首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. The concentrations of free ATP, phosphocreatine (PCr), Pi, H+ and ADP (calculated) were monitored in perfused rat hearts by 31P n.m.r. before and during positive inotropic stimulation. Data were accumulated in 20 s blocks. 2. Administration of 0.1 microM-(-)-isoprenaline resulted in no significant changes in ATP, transient decreases in PCr, and transient increases in ADP and Pi. However, the concentrations of all of these metabolites returned to pre-stimulated values within 1 min, whereas cardiac work and O2 uptake remained elevated. 3. In contrast, in hearts perfused continuously with Ruthenium Red (2.5 micrograms/ml), a potent inhibitor of mitochondrial Ca2+ uptake, administration of isoprenaline caused significant decreases in ATP, and also much larger and more prolonged changes in the concentrations of ADP, PCr and Pi. In this instance values did not fully return to pre-stimulated concentrations. Administration of Ruthenium Red alone to unstimulated hearts had minor effects. 4. It is proposed that, in the absence of Ruthenium Red, the transmission of changes in cytoplasmic Ca2+ across the mitochondrial inner membrane is able to maintain the phosphorylation potential of the heart during positive inotropic stimulation, through activation of the Ca2+-sensitive intramitochondrial dehydrogenases (pyruvate, NAD+-isocitrate and 2-oxoglutarate dehydrogenases) leading to enhanced NADH production. 5. This mechanism is unavailable in the presence of Ruthenium Red, and oxidative phosphorylation must be stimulated primarily by a fall in phosphorylation potential, in accordance with the classical concept of respiratory control. However, the full oxidative response of the heart to stimulation may not be achievable under such circumstances.  相似文献   

2.
The sensitivity of rat epididymal-adipose-tissue pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase to Ca2+ ions was studied both in mitochondrial extracts and within intact coupled mitochondria. It is concluded that all three enzymes may be activated by increases in the intramitochondrial concentration of Ca2+ and that the distribution of Ca2+ across the mitochondrial inner membrane is determined, as in rat heart mitochondria, by the relative activities of a uniporter (which transports Ca2+ into mitochondria and is inhibited by Mg2+ and Ruthenium Red) and an antiporter (which allows Ca2+ to leave mitochondria in exchange for Na+ and is inhibited by diltiazem). Previous studies with incubated fat-cell mitochondria have indicated that the increases in the amount of active non-phosphorylated pyruvate dehydrogenase in rat epididymal tissue exposed to insulin are the result of activation of pyruvate dehydrogenase phosphate phosphatase. In the present studies, no changes in the activity of the phosphatase were found in extracts of mitochondria, and thus it seemed likely that insulin altered the intramitochondrial concentration of some effector of the phosphatase. Incubation of rat epididymal adipose tissue with medium containing a high concentration of CaCl2 (5mM) was found to increase the active form of pyruvate dehydrogenase to much the same extent as insulin. However, the increases caused by high [Ca2+] in the medium were blocked by Ruthenium Red, whereas those caused by insulin were not. Moreover, whereas the increases resulting from both treatments persisted during the preparation of mitochondria and their subsequent incubation in the absence of Na+, only the increases caused by treatment of the tissue with insulin persisted when the mitochondria were incubated in the presence of Na+ under conditions where the mitochondria are largely depleted of Ca2+. It is concluded that insulin does not act by increasing the intramitochondrial concentration of Ca2+. This conclusion was supported by finding no increases in the activities of the other two Ca2+-responsive intramitochondrial enzymes (NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in mitochondria prepared from insulin-treated tissue compared with controls.  相似文献   

3.
Adrenaline resulted in a reversible 4-fold increase in the amount of pyruvate dehydrogenase in its active non-phosphorylated form in the perfused rat heart within 1 min. The increase was less in extent in hearts from starved or diabetic rats or in hearts from control rats oxidizing acetate, unless pyruvate was added to the perfusion medium. Increases could also be induced by other inotropic agents, supporting the hypothesis that increases in cytoplasmic Ca2+ can be relayed into mitochondria and influence oxidative metabolism.  相似文献   

