首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The human skull is a complex and highly integrated structure that has long held the fascination of anthropologists and evolutionary biologists. Recent studies of the genetics of craniofacial variation reveal a very complex and multifactorial picture. These findings contrast with older ideas that posit much simpler developmental bases for variation in cranial morphology such as the growth of the brain or the growth of the chondrocranium relative to the dermatocranium. Such processes have been shown to have major effects on cranial morphology in mice. It is not known, however, whether they are relevant to explaining normal phenotypic variation in humans. To answer this question, we obtained vectors of shape change from mutant mouse models in which the developmental basis for the craniofacial phenotype is known to varying degrees, and compared these to a homologous dataset constructed from human crania obtained from a single population with a known genealogy. Our results show that the shape vectors associated with perturbations to chondrocranial growth, brain growth, and body size in mice do largely correspond to axes of covariation in humans. This finding supports the view that the developmental basis for craniofacial variation funnels down to a relatively small number of key developmental processes that are similar across mice and humans. Understanding these processes and how they influence craniofacial shape provides fundamental insights into the developmental basis for evolutionary change in the human skull as well as the developmental-genetic basis for normal phenotypic variation in craniofacial form.  相似文献   

2.
The procrustes superimposition method is well adapted to heterochronic studies in the field of evolutionary biology. 1) The procrustes method gives a precise and mathematical definition of two of the three heterochronic variables: size and shape. 2) It allows us to describe complex anatomical structures and thus to analyse the whole structure and not just to proceed trait by trait. 3) The approach is statistical and the different hypotheses and results may be statistically tested. 4) When applied to heterochronies the method allows us to test if there is a common shape change related to allometry. In the present study of three species of Hominoid primates, the procrustes superimposition reveals that various heterochronic processes are simultaneously present. Size-age-shape dissociations between species, already present in the first ontogenetic stage, are amplified with growth until adult stage. As compared with that of the chimpanzee, the growth of the gorilla skull is accelerated in terms of size-shape covariation and size alone. The growth of the human skull is neotenic as compared with that of the apes.  相似文献   

3.
4.
Heterochronic studies compare ontogenetic trajectories of an organ in different species: here, the skulls of common chimpanzees and modern humans. A growth trajectory requires three parameters: size, shape, and ontogenetic age. One of the great advantages of the Procrustes method is the precise definition of size and shape for whole organs such as the skull. The estimated ontogenetic age (dental stages) is added to the plot to give a graphical representation to compare growth trajectories. We used the skulls of 41 Homo sapiens and 50 Pan troglodytes at various stages of growth. The Procrustes superimposition of all specimens was completed by statistical procedures (principal component analysis, multivariate regression, and discriminant function) to calculate separately size-related shape changes (allometry common to chimpanzees and humans), and interspecific shape differences (discriminant function). The results confirm the neotenic theory of the human skull (sensu Gould [1977] Ontogeny and Phylogeny, Cambridge: Harvard University Press; Alberch et al. [1979] Paleobiology 5:296-317), but modify it slightly. Human growth is clearly retarded in terms of both the magnitude of changes (size-shape covariation) and shape alone (size-shape dissociation) with respect to the chimpanzees. At the end of growth, the adult skull in humans reaches an allometric shape (size-related shape) which is equivalent to that of juvenile chimpanzees with no permanent teeth, and a size which is equivalent to that of adult chimpanzees. Our results show that human neoteny involves not only shape retardation (paedomorphosis), but also changes in relative growth velocity. Before the eruption of the first molar, human growth is accelerated, and then strongly decelerated, relative to the growth of the chimpanzee as a reference. This entails a complex process, which explains why these species reach the same overall (i.e., brain + face) size in adult stage. The neotenic traits seem to concern primarily the function of encephalization, but less so other parts of the skull. Our results, based on the discriminant function, reveal that additional structural traits (corresponding to the nonallometric part of the shape which is specific to humans) are rather situated in the other part of the skull. They mainly concern the equilibrium of the head related to bipedalism, and the respiratory and masticatory functions. Thus, the reduced prognathism, the flexed cranial base (forward position of the foramen magnum which is brought closer to the palate), the reduced anterior portion of the face, the reduced glabella, and the prominent nose mainly correspond to functional innovations which have nothing to do with a neotenic process in human evolution. The statistical analysis used here gives us the possibility to point out that some traits, which have been classically described as paedomorphic because they superficially resemble juvenile traits, are in reality independent of growth.  相似文献   

