首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
Reliable estimates of effective population size are of central importance in population genetics and evolutionary biology. For populations that fluctuate in size, harmonic mean population size is commonly used as a proxy for (multi‐) generational effective size. This assumes no effects of density dependence on the ratio between effective and actual population size, which limits its potential application. Here, we introduce density dependence on vital rates in a demographic model of variance effective size. We derive an expression for the ratio in a density‐regulated population in a fluctuating environment. We show by simulations that yearly genetic drift is accurately predicted by our model, and not proportional to as assumed by the harmonic mean model, where N is the total population size of mature individuals. We find a negative relationship between and N. For a given N, the ratio depends on variance in reproductive success and the degree of resource limitation acting on the population growth rate. Finally, our model indicate that environmental stochasticity may affect not only through fluctuations in N, but also for a given N at a given time. Our results show that estimates of effective population size must include effects of density dependence and environmental stochasticity.  相似文献   

2.
Despite its significance in evolutionary and conservation biology, few estimates of effective population size (N(e)) are available in plant species. Self-fertilization is expected to affect N(e), through both its effect on homozygosity and population dynamics. Here, we estimated N(e) using temporal variation in allele frequencies for two contrasted populations of the selfing annual Medicago truncatula: a large and continuous population and a subdivided population. Estimated N(e) values were around 5-10% of the population census size suggesting that other factors than selfing must contribute to variation in allele frequencies. Further comparisons between monolocus allelic variation and changes in the multilocus genotypic composition of the populations show that the local dynamics of inbred lines can play an important role in the fluctuations of allele frequencies. Finally, comparing N(e) estimates and levels of genetic variation suggest that H(e) is a poor estimator of the contemporaneous variance effective population size.  相似文献   

3.
Tin-Yu J. Hui  Austin Burt 《Genetics》2015,200(1):285-293
The effective population size Ne is a key parameter in population genetics and evolutionary biology, as it quantifies the expected distribution of changes in allele frequency due to genetic drift. Several methods of estimating Ne have been described, the most direct of which uses allele frequencies measured at two or more time points. A new likelihood-based estimator NB^ for contemporary effective population size using temporal data is developed in this article. The existing likelihood methods are computationally intensive and unable to handle the case when the underlying Ne is large. This article tries to work around this problem by using a hidden Markov algorithm and applying continuous approximations to allele frequencies and transition probabilities. Extensive simulations are run to evaluate the performance of the proposed estimator NB^, and the results show that it is more accurate and has lower variance than previous methods. The new estimator also reduces the computational time by at least 1000-fold and relaxes the upper bound of Ne to several million, hence allowing the estimation of larger Ne. Finally, we demonstrate how this algorithm can cope with nonconstant Ne scenarios and be used as a likelihood-ratio test to test for the equality of Ne throughout the sampling horizon. An R package “NB” is now available for download to implement the method described in this article.  相似文献   

4.
    
Density dependence in vital rates is a key feature affecting temporal fluctuations of natural populations. This has important implications for the rate of random genetic drift. Mating systems also greatly affect effective population sizes, but knowledge of how mating system and density regulation interact to affect random genetic drift is poor. Using theoretical models and simulations, we compare Ne in short‐lived, density‐dependent animal populations with different mating systems. We study the impact of a fluctuating, density‐dependent sex ratio and consider both a stable and a fluctuating environment. We find a negative relationship between annual Ne/N and adult population size N due to density dependence, suggesting that loss of genetic variation is reduced at small densities. The magnitude of this decrease was affected by mating system and life history. A male‐biased, density‐dependent sex ratio reduces the rate of genetic drift compared to an equal, density‐independent sex ratio, but a stochastic change towards male bias reduces the Ne/N ratio. Environmental stochasticity amplifies temporal fluctuations in population size and is thus vital to consider in estimation of effective population sizes over longer time periods. Our results on the reduced loss of genetic variation at small densities, particularly in polygamous populations, indicate that density regulation may facilitate adaptive evolution at small population sizes.  相似文献   