4.
The regulatory properties of the Ca2+-sensitive intramitochondrial enzymes (pyruvate dehydrogenase phosphate phosphatase, NAD+-isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase) in extracts of rat liver mitochondria appeared to be essentially similar to those described previously for other mammalian tissues. In particular, the enzymes were activated severalfold by Ca2+, with half-maximal effects at about 1 microM-Ca2+ (K0.5 value). In intact rat liver mitochondria incubated in a KCl-based medium containing 2-oxoglutarate and malate, the amount of active, non-phosphorylated, pyruvate dehydrogenase could be increased severalfold by increasing extramitochondrial [Ca2+], provided that some degree of inhibition of pyruvate dehydrogenase kinase (e.g. by pyruvate) was achieved. The rates of 14CO2 production from 2-oxo-[1-14C]glutarate at non-saturating, but not at saturating, concentrations of 2-oxoglutarate by the liver mitochondria (incubated without ADP) were similarly enhanced by increasing extramitochondrial [Ca2+]. The rates and extents of NAD(P)H formation in the liver mitochondria induced by non-saturating concentrations of 2-oxoglutarate, glutamate, threo-DS-isocitrate or citrate were also increased in a similar manner by Ca2+ under several different incubation conditions, including an apparent 'State 3.5' respiration condition. Ca2+ had no effect on NAD(P)H formation induced by beta-hydroxybutyrate or malate. In intact, fully coupled, rat liver mitochondria incubated with 10 mM-NaCl and 1 mM-MgCl2, the apparent K0.5 values for extramitochondrial Ca2+ were about 0.5 microM, and the effective concentrations were within the expected physiological range, 0.05-5 microM. In the absence of Na+, Mg2+ or both, the K0.5 values were about 400, 200 and 100 nM respectively. These effects of increasing extramitochondrial [Ca2+] were all inhibited by Ruthenium Red. When extramitochondrial [Ca2+] was increased above the effective ranges for the enzymes, a time-dependent deterioration of mitochondrial function and ATP content was observed. The implications of these results on the role of the Ca2+-transport system of the liver mitochondrial inner membrane are discussed.  相似文献   

5.
The metal-ion requirement of extracted and partially purified pyruvate dehydrogenase phosphate phosphatase from rat epididymal fat-pads was investigated with pig heart pyruvate dehydrogenase [(32)P]phosphate as substrate. The enzyme required Mg(2+) (K(m) 0.5mm) and was activated additionally by Ca(2+) (K(m) 1mum) or Sr(2+) and inhibited by Ni(2+). Isolated fat-cell mitochondria, like liver mitochondria, possess a respiration- or ATP-linked Ca(2+)-uptake system which is inhibited by Ruthenium Red, by uncouplers when linked to respiration, and by oligomycin when linked to ATP. Depletion of fat-cell mitochondria of 75% of their total magnesium content and of 94% of their total calcium content by incubation with the bivalent-metal ionophore A23187 leads to complete loss of pyruvate dehydrogenase phosphate phosphatase activity. Restoration of full activity required addition of both MgCl(2) and CaCl(2). SrCl(2) could replace CaCl(2) (but not MgCl(2)) and NiCl(2) was inhibitory. The metal-ion requirement of the phosphatase within mitochondria was thus equivalent to that of the extracted enzyme. Insulin activation of pyruvate dehydrogenase in rat epididymal fat-pads was not accompanied by any measurable increase in the activity of the phosphatase in extracts of the tissue when either endogenous substrate or (32)P-labelled pig heart substrate was used for assay. The activation of pyruvate dehydrogenase in fat-pads by insulin was inhibited by Ruthenium Red (which may inhibit cell and mitochondrial uptake of Ca(2+)) and by MnCl(2) and NiCl(2) (which may inhibit cell uptake of Ca(2+)). It is concluded that Mg(2+) and Ca(2+) are cofactors for pyruvate dehydrogenase phosphate phosphatase and that an increased mitochondrial uptake of Ca(2+) might contribute to the activation of pyruvate dehydrogenase by insulin.  相似文献   