5.
Despite the fact that heterochronic processes seem to be an important process determining morphological evolution of the delphinid skull, previous workers have not found allometric scaling as relevant factor in the differentiation within the genus Sotalia. Here we analyzed the skull ontogeny of the estuarine dolphin S. guianensis and investigate differential growth and shape changes of two cranial regions – the neurocranium and the face – in order to evaluate the relevance of cranial compartmentalization on the ontogeny of this structure. Our results show that, even though both cranial regions stop growing at adulthood, the face has higher initial growth rates than the neurocranium. The rate of shape changes is also different for both regions, with the face showing a initially higher, but rapidly decreasing rate of change, while the neurocranium shows a slow decreasing rate, leading to persistent and localized shape changes throughout adult life, a pattern that could be related to epigenetic regional factors. The pattern of ontogenetic shape change described here is similar to those described for other groups of Delphinidae and also match intra and interspecific variation found within the family, suggesting that mosaic heterochrony could be an important factor in the morphological evolution of this group.  相似文献   

6.
Canalization may play a critical role in molding patterns of integration when variability is regulated by the balance between processes that generate and remove variation. Under these conditions, the interaction among those processes may produce a dynamic structure of integration even when the level of variability is constant. To determine whether the constancy of variance in skull shape throughout most of postnatal growth results from a balance between processes generating and removing variation, we compare covariance structures from age to age in two rodent species, cotton rats (Sigmodon fulviventer) and house mice (Mus musculus domesticus). We assess the overall similarity of covariance matrices by the matrix correlation, and compare the structures of covariance matrices using common subspace analysis, a method related to common principal components (PCs) analysis but suited to cases in which variation is so nearly spherical that PCs are ambiguous. We find significant differences from age to age in covariance structure and the more effectively canalized ones tend to be least stable in covariance structure. We find no evidence that canalization gradually and preferentially removes deviations arising early in development as we might expect if canalization results from compensatory differential growth. Our results suggest that (co)variation patterns are continually restructured by processes that equilibrate variance, and thus that canalization plays a critical role in molding patterns of integration.  相似文献   

7.
In this study, we explore skull size and shape variation in the smooth newt, a taxon with substantial morphological differentiation and complex phylogeographic relations. By projecting phylogenies into the morphospace of the skull shape, we explore the variation in and differentiation of this complex morphological structure within a phylogenetic framework. For these analyses, we used a dataset that covers the most southern part of the species’ distribution range, including all conventionally recognized subspecies. The study revealed different patterns of divergence in skull shape between sexes, which is paralleled by intraspecific differentiation. The divergence in dorsal skull shape is concordant with the phylogenetic divergence, as the most diverged clades of the smooth newt (Lissotriton vulgaris kosswigi and Lissotriton vulgaris lantzi) exhibit a skull shape that significantly diverges from the smooth newt’s mean shape configuration. The results of this study also indicate that ventral skull portion, which is more directly related to feeding and foraging, shows higher variation between populations than dorsal skull portion, which appears to be less variable and phylogenetically informative.  相似文献   

