首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T. Itoh  R. M. Brown Jr. 《Protoplasma》1988,144(2-3):160-169
Summary The development of linear cellulose synthesizing complexes (=TCs) of two selected siphonocladalean algae,Boergesenia forbesii andValonia ventricosa was investigated by following the time course of the regeneration of cell walls with the freeze fracture technique after aplanospore induction. The following structural changes of TC development were examined: (1) TCs initiatede novo; (2) the first nucleation of TC subunits occurs within 2 hr inBoergesenia and 5 hr inValonia after aplanospore induction, immediately followed by the assembly of cellulose microfibrils; (3) TCs increase their length during the assembly of randomly oriented microfibrils; and, (4) TCs stop increasing in length after the assembly of ordered microfibrils begins, with some time lag. The data demonstrate that linear TCs are not artificial products but dynamic entities which are involved in the assembly of cellulose microfibrils.  相似文献   

2.
Summary Protoplasts derived from cells ofBoergesenia forbesii regenerated aberrant cell walls when treated with cholesteryl hemisuccinate (CHS). Protoplasts treated with CHS, for a short period during the initial stages of cell wall regeneration, developed a patchwork cell wall, possessing regions devoid of cell wall. This effect was reversible, and treated cells ultimately developed a normal, confluent cell wall when removed from the CHS. Freeze fracture studies revealed that for CHS-treated cells, regions without microfibril impressions did possess intramembranous particles (IMP's) but that these regions contained small domains free of IMP's suggestive of lateral phase separation. The data implies that the physical characteristics of the plasma membrane lipid are important to the deposition of cell wall microfibrils during cell wall regeneration. This effect may be attributed to altered lipid-protein interactions, modified membrane fusion characteristics, or altered membrane flow.  相似文献   

3.
Summary Microfibrillar textures and orientation of cellulose microfibrils (MFs) in the coenocytic green alga,Boergesenia forbesii, were investigated by fluorescence and electron microscopy. Newly formed aplanosporic spherical cells inBoergesenia start to form cellulose MFs on their surfaces after 2 h of culture at 25°C. Microfibrillar orientation becomes random, fountain-shaped, and helicoidal after 2, 4, and 5 h, respectively. The fountain orientation of MFs is usually apparent prior to helicoidal MF orientation and thus may be considered to initiate helicoid formation. Microfibrils continue to take on the helicoidal arrangement during the growth ofBoergesenia thallus. The helicoidal orientation of MFs occurs through gradual counterclockwise change in MF deposition by terminal complexes (TCs) viewed from inside the cell. On the dorsal side of curving TC impressions in helicoidal texture formation on a freeze-fractured plasma membrane, the aggregation of intramembranous particles (IMPs) occurs. Membrane flow may thus possibly affect the regulation of helicoidal orientation inBoergesenia. Following treatment with 3 M amiprophos-methyl (APM) or 1 mM colchicine, cortical microtubules (MTs) completely disappear within 24 h but helicoidal textures formation is not affected. With 15 M cytochalasin B or 30 M phalloidin, however, the helicoidal orientation of MFs becomes random. Treatment with CaCl2 (10 mM) causes the helicoidal MF orientation of cells to become random, but co-treatment with N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7) (100 mM) prevents this effect, though W-7 has no effect on the helicoidal MF formation. It thus follows that MF orientation inBoergesenia possibly involves actin whose action may be regulated by calmodulin.Abbreviations APM amiprophos-methyl - DMSO dimethylsulfoxide - IMP intramembranous particle - MF microfibril - MT microtubule - TC terminal complex; W-7 N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide  相似文献   

4.
A fine structure of cell wall lamellae in a coenocytic green algaBoergesenia forbesii was examined by electron microscopy. The wall has a polylamellate structure containing cellulose microfibrils 25 to 30 nm in diameter. The outer surface of the cell was covered by a thin structureless lamella, underneath which existed a lamella containing randomly-oriented microfibrils. The major part of the wall consisted of two types of lamellae, multifibrillar lamella and a transitional, matrix-rich one. In the former, microfibrils were densely arranged more or less parallel with each other. In the transitional lamella, existing between the multifibrillar ones, the microfibril orientation shifted about 30° within the layer. The fibril orientation also shifted 30° between adjacent transitional and multifibrillar layers, and consequently the microfibril orientation in the neighboring multifibrillar layers shifted 90°. It was concluded that the orientation rotated counterclockwise when observed from inside the cell. Each lamella in the thallus wall become thinner with cell expansion, but no reorientation of microfibrils in the outer old layers was observed. In the rhizoid, the outer lamellae sloughed off with the tip growth.  相似文献   