6.
The ability of alpha-adrenergic agonists and vasopressin to increase the mitochondrial volume in hepatocytes is dependent on the presence of extracellular Ca2+. Addition of Ca2+ to hormone-treated cells incubated in the absence of Ca2+ initiates mitochondrial swelling. In the presence of extracellular Ca2+, A23187 (7.5 microM) induces mitochondrial swelling and stimulates gluconeogenesis from L-lactate. Isolated liver mitochondria incubated in KCl medium in the presence of 2.5 mM-phosphate undergo energy-dependent swelling, which is associated with electrogenic K+ uptake and reaches an equilibrium when the volume has increased to about 1.3-1.5 microliter/mg of protein. This K+-dependent swelling is stimulated by the presence of 0.3-1.0 microM-Ca2+, leading to an increase in matrix volume at equilibrium that is dependent on [Ca2+]. Ca2+-activated K+-dependent swelling requires phosphate and shows a strong preference for K+ over Na+, Li+ or choline. It is not associated with either uncoupling of mitochondria or any non-specific permeability changes and cannot be produced by Ba2+, Mn2+ or Sr2+. Ca2+-activated K+-dependent swelling is not prevented by any known inhibitors of plasma-membrane ion-transport systems, nor by inhibitors of mitochondrial phospholipase A2. Swelling is inhibited by 65% and 35% by 1 mM-ATP and 100 microM-quinine respectively. The effect of Ca2+ is blocked by Ruthenium Red (5 micrograms/ml) at low [Ca2+]. Spermine (0.25 mM) enhanced the swelling seen on addition of Ca2+, correlating with its ability to increase Ca2+ uptake into the mitochondria as measured by using Arsenazo-III. Mitochondria derived from rats treated with glucagon showed less swelling than did control mitochondria. In the presence of Ruthenium Red and higher [Ca2+], the mitochondria from hormone-treated animals showed greater swelling than did control mitochondria. These data imply that an increase in intramitochondrial [Ca2+] can increase the electrogenic flux of K+ into mitochondria by an unknown mechanism and thereby cause swelling. It is proposed that this is the mechanism by which alpha-agonists and vasopressin cause an increase in mitochondrial volume in situ.  相似文献   

7.
H Sies  P Graf    D Crane 《The Biochemical journal》1983,212(2):271-278
Vasopressin or alpha-adrenergic agents such as phenylephrine or adrenaline, but not glucagon, elicited an initial decrease in flux through pyruvate dehydrogenase assayed by 14CO2 production from [1-14C]pyruvate in perfused rat liver. This rapid decrease in 14CO2 production was maximal within 1-2 min of exposure, concomitant with a rise in effluent pyruvate concentration: a subsequent return towards initial values in both parameters was completed well before 5 min. This time course was superposed with Ca2+ efflux from perfused liver, maximal (at 116 nmol/min per g wet wt. of liver) at 1-2 min of exposure. The percentage of the active (dephospho) form of pyruvate dehydrogenase was not decreased at 2 min of exposure. The effect on flux through pyruvate dehydrogenase by phenylephrine was abolished by prazosine, phentolamine or phenoxybenzamine. Ionophore A23187 also caused a depression in 14CO2 production from [1-14C]pyruvate and a rise in effluent pyruvate concentration, but this effect was stable for longer times, and it was delayed when Ca2+ was omitted from the perfusion medium. Responses of phenylephrine and A23187 were not additive. The results demonstrate that under the experimental conditions employed in intact perfused liver, the mitochondrial multienzyme system of pyruvate dehydrogenase is sensitive to vasopressin, alpha-adrenergic agents and A23187. The similar time course in Ca2+ efflux may be indicative of the involvement of Ca2+ in mediating this effect.  相似文献   

8.
Activation of isometric contractile force and induction of aftercontractions by different extracellular Ca- and Sr-concentrations during the early postnatal development of the rat heart were studied. In the neonatal (1-15 days) rat heart activation of contractility by [Ca]0 and [Sr]0 were similar when a dose-response curve for Ca was determined before Sr, but if the experiment was performed in the reverse order of the dose-response curve for Sr was shifted to the left. In either case the maximal developed tension was about the same. In the adult (3-5 months) rat heart [Ca]0 higher than 4 mM was inhibitory, whereas contractile force increased up to 16 mM [Sr]0 without any signs of force depression. The dose-response curve for Sr was shifted to the right compared to that of Ca and the maximal developed tension was clearly higher in Sr-solution than in Ca-solution. Aftercontractions appeared for the first time on the 13th and 24th postnatal days for 16 mM [Ca]0 and [Sr]0, respectively. In the adult rat ventricle lower Ca concentrations were needed to induce aftercontractions compared to Sr. Based upon these observations it is suggested that the appearance of aftercontractions during the third postnatal week of rat heart development is due to the maturation of intracellular Ca stores which become available for contractile activation by the development of the T-system. The absence of a negative inotropic effect in elevated Sr concentrations may be due to the slowing down of the transport processes of the sarcoplasmic reticulum (SR) by Sr and to the greater ability of the SR to store Sr over Ca.  相似文献   