8.
It has long been unclear whether the different derived cranial traits of modern humans evolved independently in response to separate selection pressures or whether they resulted from the inherent morphological integration throughout the skull. In a novel approach to this issue, we combine evolutionary quantitative genetics and geometric morphometrics to analyze genetic and phenotypic integration in human skull shape. We measured human skulls in the ossuary of Hallstatt (Austria), which offer a unique opportunity because they are associated with genealogical data. Our results indicate pronounced covariation of traits throughout the skull. Separate simulations of selection for localized shape changes corresponding to some of the principal derived characters of modern human skulls produced outcomes that were similar to each other and involved a joint response in all of these traits. The data for both genetic and phenotypic shape variation were not consistent with the hypothesis that the face, cranial base, and cranial vault are completely independent modules but relatively strongly integrated structures. These results indicate pervasive integration in the human skull and suggest a reinterpretation of the selective scenario for human evolution where the origin of any one of the derived characters may have facilitated the evolution of the others.  相似文献   

9.
Surface plasmon resonance (SPR)-based differential phase analysis has been presented. Real as well as complex plane analysis of resonance parameters have been undertaken for the optimum selection of metal thicknesses in a bimetallic SPR configuration working under both angular and spectral regime. Theoretically, we can characterize the aqueous solution in terms of this differential phase variation due to the variation of sample parameters such as concentration and temperature. In this respect, two case studies, namely, concentration of hemoglobin in human blood and sensing of temperature of water have been demonstrated and proposed theoretically. By monitoring the change of differential phase, proposed approach leads to a very sensitive measurement of concentration and temperature.  相似文献   

10.
Presented is a brief overview of basic principles and notions of geometric morphometrics, a new approach to quantitative analysis of shape variations. This approach is applied to analysis of variation of the skull shape in the sample of 18 muroid genera belonging to the families Cricetidae, Arvicolidae and Gerbillidae. The skull shape is described by landmarks, and skulls are compared by resistant fit and superimposition methods. Under consideration is relation of skull shape to the trophic specialization, to family belonging, and to body size. Axial skull reveals more conspicuous relation to each of the factor analyzed as compared to mandible. Zygomatic region and tooth raw are most differentiable, while change of auditory bulla is of secondary effect. Transition from omnivorous through granivorous to grass-eating specialization involves the same trend in each of the family studied in the case of axial skull but not of mandible. Most dependent of trophic specialization appeared to be shape of axial skull rather then of mandible. Arvicolines are most specific in respect to the skull shape. Shape to size relation, although rather slight, also involves the same zygomatic-dental region. The results obtained indicate probably that geometric morphometrics does reveal variations in the skull shape that are free of the size effect.  相似文献   

11.
12.
Age factor and the pattern of change in craniofacial structures   总被引:1,自引:0,他引:1  
Today special emphasis is being placed upon the understanding of human aging and this study is an attempt to shed light on the craniofacial complex during the later years. Postcranial skeletal alteration is clear and it is now evident that cranial and facial structures are no exception to the aging process. The longitudinal information presented here indicates continuing overall growth from early adulthood to later life. The cranium thickens and the skull diameter increases. Endocranial dimensions enlarge as well. This suggests larger overall skull size and expansion of the cranial cavity. The visceral cranial structures also participate in the continuing growth process. Enlargement in all areas seems to be of similar magnitude except for skull thickness, sella turcica, and frontal sinus. The size increase in these three structures is greater than in other segments examined. In essence, the craniofacial complex is in a state of growth throughout life. The entire system is involved in a process of symmetrical enlargement.  相似文献   

13.
14.
In the absence of processes regulating morphogenesis and growth, phenotypic variance of a population experiencing no selective mortality should increase throughout ontogeny. To determine whether it does, we measure variance of skull shape using geometric morphometrics and examine its ontogenetic dynamics in the precocial cotton rat (Sigmodon fulviventer) and the altricial house mouse (Mus musculus domesticus). In both species, variance of shape halves between the two youngest samples measured (between 1 and 10 days postnatal and 10 and 15 days postnatal, respectively) and thereafter is nearly constant. The reduction in variance did not appear to result from a general regulation of skull size or developmental timing, although skull size may also be regulated and developmental timing is an important component of the variation in skull shape of young house mice. The ontogenetic dynamics of variance suggest two possible scenarios. First, variation generated during fetal or early postnatal growth is not immediately compensated and therefore accumulates, whereas later in growth, variation is continually generated and rapidly compensated. Second, variation generated during fetal and early postnatal growth is rapidly compensated, after which no new variance is produced. Based on a general model for bone growth, we hypothesize that variance is generated when bone grows under the direction of disorganized muscular movements and decreases with increasing neuromuscular control. Additionally, increasing coherence of signals transmitted by the growing brain and sensory organs, which exert tensile forces on bone, may also canalize skull shape.  相似文献   