5.
Summary Neurons with proctolin-like immunoreactivity were mapped in the terminal ganglion of Periplaneta americana. The effect of different fixation methods on the variability of immunostaining is described and discussed. The appearance of immunoreactive presynaptic terminals, described here for the first time in insects, points to a function of proctolin as neurotransmitter or neuromodulator in the central nervous system of P. americana besides its known role in the periphery. Proctolin-like immunoreactivity was shown in pre- and postsynaptic profiles. Synaptic contacts are described in detail.Supported by the Ministerium für Wissenschaft und Technik der DDR and by Sächsische Akademie der Wissenschaften zu Leipzig.The authors are indebted for excellent technical assistance to Mrs. Angelika Schmidt and Mr. Bernd Mäusezahl.  相似文献   

6.
Summary Various stabilization and extraction procedures were tested to demonstrate the ultrastructural organization of the cytoskeleton in normal, locomoting Amoeba proteus. Most reliable results were obtained after careful fixation in glutaraldehyde/lysine followed by prolonged extraction in a polyethylene glycol/Triton X-100 solution. Before dehydration in a graded series of ethanol and critical-point drying, the amoebae were split by the sandwich-technique, i.e., by mechanical cleavage of cells mounted between two poly-L-lysine-coated glass slides. Platinum-carbon replicas as well as thin sections prepared from such cell fragments revealed a cytoskeleton composed of at least four different types of filaments: (1) 5–7-nm filaments organized as a more or less ordered cortical network at the internal face of the plasma membrane and probably representing F-actin; (2) 10–12-nm filaments running separately or slightly aggregated through the cytoplasm and probably representing intermediate filaments; (3) 24–26-nm filaments forming a loose network and probably representing microtubules; and (4) 2–4-nm filaments as connecting elements between the other cytoskeleton constituents. Whereas microfilaments are responsible for protoplasmic streaming and other motile phenomena, the function of intermediate filaments and cytoplasmic microtubules in amoebae is still obscure.  相似文献   

7.
Cell morphogenesis in Closterium acerosum (Schrank) Ehrenberg was greatly influenced by colchicine. Addition of colchicine to the medium led to production of tadpole-shaped cells, by decreasing the length and increasing the thickness of the new semicells. Transversely oriented wall microtubules and microfibrils, characteristic of normally elongating semicells, were not observed in colchicine-treated semicells, randomly oriented microfibrils being present instead. About 3.5 h after septum formation, the randomly oriented microfibrils began to be overlaid by bundles of microfibrils as seen in normal semicells at the later stage of elongation. When colchicine treatment was terminated 1 h after septum formation, cell elongation was partially restored and microfibrils were deposited parallel to each other and transversely to the cell axis, indicating that the effect of colchicine on microfibril arrangement in growing semicells is reversible.  相似文献   

8.
Closterium acerosum (Schrank) Ehrenberg cells cultured on cycles of 16 h light and 8 h dark, undergo cell division synchronously in the dark period. After cell division, the symmetry of the daughter semicells is restored by controlled expansion, the time required for this restoration, 3.5–4 h, being relatively constant. The restoration of the symmetry is achieved by highly oriented surface expansion occurring along the entire length of the new semicell. During early semicell expansion, for about 2.5 h, microfibrils are deposited parallel to one another and transversely to the cell axis on the inner surface of the new wall. Wall microtubules running parallel to the transversely oriented microfibrils are observed during this period. About 2.5 h after septum formation, preceding the cessation of cell elongation, bundles of 7–11 microfibrils running in various directions begin to overlay the parallel-arranged microfibrils already deposited. In the fully elongated cells, no wall microtubules are observed.  相似文献   

9.
Summary A linear DNA plasmid (pSCL) has been isolated from Streptomyces clavuligerus by a method employing high concentrations of protease. Rate-zonal sedimentation on sucrose gradients was used to purify the plasmid. The plasmid is 12 kb in length and appears to be linked to protein at its 5 termini. A restriction endonuclease map of the plasmid for ten enzymes has been determined. Evidence for terminally repeated sequences is provided by cross-hybridization analysis.  相似文献   