9.
The effect of human adrenomedullin, human amylin fragment 8-37 (amylin 8-37) and rat calcitonin gene-related peptide (CGRP) on contractile force, heart rate and coronary perfusion pressure has been investigated in the isolated perfused rat hearts. Adrenomedullin (2x10(-10), 2x10(-9) and 2x10(-8) M) produced a significant decrease in contractile force and perfusion pressure, but only the peptide caused a decline in heart rate at the highest dose. Amylin (10(-9), 10(-8) and 10(-7) M) significantly increased and then decreased contractile force. Two doses of amylin (10(-8) and 10(-7) M) induced a significant increase in heart rate, however amylin did not change perfusion pressure in all the doses used. Rat alpha CGRP (10(-8), 10(-7) and 10(-6) M) evoked a slight decline in contractile force following a significant increase in contractile force induced by the peptide. CGRP in all the doses raised heart rate and lowered perfusion pressure. Our results suggest that adrenomedullin has negative inotropic, negative chronotropic and coronary vasodilator actions. Amylin produces a biphasic inotropic effect and evokes a positive chronotropy. CGRP causes positive inotropic, positive chronotropic and vasodilatory effects in isolated rat hearts.  相似文献   

10.
Regulation of citric acid cycle by calcium   总被引:2,自引:0,他引:2  
The relationship of extramitochondrial Ca2+ to intramitochondrial Ca2+ and the influence of intramitochondrial free Ca2+ concentrations on various steps of the citric acid cycle were evaluated. Ca2+ was measured using the Ca2+ sensitive fluorescent dye fura-2 trapped inside the rat heart mitochondria. The rate of utilization of specific substrates and the rate of accumulation of citric acid cycle intermediates were measured at matrix free Ca2+ ranging from 0 to 1.2 microM. A change in matrix free Ca2+ from 0 to 0.3 microM caused a 135% increase in ADP stimulated oxidation of 0.6 mM alpha-ketoglutarate (K0.5 = 0.15 microM). In the absence of ADP and the presence of 0.6 mM alpha-ketoglutarate, Ca2+ (0.3 microM) increased NAD(H) reduction from 0 to 40%. On the other hand, when pyruvate (10 microM to 5 mM) was substrate, pyruvate dehydrogenase flux was insensitive to Ca2+ and isocitrate dehydrogenase was sensitive to Ca2+ only in the presence of added ADP. In separate experiments pyruvate dehydrogenase activation (dephosphorylation) was measured. Under the conditions of the present study, pyruvate dehydrogenase was found to be almost 100% activated at all levels of Ca2+, thus explaining the Ca2+ insensitivity of the flux measurements. However, if the mitochondria were incubated in the absence of pyruvate, with excess alpha-ketoglutarate and excess ATP, the pyruvate dehydrogenase complex was only 20% active in the absence of added Ca2+ and activity increased to 100% at 2 microM Ca2+. Activation by Ca2+ required more Ca2+ (K0.5 = 1 microM) than for alpha-ketoglutarate dehydrogenase. The data suggest that in heart mitochondria alpha-ketoglutarate dehydrogenase may be a more physiologically relevant target of Ca2+ action than pyruvate dehydrogenase.  相似文献   

11.
The total activity of pyruvate dehydrogenase in mitochondria isolated from rat brain and liver was 53.5 and 14.2nmol/min per mg of protein respectively. Pyruvate dehydrogenase in liver mitochondria incubated for 4 min at 37 degrees C with no additions was 30% in the active form and this activity increased with longer incubations until it was completely in the active form after 20 min. Brain mitochondrial pyruvate dehydrogenase activity was initially high and did not increase with addition of Mg2+ plus Ca2+ or partially purified pyruvate dehydrogenase phosphatase or with longer incubations. The proportion of pyruvate dehydrogenase in the active form in both brain and liver mitochondria changed inversely with changes in mitochondrial energy charge, whereas total pyruvate dehydrogenase did not change. The chelators citrate, isocitrate, EDTA, ethanedioxybis(ethylamine)tetra-acetic acid and Ruthenium Red each lowered pyruvate dehydrogenase activity in brain mitochondria, but only citrate and isocitrate did so in liver mitochondria. These chelators did not affect the energy charge of the mitochondria. Mg2+ plus Ca2+ reversed the pyruvate dehydrogenase inactivation in liver, but not brain, mitochondria. The regulation of the activation-inactivation of pyruvate dehydrogenase in mitochondria from rat brain and liver with respect to energy charge is similar and may be at least partially regulated by this parameter, and the effects of chelators differ in the two types of mitochondria.  相似文献   

