by a species represents the efficiency or lack of efficiency of these combined mechanisms. 3. In the newly-formed zygote of many unicellular algae, the plastids from both gametes are present and there is direct competition between them. Often the plastid from one mating type (usually the ‘invading’ male gamete, where this can be identified) quickly degenerates. Species such as Chlamydomonas are unusual in that the plastids from the two gametes fuse. In spite of this, inheritance of plastid DNA is normally uniparental. How this is accomplished remains unclear. In oogamous algae, the paternal plastids which enter the egg cell are frequently fewer in number and smaller in size than those contributed by the female gamete. The reduced contribution of paternal plastids can result from asymmetrical cell division or from differential timing of cell and plastid division during spermatogenesis. 4. In species ranging from unicellular algae to angiosperms, plastids may be partially or completely debarred from particular cells at critical stages during the reproductive cycle. An important factor in this form of plastid elimination is their postioning with respect to the nucleus prior to a cell division. When plastids closely encircle the nucleus, they are usually incorporated equally into the two daughter cells; when the plastids are concentrated at some distance from the nucleus, they are frequently excluded from one daughter cell. 5. Elimination of plastids from a gamete prior to plasmogamy prevents direct competition between the two types of plastid in the zygote or embryo. Perhaps the most effective method of excluding paternal plastids from the egg cell has been achieved by some lower land plants; the plastids migrate to the posterior part of the spermatozoid, and are discarded from there in a discrete vesicle before the egg is reached. 6. Plastid inheritance in conifers appears to be unique. In those species in which the derivation of plastids in the pro-embryo can be determined, it has been found that they come only from the male gamete. Maternal plastids are positively excluded from the pro-embryo and later degenerate. 7. In most angiosperm species plastid inheritance is maternal; in only a few species is it regularly biparental. The first step towards exclusion of paternal plastids often takes place in the uninucleate pollen grain where the plastids may be concentrated at the pole of the cell farthest from the site of the future generative cell. Any plastids that succeed in entering the generative cell may degenerate before the gametes are released from the pollen tube. Even if paternal plastids reach the egg, they are at a disadvantage because they are (a) entering an environment that is essentially alien, and (b) normally present in much smaller numbers than maternal plastids. Later, when the zygote divides, the few paternal plastids may fail to become incorporated in the small terminal cell which gives rise to the embryo proper. 8. There appears to be no consistent evolutionary progression in the use of more efficient mechanisms to influence plastid inheritance; most of the mechanisms associated with exclusion of paternal plastids in angiosperms, for example, can also be found in one or other species of green alga. The primary factors that influence plastid inheritance appear to be (I) direct competition in the zygote between plastids of the two parental types – the principal mechanism operating in isogamous algae, but also operating in some angiosperms; and (2) the divergent evolution of the two types of gamete - on the one hand a small male gamete with a minimum of cytoplasm which is capable of moving (spermatozoid) or being moved (pollen) efficiently, and, on the other hand, a large egg cell with numerous organelles, which is well able to act as ‘host’ for the future zygote. Many of the additional mechanisms that influence the pattern of plastid inheritance seem to be the more or less ‘accidental’ result of other evolutionary events.  相似文献   

11.
Plastid transformation offers several unique advantages compared with nuclear genome transformation, such as high level of transgene expression within plastids, expressing multiple transgenes as operons, lack of position effect due to site-specific transgene integration, and reducing risks of gene flow via pollen due to maternal inheritance of the plastid genome. Plastid transformation has been applied to several herbal species, but as yet there are no applications to tree species. We report here the first successful plastid transformation in a tree species, Populus alba. A vector for plastid transformation of poplar (Populus alba) was constructed, which carried the spectinomycin resistance gene and the green fluorescence protein gene as marker genes. In the regenerated shoots, the site-specific integration of foreign genes and the establishment of a high homoplastomic state were confirmed. Immunoblot analysis and histological observations corroborated the accumulation of green fluorescence protein in chloroplasts. The establishment of a plastid transformation system in poplar provides a novel tool for tree biotechnology.  相似文献   