5.
The aim of this study was to monitor changes in genetic size of a small-closed population of Iranian Zandi sheep, by using pedigree information from animals born between 1991 and 2005. The genetic size was assessed by using measures based on the probability of identity-by-descend of genes (coancestry, f, and effective population size, N(e) ), as well as measures based on probability of gene origin (effective number of founders, f(e) , effective number of founder genomes, f(g) , and effective number of non-founder genomes, f(ne) ). Average coancestry, or the degree of genetic similarity of individuals, increased from 0.81% to 1.44% during the period 1993 to 2005, at the same time that N(e) decreased from 263 to 93. The observed trend for f(e) was irregular throughout the experiment in a way that f(e) was 68, 87, 77, 92, and 80 in 1993, 1996, 1999, 2002, and 2005, respectively. Simultaneously, f(g) , the most informative effective number, decreased from 61 to 35. The index of genetic diversity (GD) which was obtained from estimates of f(g) , decreased about 2% throughout the period studied. In addition, a noticeable reduction was observed in the estimates of f(ne) from 595 in 1993 to 61 in 2005. The higher than 1 ratio of f(e) to f(g) indicated the presence of bottlenecks and genetic drift in the development of this population of Zandi sheep. From 1993 to 1999, f(ne) was much higher than f(e) , thereby indicating that with respect to loss of genetic diversity, the unequal contribution of founders was more important than the random genetic drift in non-founder generations. Subsequently, random genetic drift in non-founder generations was the major reason for f(e) > f(ne) . The minimization of average coancestry in new reproductive individuals was recommended as a means of preserving the population against a further loss in genetic diversity.  相似文献   

6.
The effective population size is a central concept for understanding evolutionary processes in a finite population. We employ Fisher's reproductive value to estimate the ratio of effective to actual population size for an age‐structured population with two sexes using random samples of individual vital rates. The population may be subject to environmental stochasticity affecting the vital rates. When the mean sex ratio at birth is known, improved efficiency is obtained by utilizing the records of total number of offspring rather than considering separately female and male offspring. We also show how to incorporate uncertain paternity.  相似文献   

7.
Y Willi  P Griffin  J Van Buskirk 《Heredity》2013,110(3):296-302
According to theory, drift load in randomly mating populations is determined by past population size, because enhanced genetic drift in small populations causes accumulation and fixation of recessive deleterious mutations of small effect. In contrast, segregating load due to mutations of low frequency should decline in smaller populations, at least when mutations are highly recessive and strongly deleterious. Strong local selection generally reduces both types of load. We tested these predictions in 13 isolated, outcrossing populations of Arabidopsis lyrata that varied in population size and plant density. Long-term size was estimated by expected heterozygosity at 20 microsatellite loci. Segregating load was assessed by comparing performance of offspring from selfings versus within-population crosses. Drift load was the heterosis effect created by interpopulation outbreeding. Results showed that segregating load was unrelated to long-term size. However, drift load was significantly higher in populations of small effective size and low density. Drift load was mostly expressed late in development, but started as early as germination and accumulated thereafter. The study largely confirms predictions of theory and illustrates that mutation accumulation can be a threat to natural populations.  相似文献   

8.
9.
1. The effects of changes in habitat size and quality on the expected population density and the expected time to extinction of Sorex araneus are studied by means of mathematical models that incorporate demographic stochasticity.
2. Habitat size is characterized by the number of territories, while habitat quality is represented by the expected number of offspring produced during the lifetime of an individual.
3. The expected population density of S. araneus is shown to be mainly influenced by the habitat size. The expected time to extinction of S. araneus populations due to demographic stochasticity, on the other hand, is much more affected by the habitat quality.
4. In a more general setting we demonstrate that, irrespective of the actual species under consideration, the likelihood of extinction as a consequence of demographic stochasticity is more effectively countered by increasing the reproductive success and survival of individuals then by increasing total population size.  相似文献   