12.
The proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart was decreased by alloxan-diabetes or by perfusion with media containing acetate, n-octanoate or palmitate. The total activity of the dehydrogenase was unchanged. 2. Pyruvate (5 or 25mM) or dichloroacetate (1mM) increased the proportion of active (dephosphorylated) pyruvate dehydrogenase in perfused rat heart, presumably by inhibiting the pyruvate dehydrogenase kinase reaction. Alloxan-diabetes markedly decreased the proportion of active dehydrogenase in hearts perfused with pyruvate or dichloroacetate. 3. The total activity of pyruvate dehydrogenase in mitochondria prepared from rat heart was unchanged by diabetes. Incubation of mitochondria with 2-oxo-glutarate plus malate increased ATP and NADH concentrations and decreased the proportion of active pyruvate dehydrogenase. The decrease in active dehydrogenase was somewhat greater in mitochondria prepared from hearts of diabetic rats than in those from hearts of non-diabetic rats. Pyruvate (0.1-10 mM) or dichloroacetate (4-50 muM) increased the proportion of active dehydrogenase in isolated mitochondria presumably by inhibition of the pyruvate dehydrogenase kinase reaction. They were much less effective in mitochondria from the hearts of diabetic rats than in those of non-diabetic rats. 4. The matrix water space was increased in preparations of mitochondria from hearts of diabetic rats. Dichloroacetate was concentrated in the matrix water of mitochondria of non-diabetic rats (approx. 16-fold at 10 muM); mitochondria from hearts of diabetic rats concentrated dichloroacetate less effectively. 5. The pyruvate dehydrogenase phosphate phosphatase activity of rat hearts and of rat heart mitochondria (approx. 1-2 munit/unit of pyruvate dehydrogenase) was not affected by diabetes. 6. The rate of oxidation of [1-14C]pyruvate by rat heart mitochondria (6.85 nmol/min per mg of protein with 50 muM-pyruvate) was approx. 46% of the Vmax. value of extracted pyruvate dehydrogenase (active form). Palmitoyl-L-carnitine, which increased the ratio of [acetyl-CoA]/[CoA] 16-fold, inhibited oxidation of pyruvate by about 90% without changing the proportion of active pyruvate dehydrogenase.  相似文献   

13.
Administration of methoxamine (10 microM, 2 min) to perfused rat hearts increased the rate at which subsequently isolated mitochondria accumulated Ca2+. Methoxamine did not change significantly the development of delta phi with time or the basal rates of Ca2+ flux on inhibition of the uniporter with Ruthenium Red. With 200 microM-Pi, the rates of Ca2+ uptake at constant delta phi were unaffected by the small variations in endogenous [Pi] between mitochondrial preparations, and were also unaffected by changes in internal Ca2+ over the approximate range 8-43 nmol of Ca2+/mg. At low internal Ca2+ (about 8 nmol/mg of protein) the rates of Ca2+ uptake at constant delta phi were unaffected by addition of 200 microM-Pi. Under these conditions, the uniporter activity and the uniporter conductance were increased by 38-40% by methoxamine pretreatment. The endogenous Ca2+ content of mitochondria from control heart was about 1.8 nmol of Ca2+/mg of protein. Perfusion with agonist increased the Ca2+ content as follows: 10 microM-methoxamine (2 min), 48%; 1 microM-isoprenaline (2 min), 100%; 1 microM-adrenaline (2 min), 140%. The implications of the data for the adrenergic control of oxidative metabolism by intramitochondrial Ca2+ is discussed.  相似文献   