12.
Plastids from Nicotiana benthamiana were transformed with the vector for dicistronic expression of two genes—aminoglycoside 3'-adenyltransferase (aadA) and green fluorescent protein (gfp)—in the plastids of Nicotiana tabacum. Transplastomic shoots exhibited green fluorescence under UV light. Transformation efficiencies were similar between species. Although the border sequence (trnI and trnA) for homologous recombination to transform the plastid genome of N. benthamiana was identical to that sequence of N. tabacum, the exception was a 9-bp addition in the intron of trnI. This indicated that the N. tabacum sequence used as a border region for recombination was sufficient to insert the foreign gene into the target site between the trnI and trnA of N. benthamiana with similar efficiency. Southern blot analysis detected the presence of aadA and gfp between trnI and trnA in the plastid genome of N. benthamiana. Northern and western blot analyses revealed high expression of gfp in the plastids from petals and leaves. Our results suggest that the plastid transformation system established here is applicable to investigations of the interactions between plastid and nucleus in N. benthamiana.  相似文献   

13.
Mitochondria and plastids multiply by division in eukaryotic cells. Recently, the eukaryotic homolog of the bacterial cell division protein FtsZ was identified and shown to play an important role in the organelle division process inside the inner membrane. To explore the evolution of FtsZ proteins, and to accumulate data on the protein import system in mitochondria and plastids of the red algal lineage, one mitochondrial and three plastid ftsZ genes were isolated from the diatom Chaetoceros neogracile, whose plastids were acquired by secondary endosymbiotic uptake of a red alga. Protein import into organelles depends on the N‐terminal organelle targeting sequences. N‐terminal bipartite presequences consisting of an endoplasmic reticulum signal peptide and a plastid transit peptide are required for protein import into diatom plastids. To characterize the organelle targeting peptides of C. neogracile, we observed the localization of each green fluorescent protein‐tagged predicted organelle targeting peptide in cultured tobacco cells and diatom cells. Our data suggested that each targeting sequences functioned both in tobacco cultured cells and diatom cells.  相似文献   

14.
Two new vector types for plastid transformation were developed and uidA reporter gene expression was compared to standard transformation vectors. The first vector type does not contain any plastid promoter, instead it relies on extension of existing plastid operons and was therefore named “operon-extension” vector. When a strongly expressed plastid operon like psbA was extended by the reporter gene with this vector type, the expression level was superior to that of a standard vector under control of the 16S rRNA promoter. Different insertion sites, promoters and 5′-UTRs were analysed for their effect on reporter gene expression with standard and operon-extension vectors. The 5′-UTR of phage 7 gene 10 in combination with a modified N-terminus was found to yield the highest expression levels. Expression levels were also strongly dependent on external factors like plant or leaf age or light intensity. In the second vector type, named “split” plastid transformation vector, modules of the expression cassette were distributed on two separate vectors. Upon co-transformation of plastids with these vectors, the complete expression cassette became inserted into the plastome. This result can be explained by successive co-integration of the split vectors and final loop-out recombination of the duplicated sequences. The split vector concept was validated with different vector pairs.  相似文献   

15.
The earthworm fibrinolytic enzyme, which belongs to a group of serine proteases with strong fibrinolytic activity, has been used as an oral drug for prevention and treatment of thrombosis in East Asia. Fibrizyme is a fibrinolytic enzyme isolated from the earthworm Eisenia andrei. Here we report genetic engineering of tobacco plastids with stable integration of the fibrizyme gene into the tobacco chloroplast genome. A plastid transformation vector was constructed by introducing various regulatory elements into fibrizyme cDNA. This vector was delivered by particle bombardment into tobacco leaf explants and plastid-transformed plants were subsequently regenerated into whole plants through several rounds of selection. We confirmed stable integration of the fibrizyme gene into the tobacco plastid genome by PCR and Southern blot analyses. Northern and Western blot analyses revealed that mRNA and protein of recombinant fibrizyme were highly expressed in transformed tobacco plants.  相似文献   

16.
A C-to-U RNA editing event creates a functional initiation codon for translation of the psbL mRNA in tobacco plastids. Small trans-acting guide RNAs (gRNAs) have been shown to be involved in editing site selection in kinetoplastid mitochondria. A computer search of the tobacco plastid genome (ptDNA) identified such a putative gRNA, a 14-nucleotide sequence motif that is complementary to the psbL mRNA, including the A nucleotide required to direct the C-to-U change. The critical A nucleotide of the putative gRNA gene was changed to G by plastid transformation. We report here that the introduced mutation did not abolish psbL editing. Since no other region of the plastid genome contains significant complementarity to the psbL editing site we suggest that, if gRNAs serve as trans-acting factors for plastid psbL mRNA editing, they either have only a limited complementarity to the editing site, or are encoded in the nuclear genome.  相似文献   