10.
The Haute Island mouflon (Ovis aries) population is isolated on one small (6.5 km2) island of the remote Kerguelen archipelago. Given a promiscuous mating system, a cyclic demography and a strong female-biased sex ratio after population crashes, we expected a low effective population size (Ne). We estimated Ne using demographic and temporal genetic approaches based on genetic information at 25 microsatellite loci from 62 and 58 mouflons sampled in 1988 and 2003, respectively. Genetic Ne estimates were higher than expected, varying between 104 and 250 depending on the methods used. Both demographic and genetic approaches show the Haute Island Ne is buffered against population crashes. The unexpectedly high Ne likely results from the cyclic winter crashes that allow young males to reproduce, limiting the variance of male reproductive success. Based on individual-based simulations, we suggest that despite a strongly female-biased sex ratio, the effects of the mating system on the effective population size more closely resemble random mating or weak polygyny.  相似文献   

11.
Between 1955 and 1961, the Division of Fish and Game of the State of Hawaii (USA) undertook an introduction program which brought 11 species of families Serranidae and Lutjanidae (Pisces) from French Polynesia to the coral reefs off Oahu and Big Island in Hawaii. Only three— Cephalopholis argus, Lutjanus fulvus and Lutjanus kasmira —for which we have records of locations and number offish released, are known to have become established. Comparison of allozyme distribution of C. argus and L. kasmira between individuals collected in Hawaiian and Polynesian populations provided a unique opportunity to estimate the impact of genetic drift and selection processes caused by a founder event. We used temporal variance of allelic frequencies to estimate and validate effective population size within marine fish populations. Despite the fact that only 571 C. argus and 2435 L. kasmira were released, we did not observe major changes in polymorphism and heterozygosity. Using different models to estimate effective population size from temporal variance in allelic frequencies and the number of generations, we estimate that the effective population size is about 1–5% of the total population size. Such reduced effective population size explains why most of the species introduced in Hawaii (8/11) failed to become established. Our results have implications for conservation biology because they emphasize that in spite of the fact that only a few individuals bequeathed their characteristics to subsequent generations, no significant change in genetic diversity was observed; success of introduced species is therefore limited by the number of fish released.  相似文献   

12.
    
With an ecological-evolutionary perspective increasingly applied toward the conservation and management of endangered or exploited species, the genetic estimation of effective population size (Ne) has proliferated. Based on a comprehensive analysis of empirical literature from the past two decades, we asked: (i) how often do studies link Ne to the adult census population size (N)? (ii) To what extent is Ne correctly linked to N? (iii) How readily is uncertainty accounted for in both Ne and N when quantifying Ne/N ratios? and (iv) how frequently and to what degree might errors in the estimation of Ne or N affect inferences of Ne/N ratios? We found that only 20% of available Ne estimates (508 of 2617; 233 studies) explicitly attempted to link Ne and N; of these, only 31% (160 of 508) correctly linked Ne and N. Moreover, only 7% (41 of 508) of Ne/N ratios (correctly linked or not) reported confidence intervals for both Ne and N; for those cases where confidence intervals were reported for Ne only, 31% of Ne/N ratios overlapped with 1, of which more than half also reached below Ne/N = 0.01. Uncertainty in Ne/N ratios thus sometimes spanned at least two orders of magnitude. We conclude that the estimation of Ne/N ratios in natural populations could be significantly improved, discuss several options for doing so, and briefly outline some future research directions.  相似文献   

13.
A numerical method for computing the eigenvalue variance effective size of a subdivided population connected by any fixed pattern of migration is described. Using specific examples it is shown that total effective size of a subdivided population can become less than the sum of the subpopulation sizes as a result of directionalities in the pattern of migration. For an extension of the model with threshold harvesting and local deterministic logistic population dynamic we consider the problem of maximizing the total harvesting yield with constraints on the total effective size. For some simple source-sink systems and more complicated population structures where subpopulations differ in their degree of isolation, it is shown to be optimal, for a given total effective size, to raise the harvesting thresholds relatively more in small and in isolated populations. Finally, we show how the method applies to populations which are supplemented, either intentionally or unintentionally. It is shown that the total effective size can be reduced by several orders of magnitude if the captive component of a population is much smaller than the wild component, even with symmetric backward migration.  相似文献   