14.
Rat heart mitochondria respiring on succinate in the presence of Ruthenium Red (to inhibit uptake on the Ca2+ uniporter) released Ca2+ on the calcium/sodium antiporter until a steady state was reached. Addition of the ionophore A23187 (which catalyses Ca2+/2H+ exchange) did not perturb this steady state. Thermodynamic analysis showed that if a Ca2+/nNa+ exchange with any value of n other than 2 was at equilibrium, addition of A23187 would cause an obvious change in extramitochondrial free [Ca2+]. Therefore the endogenous calcium/sodium antiporter of mitochondria catalyses electroneutral Ca2+/2Na+ exchange.  相似文献   

15.
1. Monochloroacetate, dichloroacetate, trichloroacetate, difluoroacetate, 2-chloropropionate, 2,2'-dichloropropionate and 3-chloropropionate were inhibitors of pig heart pyruvate dehydrogenase kinase. Dichloroacetate was also shown to inhibit rat heart pyruvate dehydrogenase kinase. The inhibition was mainly non-competitive with respect to ATP. The concentration required for 50% inhibition was approx. 100mum for the three chloroacetates, difluoroacetate and 2-chloropropionate and 2,2'-dichloropropionate. Dichloroacetamide was not inhibitory. 2. Dichloroacetate had no significant effect on the activity of pyruvate dehydrogenase phosphate phosphatase when this was maximally activated by Ca(2+) and Mg(2+). 3. Dichloroacetate did not increase the catalytic activity of purified pig heart pyruvate dehydrogenase. 4. Dichloroacetate, difluoroacetate, 2-chloropropionate and 2,2'-dichloropropionate increased the proportion of the active (dephosphorylated) form of pyruvate dehydrogenase in rat heart mitochondria with 2-oxoglutarate and malate as respiratory substrates. Similar effects of dichloroacetate were shown with kidney and fat-cell mitochondria. Glyoxylate, monochloroacetate and dichloroacetamide were inactive. 5. Dichloroacetate increased the proportion of active pyruvate dehydrogenase in the perfused rat heart, isolated rat diaphragm and rat epididymal fat-pads. Difluoroacetate and dichloroacetamide were also active in the perfused heart, but glyoxylate, monochloroacetate and trichloroacetate were inactive. 6. Injection of dichloroacetate into rats starved overnight led within 60 min to activation of pyruvate dehydrogenase in extracts from heart, psoas muscle, adipose tissue, kidney and liver. The blood concentration of lactate fell within 15 min to reach a minimum after 60 min. The blood concentration of glucose fell after 90 min and reached a minimum after 120 min. There was no significant change in plasma glycerol concentration. 7. In epididymal fatpads dichloroacetate inhibited incorporation of (14)C from [U-(14)C]glucose, [U-(14)C]fructose and from [U-(14)C]lactate into CO(2) and glyceride fatty acid. 8. It is concluded that the inhibition of pyruvate dehydrogenase kinase by dichloroacetate may account for the activation of pyruvate dehydrogenase and pyruvate oxidation which it induces in isolated rat heart and diaphragm muscles, subject to certain assumptions as to the distribution of dichloroacetate across the plasma membrane and the mitochondrial membrane. 9. It is suggested that activation of pyruvate dehydrogenase by dichloroacetate could contribute to its hypoglycaemic effect by interruption of the Cori and alanine cycles. 10. It is suggested that the inhibitory effect of dichloroacetate on fatty acid synthesis in adipose tissue may involve an additional effect or effects of the compound.  相似文献   