15.
The influence of the environment on the geographical variation of morphological traits has been recognized in a number of taxa. Pecari tajacu and Tayassu pecari are ideal models to investigate intraspecific geographic variation in skull because of their wide and heterogeneous geographical distribution in South America. We used geometric morphometric procedures to examine the geographical variation in skull shape of 294 adult specimens of these species from 134 localities. We quantified to what extent skull shape variation was explained by environment, skull size and geographical space using variation partitioning analysis. We detected a strong pattern of geographic variation for P. tajacu skull shape, but not for T. pecari. The environment seems to be the major selective force that drives skull shape variation in both species. Nevertheless, other spatially structured processes (e.g. genetic drift, gene flow) might also have affected variation in the skull shape of the more widespread species P. tajacu. Allometric relationships might reflect the biomechanical constraints that are thought to be strong enough to limit size‐related changes in T. pecari skull shape.  相似文献   

16.
2011年在福建漳平奇和洞发现的距今1万年左右的新石器时代早期人类遗骸"奇和洞III号",是迄今在福建地区发现的最早、最完整的古人类头骨,为探讨华南更新世晚期向全新世过渡阶段人类的体质特征及现代人群的形成与分化提供了重要的研究材料。本文对这件头骨进行了研究,奇和洞III号为35岁左右的男性个体,牙齿龋病严重,推测当时人类的经济模式主要以农耕为主。通过与更新世晚期柳江、山顶洞101号及14组新石器时代人类头骨的比较,发现奇和洞III号头骨兼有更新世晚期人类及新石器南、北方居民的混合体质特征:奇和洞III号头骨长而脑量大,似更新世晚期人类;其高而狭窄的面部、宽阔而低矮的鼻部,呈现出不同于南、北方人群的特殊体质特征。主成分分析显示,奇和洞III号与对比的新石器时代各组在头骨的测量数据上没有表现为明显的南、北地区间差异,但在头骨的测量指数或形状上存在时代和地区间的不同。本文研究为新旧石器过渡阶段人类体质特征的变异提供了进一步证据。  相似文献   

17.
Ontogenetic studies of African ape skulls lead to an analysis of morphological differences in terms of allometry, heterochrony, and sexual dimorphism. The use of geometric morphometrics allows us 1) to define size and shape variations as independent factors (an essential but seldom respected condition for heterochrony), and 2) to calculate in percentage of shape changes and to graphically represent the parts of shape variation which are related to various biological phenomena: common allometry, intraspecific allometry, and allometric and nonallometric shape discrimination. Three tridimensional Procrustes analyses and the calculation of multivariate allometries, discriminant functions, and statistical tests are used to compare the skulls of 50 Pan troglodytes, and 50 Gorilla gorilla of different dental stages. The results both complement and modify classical results obtained from similar material but with different methods. Size and Scaling in Primate Morphology, New York: Plenum, p. 175-205). As previously described by Shea, the common growth allometric pattern is very important (64% of total shape variation). It corresponds to a larger increase of facial volume than of neurocranial volume, a more obliquely oriented foramen magnum, and a noticeable reshaping of the nuchal region (higher inion). However, the heterochronic interpretation based on common allometry is rather different from Shea. Gorillas differ from chimpanzees not only with a larger magnitude of allometric change (rate peramorphosis), as is classically said, but also grow more in size than in shape (size acceleration). In other words, for a similar stage of growth, gorillas have the size and shape corresponding to older chimpanzees, and for a similar shape, gorillas have a larger size than chimpanzees. In contrast, sexual dimorphism actually corresponds to allometric changes only, as classically demonstrated (time hypermorphosis). Sexual dimorphism is here significant in adult gorillas alone, and solely in terms of allometry (size-related shape and size, given that sagittal and nuchal crests are not taken into account). The study also permits us to differentiate two different shape variations that are classically confused in ontogenetic studies: a very small part of allometric shape change which is specific to each species (1% of the total shape variation), and nonallometric species-specific traits independent of growth (8% of total shape change). When calculated in terms of intraspecific allometries (including common allometry and noncommon allometry), shape changes are more extensive in gorillas (36% of total shape change) than in chimpanzees (29% of total shape change). The allometric differences mainly concern the inion, which becomes higher; the position of the foramen magnum, more dorsally oriented; and the palate, more tilted in adult gorillas than in adult chimpanzees. In contrast, nonallometric species-specific traits in gorillas are the long and flat vault characterized by a prominent occipital region, the higher and displaced backward glabella, and the protrusive nose. Biomechanical schemes built from shape partition suggest that the increased out-of-plumb position of the head during growth is partially compensated in gorillas by a powerful nuchal musculature due to the peculiar shape of the occipital region.  相似文献   