14.
When the adult sex ratio differs between years in local populations, but still is predictable between adjacent years, it has been proposed that the best strategy would be to bias the offspring sex ratio in favour of the rare sex. We tested this hypothesis using a data set of great reed warbler offspring, sexed by molecular techniques, that were collected over 11 breeding seasons at two adjacent reed marshes. Three important assumptions for this hypothesis are fulfilled in the studied great reed warbler population. First, a substantial proportion of great reed warblers are living in small local populations where sex ratio distortions would be sufficiently large and common. Second, breeding adults and their offspring return to breed in the local population to a high degree. Third, females have a possibility to assess the breeding sex ratio before laying their eggs. At our study site, the breeding sex ratio was positively correlated between successive years. However, contrary to our prediction, female great reed warblers seemed not to adjust their offspring sex ratio in relation to the local breeding sex ratio.  相似文献   

15.
Both the overall rate of nucleotide substitution and the relative proportions of synonymous and non-synonymous substitutions are predicted to vary between species that differ in effective population size (Ne). Our understanding of the genetic processes underlying these lineage-specific differences in molecular evolution is still developing. Empirical analyses indicate that variation in substitution rates and patterns caused by differences in Ne is often substantial, however, and must be accounted for in analyses of molecular evolution.  相似文献   

16.
Recent studies in the literature have appliedphylogenetic methods based on genetic distancesto set priorities for conservation of domesticanimal breeds. While these methods may beappropriate for between-species conservation,they are clearly inappropriate forwithin-species breed conservation, because theyignore within-breed variation. In this paper weshow the basic tools to analyse geneticdiversity in subdivided populations withinspecies, and illustrate the errors incurred byapplying methods based exclusively on geneticdistances. We also show that maximisation ofgenetic diversity (minimisation of coancestryor kinship) is equivalent to maximisation ofeffective population size, as in undividedpopulations, and derive a generalisation ofprevious equations for the prediction ofeffective size. Finally, we discuss thestrategies for conservation in the light of thetheory.  相似文献   

17.
Stochastic population theory makes clear predictions about the effects of reproductive potential and carrying capacity on characteristic time-scales of extinction. At the same time, the effects of habitat size and quality on reproduction and regulation have been hotly debated. To trace the causal relationships among these factors, we looked at the effects of habitat size and quality on extinction time in experimental populations of Daphnia magna. Replicate model systems representative of a broad-spectrum consumer foraging on a continuously supplied resource were established under crossed treatments of habitat size (two levels) and habitat quality (three levels) and monitored until eventual extinction of all populations. Using statistically derived estimates of key parameters, we related experimental treatments to persistence time through their effect on carrying capacity and the population growth rate. We found that carrying capacity and the intrinsic rate of increase were each influenced similarly by habitat size and quality, and that carrying capacity and the intrinsic rate of increase were in turn both correlated with time to population extinction. We expected habitat quality to have a greater influence on extinction. However, owing to an unexpected effect of habitat size on reproductive potential, habitat size and quality were similarly important for population persistence. These results support the idea that improving the population growth rate or carrying capacity will reduce extinction risk and demonstrate that both are possible by improving habitat quality or increasing habitat size.  相似文献   

18.
    
The availability of a large number of high-density markers (SNPs) allows the estimation of historical effective population size (Ne) from linkage disequilibrium between loci. A recent refinement of methods to estimate historical Ne from the recent past has been shown to be rather accurate with simulation data. The method has also been applied to real data for numerous species. However, the simulation data cannot encompass all the complexities of real genomes, and the performance of any estimation method with real data is always uncertain, as the true demography of the populations is not known. Here, we carried out an experimental design with Drosophila melanogaster to test the method with real data following a known demographic history. We used a population maintained in the laboratory with a constant census size of about 2800 individuals and subjected the population to a drastic decline to a size of 100 individuals. After a few generations, the population was expanded back to the previous size and after a few further generations again expanded to twice the initial size. Estimates of historical Ne were obtained with the software GONE both for autosomal and X chromosomes from samples of 17 individuals sequenced for the whole genome. Estimates of the historical effective size were able to infer the patterns of changes that occurred in the populations showing generally good performance of the method. We discuss the limitations of the method and the application of the software carried out so far.  相似文献   