16.
1. Rat hearts were perfused with 32Pi, and contractile force was increased by positive inotropic agents (agents that increase contractility). The inhibitory subunit of troponin (troponin I) was then isolated by affinity chromatography in 8M-urea, and its 32P content measured. Incorporation of phosphate into the subunit was calculated on the basis of the [gamma-32P]ATP specific radioactivity in the hearts. 2. When hearts were perfused with 30 nM-DL-isoprenaline (N-isopropylnoradrenaline), there was an increase in contractile force over 30s which was paralleled by an increase in troponin I phosphorylation. When hearts were perfused for 25s with increasing concentrations of isoprenaline from 1 NM to 0.6 muM, there was again a parallel increase in contractile force and troponin I phosphorylation. The maximum phosphorylation observed was 1.5 mol of phosphate/mol of troponin I, which was reached after 25s with 0.1 muM-isoprenaline. 3. Hearts were stimulated with a 15s pulse perfusion of 30nM-DL-isoprenaline. There was an increase in contractile force which was followed by a return to the control value within 50s. Troponin I phosphorylation increased to a plateau value which was reached within 30s, and remained constant for 60s after the isoprenaline pulse. Phosphorylase a and 3':5'-cyclic AMP concentration showed changes similar to that of the contractile force. There was no change in 3':5'-cyclic GMP concentration. 4. When hearts stimulated with a 15S pulse of isoprenaline were subsequently perfused with 0.6 muM-acetylcholine, the changes in contractile force, phosphorylase a and 3':5'-cyclic AMP were very similar to those seen with the 15s pulse of isoprenaline alone. Troponin I phosphorylation increased to a maximum 30s after the end of the isoprenaline pulse, but then rapidly decreased during the subsequent 30s. This decrease was preceded by a 60% increase in the concentration of 3':5'-cyclic GMP. 5. Hearts were perfused with 0.2 muM-glucagon for periods up to 60s. Contractile force showed little change for the first 30s, but then increased rapidly. This was paralleled by changes in 3':5'-cyclic AMP concentration. Troponin I phosphorylation increased slowly, but the increase in contractile force had reached a maximum before significant phosphorylation had occurred. 6. It is concluded that under certain conditions, e.g. immediately after beta-adrenergic stimulation, there is a good correlation between contractile force and troponin I phosphorylation. However, under other conditions, e.g. when contractile force is decreasing after removal of beta-adrenergic stimulation or in the presence of glucagon, contractile force and troponin I phosphorylation are not well correlated. These results suggest that mechanisms for modifying cardiac contractility, other than troponin I phosphorylation, must be present in rat heart.  相似文献   

17.
The effect of the mitochondrial pyruvate transport inhibitors, α-cyanocinnamate and α-cyano-4-hydroxycinnamate, on the regulation of the pyruvate dehydrogenase multienzyme complex was investigated in the isolated perfused rat heart. Metabolic flux through pyruvate dehydrogenase was monitored by measuring 14CO2 production from [1-14C]pyruvate infused into the heart. A stepwise increase in the concentration of the inhibitor in the influent perfusate effected a stepwise reduction of the flux through the enzyme complex at all pyruvate concentrations tested. However, the magnitude of the α-cyanocinnamate-insensitive flux through pyruvate dehydrogenase increased markedly as the infused pyruvate concentration was elevated. The inhibition of pyruvate decarboxylation in the heart was nearly completely reversed following cessation of the inhibitor infusion. α-Cyanocinnamate was nearly 10 times more potent than α-cyano-4-hydroxycinnamate as an inhibitor of the flux through pyruvate dehydrogenase. Maximally inhibiting levels of α-cyano-4-hydroxycinnamate caused an increase in the ratio of the active form of pyruvate dehydrogenase to the total extractable enzyme complex from a value of 0.5 at 1 mm infused pyruvate (in the absence of the inhibitor) to a value of near unity. This result indicated that the intramitochondrial pyruvate concentration was severely depleted by the infusion of the inhibitor and that the enzyme complex was interconverted to its active form under these conditions. Removal of the inhibitor from the perfusion medium again lowered the ratio of the active/total pyruvate dehydrogenase to near its original level of 0.5 and restored the original flux through the enzyme complex indicating that mitochondrial pyruvate transport has been restored. The results of this study indicate that α-cyanocinnamate and its derivatives are effective inhibitors of pyruvate transport in the perfused heart and that carrier-mediated pyruvate transport can be an important parameter in the regulation of the activation state and the metabolic flux through the pyruvate dehydrogenase multienzyme complex in the heart.  相似文献   

18.
The proportion of pyruvate dehydrogenase existing in the active form (PDHA) in suspensions of unstimulated cardiac myocytes oxidizing glucose is approx. 30%. Depolarization of the cells with concentrations of K+ above physiological values leads to an increase in the content of PDHA. Overloading of the cells with Na+ by treatment with veratridine and ouabain gives the same result. Each of these interventions is shown in experiments with Quin 2-loaded myocytes to lead to an increase in cytosolic free Ca2+ concentration ([Ca2+]c). Treatment of the cells with Ruthenium Red, an inhibitor of Ca2+ transport into mitochondria, largely prevents an increase in PDHA in response to addition of KCl or of veratridine plus ouabain. Ruthenium Red does not attenuate the increase in [Ca2+]c that occurs under these conditions. By contrast, treatment of the cells with ryanodine, an inhibitor of sarcoplasmic-reticulum Ca2+ transport and therefore of contraction, does not diminish the response of PDHA content to agents which raise [Ca2+]c; nor does loading of the cells with the Ca2+-chelating agent Quin 2, which also prevents contraction, at appropriate concentrations. It is concluded that an increase in [Ca2+]c causes an increase in PDHA content of cardiac myocytes independently of an increase in mechanical work. In the normal physiological situation the activation of dehydrogenases by Ca2+ is thought to help to maintain the balance of energy supply and demand during periods of increased work-load, which are associated with an increased myoplasmic [Ca2+]c.  相似文献   