17.
Plastids and mitochondria, the DNA‐containing cytoplasmic organelles, are maternally inherited in the majority of angiosperm species. Even in plants with strict maternal inheritance, exceptional paternal transmission of plastids has been observed. Our objective was to detect rare leakage of plastids via pollen in Nicotiana sylvestris and to determine if pollen transmission of plastids results in co‐transmission of paternal mitochondria. As father plants, we used N. sylvestris plants with transgenic, selectable plastids and wild‐type mitochondria. As mother plants, we used N. sylvestris plants with Nicotiana undulata cytoplasm, including the CMS‐92 mitochondria that cause cytoplasmic male sterility (CMS) by homeotic transformation of the stamens. We report here exceptional paternal plastid DNA in approximately 0.002% of N. sylvestris seedlings. However, we did not detect paternal mitochondrial DNA in any of the six plastid‐transmission lines, suggesting independent transmission of the cytoplasmic organelles via pollen. When we used fertile N. sylvestris as mothers, we obtained eight fertile plastid transmission lines, which did not transmit their plastids via pollen at higher frequencies than their fathers. We discuss the implications for transgene containment and plant evolutionary histories inferred from cytoplasmic phylogenies.  相似文献   

18.
Stable transformation of petunia plastids   总被引:11,自引:0,他引:11  
Plastid transformation results in stably expressed foreign genes, which for most Angiosperms are largely excluded from sperm cells, thereby greatly reducing the risk of foreign gene spread through pollen. Prior to this work, fertile plastid transformants were restricted to tobacco, tomato and Lesquerella . Application of plastid engineering in the important floriculture industry requires the development of stable plastid transformation in a major ornamental plant species such as Petunia hybrida. Here we describe the successful isolation of fertile and stable plastid transformants in a commercial cultivar of P. hybrida (var. Pink Wave). Plastid targeting regions from tobacco were used to integrate aad A and gusA between the acc D and rbc L genes of P. hybrida plastid DNA following particle bombardment of leaves. For three spectinomycin and streptomycin resistant lines, DNA blot analysis confirmed transgene integration into plastid DNA and homoplasmy. Maternal inheritance and homoplasmy resulted in 100 transmission of spectinomycin resistance to progeny after selfing. Plastid transformants expressed the gusA gene uniformly within leaves and to comparable levels in all three lines. Insertion of trait genes in place of gusA coding sequences enables immediate applications of our plastid transformation vector. Establishment of plastid transformation in P. hybrida facilitates a safe and reliable use of this important ornamental plant for research and plant biotechnology.These two authors contributed equally to this work.  相似文献   

19.
In 1909 two papers by Correns and by Baur published in volume 1 of Zeitschrift für induktive Abstammungs- und Vererbungslehre (now Molecular Genetics and Genomics) reported on the non-Mendelian inheritance of chlorophyll deficiencies. These papers, reporting the very first cases of extranuclear inheritance, laid the foundation for a new field: non-Mendelian or extranuclear genetics. Correns observed a purely maternal inheritance (in Mirabilis), whereas Baur found a biparental inheritance (in Pelargonium). Correns suspected the non-Mendelian factors in the cytoplasm, while Baur believed that the plastids carry these extranuclear factors. In the following years, Baur’s hypothesis was proved to be correct. Baur subsequently developed the theory of plastid inheritance. In many genera the plastids are transmitted only uniparentally by the mother, while in a few genera there is a biparental plastid inheritance. Commonly there is random sorting of plastids during ontogenetic development. Renner and Schwemmle as well as geneticists in other countries added additional details to this theory. Pioneering studies on mitochondrial inheritance in yeast started in 1949 in the group of Ephrussi and Slonimski; respiration-deficient cells (petites in yeast, poky in Neurospora) were demonstrated to be due to mitochondrial mutations. Electron microscopical and biochemical studies (1962–1964) showed that plastids and mitochondria contain organelle-specific DNA molecules. These findings laid the molecular basis for the two branches of extranuclear inheritance: plastid and mitochondrial genetics.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号