10.
Shi Y  An L  Zhang M  Huang C  Zhang H  Xu S 《Protoplasma》2008,232(3-4):173-181
Summary. As the outermost boundary of the cell, the plasma membrane plays an important role in determining the stress resistance of organisms. To test this concept in a cryophyte, we analyzed alterations of several components in plasma membranes isolated from suspension-cultured cells of Chorispora bungeana Fisch. & C.A. Mey in response to treatment at 0 and −4 °C for 192 h. When compared with the controls growing at 25 °C, both the membrane permeability and fluidity showed recovery after the initial impairment. Linolenic acid and membrane lipid unsaturation increased by about 0.8-fold following cold treatments, although the kinetics of the increase varied with the temperatures examined. During the treatments, the plasma membrane H+-ATPase (EC 3.6.1.3) activity increased by 78.06% at 0 °C and 100.47% at −4 °C. However, the plasma membrane NADH oxidase (EC 1.6.99.3) activity only decreased when exposed to a lower temperature (−4 °C), and remained at 63.93% after being treated for 192 h. After the treatments, the physical properties of the plasma membranes of suspension-cultured cells, especially the −4 °C treated cells, were similar to those in the wild plants. These findings indicate that the specific mechanism of cold resistance of C. bungeana is tightly linked with the rapid and flexible regulation of membrane lipids and membrane-associated enzymes, which ensure the structural and functional integrity of the plasma membrane that is essential for withstanding low temperature. Correspondence: Lizhe An, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, People’s Republic of China.  相似文献   

11.
Freeze-fracturing of Funaria hygrometrica caulonema cells leads to a cleavage within the plasma membrane. The extraplasmatic and the plasmatic fracture faces differ in their particle density. The plasmatic fracture face in caulonema tip cells or in tip cells of side branches, but never in other caulonema cells, is further characterized by the occurrence of particle rosettes. The highest density of rosettes is found at the cell apex but decreases steeply toward the cell base. The shape of the rosettes varies remarkably; 20% of them are found in an incomplete, presumably disintegrating or aggregating state. The complete rosette has a diameter of about 25 nm and consists of five to six particles. The size of the single particles varies between 4 nm to 10 nm. The rosettes are thought to posses cellulose-synthase activity. It is assumed that one rosette produces one elementary fibril; rough calculations, considering the number of rosettes and the estimated amount of cellulose produced in the tip region, indicate that an elementary fibrillar length of 900 nm is formed in 1 min by one rosette. The consequence of the kinetics on the life-time of the rosettes and the cellulose-synthase activity are discussed.Abbreviations EF extraplasmatic fracture face - PF plasmatic fracture face  相似文献   

12.
Freeze-fracturing of Glaucocystis nostochinearum Itzigsohn cells during cell-wall microfibril deposition indicates that unidirectionally polarized microfibril ends are localized in a zone of synthesis covering about 30% of the sarface area of the plasma membrane. Within this zone there are about 6 microfibril ends/m2 cell surface. It is proposed that microfibrils are generated by the passage of their tips over the cell surface and that the pattern of microfibril organization at the poles of the cells, in which microfibrils of alternate layers are interconnected at 3 rotation centres, results directly from the pattern of this translation of microfibril tips. In a model of the deposition pattern it is proposed that the zone of synthesis may split into 3 sub-zones as the poles are approached, each sub-zone being responsible for the generation of one rotation centre. It is demonstrated that the microfibrillar component of the entire wall could be generated by the steady translation of the microfibril tips (at which synthesis is presumed to occur) over the cell surface at a rate of 0.25–0.5 m min-1. Microcinematography indicates that the protoplast rotates during cell-wall deposition, and it is proposed that this rotation may play a role in the generation of the microfibril deposition pattern.  相似文献   

13.
After the addition to soil of large numbers of a cowpea Rhizobium strain, the population declined steadily until the numbers reached about 107/g, and the protozoa rose to about 104/g. When indigenous protozoa were suppressed by the addition of actidione to the soil, the density of the test rhizobium did not fall initially, but its abundance declined to about 107/g when actidione-resistant protozoa arose in significant numbers. The addition to actidione-treated soil of an antibiotic-resistant strain of Paramecium led to a rapid decrease in the population of the rhizobium, the density reaching essentially the same value as in soil receiving neither the drug nor the paramecia. The same changes occurred with Xanthomonas campestris as test prey except that its numbers fell to about 105/g of soil. These data provide further evidence for the key role of protozoa in controlling the abundance of populations of certain bacteria introduced into soil.  相似文献   