19.
Increases in the amount of active, non-phosphorylated, pyruvate dehydrogenase which result from the perfusion of rat hearts with adrenaline were still evident during the preparation of mitochondria in sucrose-based media containing EGTA (at 0 degrees C) and their subsequent incubation at 30 degrees C in Na+-free KCl-based media containing respiratory substrates and EGTA. The differences from control values gradually diminished with time of incubation, but were still present after 8 min. Similar increases resulting from an increase in the concentration of Ca2+ in the perfusing medium also persisted. However, similar increases caused by 5 mM-pyruvate were only maintained during the preparation of mitochondria, not their incubation. Parallel increases, within incubated mitochondria, were found in the activity of the 2-oxoglutarate dehydrogenase complex assayed at a non-saturating concentration of 2-oxoglutarate. The enhancement of the activities of both of these Ca2+-sensitive enzymes within incubated mitochondria as a result of perfusion with adrenaline or a raised concentration of Ca2+ in the medium could be abolished within 1 min by the presence of 10 mM-NaCl. This effect of Na+ was blocked by 300 microM-diltiazem, which has been shown to inhibit Na+-induced egress of Ca2+ from rabbit heart mitochondria [Vághy, Johnson, Matlib, Wang & Schwartz (1982) J. Biol. Chem. 257, 6000-6002]. The enhancements could also be abolished by increasing the extramitochondrial concentration of Ca2+ to a value where it caused maximal activation of the enzymes within control mitochondria. The results are consistent with the hypothesis that adrenaline activates rat heart pyruvate dehydrogenase by increasing the intramitochondrial concentration of Ca2+ and that this increase persists through to incubated mitochondria. Support for this conclusion was obtained by the yielding of a similar set of results from parallel experiments performed on control mitochondria that had firstly been preincubated (under conditions of steady-state Ca2+ cycling across the inner membrane) with sufficient proportions of Ca-EGTA buffers to achieve a similar degree of Ca2+-activation of pyruvate dehydrogenase (as caused by adrenaline) and had then undergone the isolation procedure again.  相似文献   

20.
Isolated perfused rat hearts were used to compare the effects of the synthetic neuropeptide Y (NPY) and 4-norleucine-NPY on cardiac function. Each peptide exhibited both negative inotropic and chronotropic effects, and also caused coronary vasoconstriction leading to a reduction in coronary flow. A comparison of the IC50 values from dose-response curves using 10(-14) to 10(-7) M peptides (IC50 is the peptide concentration that produced a 50% decrease of the maximal effect) indicated that NPY was more potent as inhibitor of contractility and less potently inhibited coronary flow and heart rate, whereas 4-norleucine-NPY had more inhibitory influence on coronary flow and heart rate and less on cardiac contractility. This difference in potencies suggests that the inhibitory effects of NPY on contractility, coronary flow and heart rate may be independent of each other. Since NPY also decreased the contractile force of isolated left atrial and right ventricular strips of the rat heart, the coronary flow decrease cannot be the cause of the negative inotropy of isolated heart. Pretreatment of atrial and ventricular strips with NPY did not influence the positive inotropic effect produced by the cardiac glycoside ouabain indicating that sarcolemmal Na+, K+-ATPase was not involved in the inhibitory inotropic effect of NPY. Further studies towards elucidating the mechanism of the negative inotropy of cardiac muscles using isolated heart mitochondria revealed that NPY uncoupled oxidative phosphorylation and blocked mitochondrial calcium uptake; the former event fosters negative inotropy. Since these effects on mitochondria occurred at concentrations 100-fold higher than those required for negative inotropy, the two effects of NPY may not be related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号