18.
Extant and fossil crocodilians have long been divided into taxonomic and/or ecological groups based on broad patterns of skull shape, particularly the relative length and width of the snout. However, these patterns have not been quantitatively analyzed in detail, and their biomechanical and functional implications are similarly understudied. Here, we use geometric morphometrics and finite element analysis to explore the patterns of variation in crocodilian skull morphology and the functional implications of those patterns. Our results indicate that skull shape variation in extant crocodiles is much more complex than previously recognized. Differences in snout length and width are the main components of shape variation, but these differences are correlated with changes in other regions of the skull. Additionally, there is considerable disparity within general classes such as longirostrine and brevirostrine forms. For example, Gavialis and Tomistoma occupy different parts of morphospace implying a significant difference in skull shape, despite the fact that both are traditionally considered longirostrine. Skull length and width also strongly influence the mechanical performance of the skull; long and narrow morphotypes (e.g., Tomistoma) experience the highest amount of stress during biting, whereas short and broad morphotypes (e.g., Caiman latirostris) experience the least amount of stress. Biomechanical stress and the hydrodynamic properties of the skull show a strong relationship with the distribution of crocodilians in skull morphospace, whereas phylogeny and biogeography show weak or no correlation. Therefore, ecological specializations related to feeding and foraging likely have the greatest influence on crocodilian skull shape. J. Morphol., 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
本文采用几何形态测量法对中国大蹄蝠9个不同地理种群头骨形态变化进行研究。结果表明,不同地理种群的头骨大小及形状存在显著差异,其中云南思茅种群与海南陵水种群差异最大。回归分析表明头骨形态的地理变化与气候因素相关。随着年均温度、年均湿度的升高以及年均降水量的增多,大蹄蝠头骨变小,上颌、齿、咬肌附着部分以及耳蜗部分的形状发生变化。此外,头骨大小与海拔高度呈正相关,头骨形状变化与纬度显著相关。本研究表明对栖息地生态条件的适应是中国大蹄蝠头骨形态地理变化的重要原因。  相似文献   

20.
Split-line patterns are reported in skulls of five adult male baboons. While variations in pattern occur in all parts of the skull, these variations are relatively minor in the following regions: supraorbital, lateral orbital, medial orbital, nasal bones, zygomatico-alveolar crest, nasal opening, alveolar process of maxilla and mandible. Wide differences in pattern occur in these regions: infraorbital, zygomatic bone, body of maxilla, and frontal bone posterior to the supraorbital area. The major variability in split-line orientation indicates that oversimplified interpretations of the patterns in terms of (1) conformity to gross structure, or (2) direction of bone growth, are untenable. The variations do not contradict a functional interpretation in which mechanical forces and skull form interact to different degrees in different individuals, however. Skulls of a variety of primates are useful for functional analysis, because they have similar structural plans, but the differences are well outside the normal range of variation for a single species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号