14.
Streptococcus faecalis ATCC 11700 uses oxalurate as a sole energy source for growth. An oxamate carbamoyltransferase and a carbamate kinase, both induced by oxalurate, are involved in this process.The oxalurate-induced kinase is specific for the pathway. Its properties are different from those of the previously characterized agmatine and arginine-induced kinases.Glucose, but not arginine, nor agmatine, two other energy sources, represses the oxalurate pathway. In contrast, oxalurate was found to be at least as effective as glucose in repressing the arginine deiminase pathway in arginine grown cells or the agmatine deiminase pathway during growth on agmatine.  相似文献   

15.
J. Ross Colvin 《Planta》1980,149(2):97-107
The mechanism of formation of cellulose-like microfibrils by a non-soluble, particulate enzyme and uridine diphosphoglucose (UDPG) in a cell-free system from Acetobacter xylinum was studied by transmission electron microscopy and X-ray diffraction. The suspension of particles to which the enzyme is adsorbed is composed of whole, dense ovoids, 50–250 nm long when wet, of fragments of the ovoids, and amorphous substance. There is a typical unit membrane around each ovoid but initially there is no trace of fibrillar material in the suspension. When the suspension of particles is incubated with UDPG, linear wisps of fibrils are produced which associate rapidly to form longer and wider threads, especially in 0.01 M NaCl. There is no visible attachment of the wisps to the particles. After 20 min incubation, threads with the typical morphology of cellulose microfibrils are formed that later tend to become entangled in clumps. The microfibrils are insoluble in hot, aqueous, alkaline solutions and resistant to the action of trypsin, but may be degraded by glusulase. After treatment with 1 M NaOH at 100° C or with cold 18% NaOH they show an X-ray diffraction pattern which resembles that of Cellulose II from mercerized, authentic bacterial cellulose. Incorporation of radioactive glucose into the insoluble residue is enhanced by drying of the cellulose microfibrils before alkaline digestion and especially by the addition of a gross excess of carrier cellulose after incubation. In this system there is no evidence for participation of linear, axial, synthesizing sites on the cell wall of the bacterium or for ordered, organized granules in the assembly of the microfibrils. That is, cellulose-like microfibrils may be formed in a cell-free system without the action of any of the previously suggested cell organelles. In addition, these observations are consistent with a previously described notion of a transient, hydrated, nascent, bacterial cellulose microfibril. The possibility that cellulose microfibrils of green plants may be formed in the same way is considered.N.R.C.C. 18314  相似文献   

16.
A protein that binds Concanavalin A (Con A) was detected on Western blots of Spiroplasma citri proteins. Its apparent molecular weight was 84000. It was localized in the plasma membrane. Affinity chromatography on Con A-agarose was used to isolate this protein. The glycosylation inhibitor, tunicamycin, inhibits S. citri growth and seems to block the glycosylation of the Con A-binding protein.  相似文献   

17.
Summary The anterior half of the cell surface of the parasitic flagellateProteromonas lacertae is corrugated while the posterior half is covered by hair-like appendages, called somatonemes. In the anterior part, the cortical microtubules are lined by a zig-zag shaped microfibril. Here, these two structures seem to be separated from the plasma membrane. In the posterior half of the cell the somatonemes, analogous to the mastigonemes of chrysophytes, are anchored to the cortical microtubules by paired small deposits of dense material. This was clearly demonstrated by Triton X 100 treatment which solubilized the plasma membrane but left the somatonemes attached to the cortical microtubules. Freeze-fracture images revealed the alignment of clustered intramembrane particles on the P-face of the plasma membrane which correspond to the attachment sites of the somatonemes, seen as dots in thin sections. The ER-derived membrane-associated somatonemes are probably linked to the cortical microtubules by anchoring proteins which are part of the plasma membrane.  相似文献   