19.
In age-structured populations, viability and fecundity selection of varying strength may occur in different age classes. On the basis of an original idea by Fisher of weighting individuals by their reproductive value, we show that the combined effect of selection on traits at different ages acts through the individual reproductive value defined as the stochastic contribution of an individual to the total reproductive value of the population the following year. The selection differential is a weighted sum of age-specific differentials that are the covariances between the phenotype and the age-specific relative fitness defined by the individual reproductive value. This enables estimation of weak selection on a multivariate quantitative character in populations with no density regulation by combinations of age-specific linear regressions of individual reproductive values on the traits. Demographic stochasticity produces random variation in fitness components in finite samples of individuals and affects the statistical inference of the temporal average directional selection as well as the magnitude of fluctuating selection. Uncertainties in parameter estimates and test power depend strongly on the demographic stochasticity. Large demographic variance results in large uncertainties in yearly estimates of selection that complicates detection of significant fluctuating selection. The method is illustrated by an analysis of age-specific selection in house sparrows on a fitness-related two-dimensional morphological trait, tarsus length and body mass of fledglings.  相似文献   

20.
    
Summary The allozyme variability of 38 genetic loci coding for blood proteins was compared in up to 95 Black Grouse originating from Bavaria, the Netherlands and two sites in Sweden, bred to restock the Central European lowland populations. Polymorphisms are described forAda*,Pgd*, andPgm-1*, yielding an overall fraction of polymorphic loci of P=0.079, and an observed heterozygosity of Ho=0.015 (He=0.018). The genotype distributions at theAda* locus differed significantly between regional stocks, but unbiased standard distances measured D=0.0060 at most. Considering the inferred importance of genetic drift for Black Grouse microevolution, these slight genetic distances do not provide a basis for judging the validity of a suggested subspecies from the Netherlands. The weight differences of the eggs laid by grouse from different regional stocks reached statistical significance. A heterosis effect is inferred from the heavier eggs produced by F1 crosses between parents originating from disparate geographic origins.
Genetische Variabilität beim Birkhuhn (Tetrao tetrix), ein Hühnervogel mit Arenabalz
Zusammenfassung Die elektrophoretische Variabilität (38 Proteinloci) von Birkhühnern (Tetrao tetrix) wurde an Populationen aus Schweden, Bayern und den Niederlanden untersucht (n=95). Dabei handelt es sich um einige Gründertiere (teilweise Wildfänge) definierter geographischer Herkünfte für die Auswilderungszucht des Instituts für Wildtierforschung (Hannover) oder um deren Nachzuchten. Variabilität der EnzymeAda*,Pgd* undPgm-1* erbrachten einen Polymorphismus von P=0,079 und eine Heterozygotie von Ho=0.015 (He=0.018). Die Genotypenverteilung desAda*-Locus differenzierte regionale Populationen, jedoch betrugen die stichprobenkorrigierten genetischen Distanzen zwischen den Herkünften lediglich D=0.0060 oder waren geringer. Die geringe Mischerbigkeit wird hypothetisch mit relativ hoher genetischer Drift in Zusammenhang gebracht, weshalb sich Allozympolymorphismen beim Birkhuhn auch nur eingeschränkt zur Analyse von (unterartlichen) Populationsunterschieden eignen könnten, zumindest solange die Stichproben nicht erheblich ausgeweitet werden. Die Eigewichte von Hennen verschiedener regionaler Herkünfte unterscheiden sich signifikant, die Eier von Mischlingen zwischen Linien sind schwerer (Heterosiseffekt?). Die geringe Mischerbigkeit der untersuchten Birkhühner mag mit Faktoren der arteigenen Lebensweise (Arenabalz mit Polygynie, Varianz der Fruchtbarkeit unterschiedlicher Familien aufgrund hoher Kükensterblichkeit, Bestandesfluktuationen) erklärt werden. Die in den kleinen, isolierten Reliktbestände in Niedersachsen verbleibende genetische Variabilität dürfte sehr rasch verloren gehen, sofern die verbleibenden Habitate nicht durch Trittsteine verbunden werden, deren Abstände dem Ausbreitungsradius des Birkwildes Rechnung tragen.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号