18.
R. R. Dubreuil  G. B. Bouck 《Protoplasma》1988,143(2-3):150-164
Summary Surface isolates or membrane skeletons from surface isolates can maintain the cell and surface form characteristic of euglenoids. We now report that the plasma membrane alone obtained by trypsin or urea digestion of surface isolates can also maintain surface form, but the membrane skeleton is able to produce striking changes in membrane organization. Trypsin digests microtubules, the membrane skeleton and partially digests the major integral membrane protein from surface isolates but does not alter the paracrystalline plasma membrane interior. Extraction of surface isolates with 4M urea leaves an insoluble plasma membrane and a subset of proteins arranged perpendicularly to the membrane surface. To resolve further the relationship between the plasma membrane and the membrane skeleton we have perturbed membrane organization by extraction of surface isolates with NaOH and find that readdition of the extract followed by neutralization restored important features of the membrane skeleton and caused patching of the membrane interior. Biochemically, the reassembled membrane skeleton consisted of 80 and 86 kD polypeptides and other less abundant proteins, and structurally the reassembled membrane skeleton was about the same thickness as the native membrane skeleton. Reassembly of the membrane skeleton appeared to be saturatable in that addition of an excess of extract had no effect on the thickness of the membrane skeletal layer. When the 80 kD protein was depleted from the reassembly mixture by affinity chromatography using Sepharose-bound monoclonal antibodies, the amount of 86 kD protein bound was significantly reduced, suggesting a dependance of 86 kD protein on 80 kD binding. A urea soluble fraction enriched in the 80 and 86 kD proteins was added to alkali-stripped membranes and 170 Å filaments were formed perpendicularly to the membrane surface. From the sum of these experiments we suggest that a) the native amorphous membrane skeleton ofEuglena may consist of a framework of 80 and 86 kD filaments arranged in a brush-like layer, b) the framework can direct plasma membrane organization, but once determined, membrane form remains stable to urea and trypsin but not to alkali, and c) new surface growth can in theory occur as an expansion of the brush-like layer by direct intercalation of filaments enriched in or consisting wholly of 80 and 86 kD proteins.Abbreviations BSA bovine serum albumin - ELISA enzyme linked immunosorbant assay - EF ectoplasmic fracture face - IMPs intramembrane particles - PF protoplasmic fracture face This work was supported by a University of Illinois Fellowship to RRD and NSF grant DCB-8602793 to GBB.  相似文献   

19.
We have previously evaluated the neuroprotective effect of catalpol on aging mice induced by d-galactose, in which catalpol treatment ameliorated cognition deficits and attenuated oxidative damage in mice brain. To thoroughly elucidate the anti-aging effects of catalpol, the liver and spleen antioxidative systems and energy metabolism in senescent mice induced by d-galactose have been studied. Except control group, mice were subcutaneously injected with d-galactose (150 mg kg−1 body weight) for 6 weeks. Meanwhile, drug group mice were treated with catalpol (2.5, 5, 10 mg kg−1 body weight) and piracetam (300 mg kg−1 body weight) for the last 2 weeks. The activities of endogenous antioxidants and the level of glutathione (GSH) and lipid peroxide in the liver and spleen were assayed. Compared to control group, model group mice had significantly lower spleen index (spleen weight/body weight), lower level of GSH, lower activities of superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX), higher level of malondialdehyde (MDA) in the liver and spleen. However, catalpol administration markedly reversed these effects of senescence induced by d-galactose. Simultaneously, catalpol noticeably elevated the decreased activities of lactate dehydrogenase (LDH), glutamine synthetase (GS), Na+-K+-ATPase, Ca2+-Mg2+-ATPase and decreased the elevated activity of creatine kinase (CK) in mice liver or spleen. These results implied that the anti-aging effects of catalpol were achieved at least partly by promoting endogenous antioxidant enzyme activities and normalizing energy disturbance. Catalpol may be a potential anti-aging agent and worth testing for further preclinical study aimed for senescence or neurodegenerative diseases such as Alzheimer's and Parkinson's diseases.  相似文献   

20.
Several calcium-dependent protein kinases (CDPKs) are located in plant plasma membranes where they phosphorylate enzymes and transporters, like the H+-ATPase and water channels, thereby regulating their activities. In order to determine which kinases phosphorylate the H+-ATPase, a calcium-dependent kinase was purified from beetroot (Beta vulgaris L.) plasma membranes by anion-exchange chromatography, centrifugation in glycerol gradients and hydrophobic interaction chromatography. The kinetic parameters of this kinase were determined (V max: 3.5 μmol mg−1 min−1, K m for ATP: 67 μM, K m for syntide 2: 15 μM). The kinase showed an optimum pH of 6.8 and a marked dependence on low-micromolar Ca2+ concentrations (K d : 0.77 μM). During the purification procedure, a 63-kDa protein with an isoelectric point of 4.7 was enriched. However, this protein was shown not to be a kinase by mass spectrometry. Kinase activity gels showed that a 50-kDa protein could be responsible for most of the activity in purified kinase preparations. This protein was confirmed to be a CDPK by mass spectrometry, possibly the red beet ortholog of rice CDPK2 and Arabidopsis thaliana CPK9, both found associated with membranes. This kinase was able to phosphorylate purified H+-ATPase in a Ca2+-dependent manner.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号