首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we present a novel technique for the synthesis of complex prokaryotic and eukaryotic proteins by using a continuous-exchange cell-free (CECF) protein synthesis system based on extracts from cultured insect cells. Our approach consists of two basic elements: First, protein synthesis is performed in insect cell lysates which harbor endogenous microsomal vesicles, enabling a translocation of de novo synthesized target proteins into the lumen of the insect vesicles or, in the case of membrane proteins, their embedding into a natural membrane scaffold. Second, cell-free reactions are performed in a two chamber dialysis device for 48 h. The combination of the eukaryotic cell-free translation system based on insect cell extracts and the CECF translation system results in significantly prolonged reaction life times and increased protein yields compared to conventional batch reactions. In this context, we demonstrate the synthesis of various representative model proteins, among them cytosolic proteins, pharmacological relevant membrane proteins and glycosylated proteins in an endotoxin-free environment. Furthermore, the cell-free system used in this study is well-suited for the synthesis of biologically active tissue-type-plasminogen activator, a complex eukaryotic protein harboring multiple disulfide bonds.  相似文献   

2.
In traditional cell-free protein synthesis reactions, the energy source (typically phosphoenolpyruvate (PEP) or creatine phosphate) is the most expensive substrate. However, for most biotechnology applications glucose is the preferred commercial substrate. Previous attempts to use glucose in cell-free protein synthesis reactions have been unsuccessful. We have now developed a cell-free protein synthesis reaction where PEP is replaced by either glucose or glucose-6-phosphate (G6P) as the energy source, thus allowing these reactions to compete more effectively with in vivo protein production technologies. We demonstrate high protein yields in a simple batch-format reaction through pH control and alleviation of phosphate limitation. G6P reactions can produce high protein levels ( approximately 700 microg/mL of chloramphenical acetyl transferase (CAT)) when pH is stabilized through replacement of the HEPES buffer with Bis-Tris. Protein synthesis with glucose as an energy source is also possible, and CAT yields of approximately 550 mug/mL are seen when both 10 mM phosphate is added to alleviate phosphate limitations and the Bis-Tris buffer concentration is increased to stabilize pH. By following radioactivity from [U-(14)C]-glucose, we find that glucose is primarily metabolized to the anaerobic products, acetate and lactate. The ability to use glucose as an energy source in cell-free reactions is important not only for inexpensive ATP generation during protein synthesis, but also as an example of how complex biological systems can be understood and exploited through cell-free biology.  相似文献   

3.
4.
Cell-free protein synthesis reactions have not been seriously considered as a viable method for commercial protein production mainly because of high reagent costs and a lack of scalable technologies. Here we address the first issue by presenting a cell-free protein synthesis system with comparable protein yields that removes the most expensive substrates and lowers the cell-free reagent cost by over 75% (excluding extract, polymerase, and plasmid) while maintaining high energy levels. This system uses glucose as the energy source and nucleoside monophosphates (NMPs) in place of nucleoside triphosphates (NTPs) as the nucleotide source. High levels of nucleoside triphosphates are generated from the monophosphates within 20 min, and the subsequent energy charge is similar in reactions beginning with either NTPs or NMPs. Furthermore, significant levels (>0.2 mM) of all NTPs are still available at the end of a 3-h incubation, and the total nucleotide pool is stable throughout the reaction. The glucose/NMP reaction was scaled up to milliliter scale using a thin film approach. Significant yields of active protein were observed for two proteins of vastly different size: chloramphenicol acetyl transferase (CAT, 25 kDa) and beta-galactosidase (472 kDa). The glucose/NMP cell-free reaction system dramatically reduces reagent costs while supplying high protein yields.  相似文献   

5.
Most in vitro protein synthesis systems require a supply of GTP for the formation of translation initiation complexes, with two GTP molecules per amino acid needed as an energy source for a peptide elongation reaction. In order to optimize protein synthesis reactions in a continuous‐flow wheat embryo cell‐free system, we have examined the influence of adding GTP and found that the system does not require any supply of GTP. We report here the preparation of a wheat embryo extract from which endogenous GTP was removed by gel filtration, and the influence of adding GTP to the system on protein synthesis reactions. Using Green Fluorescent Protein (GFP) as a reporter, higher levels of production were observed at lower concentrations of GTP, with the optimal level of production obtained with no supply of GTP. A HPLC‐based analysis of the extract and the translation mixture containing only ATP as an energy source revealed that GTP was not detectable in the extract, however, 35 μM of GTP was found in the translation mixture. This result suggests that GTP could be generated from other compounds, such as GDP and GMP, using ATP. A similar experiment with a C‐terminally truncated form of human protein tyrosine phosphatase 1B (hPTP1B1‐320) gave almost the same result. The wheat embryo cell‐free translation system worked most efficiently without exogenous GTP, producing 3.5 mg/mL of translation mixture over a 48‐h period at 26°C. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

6.
The primary objective of this work was to create a cell-free protein synthesis extract that produces proteins requiring disulfide bonds while using glucose as an energy source. We attempted to avoid using iodoacetamide (IAM) to stabilize the required oxidizing thiol redox potential, since previous IAM pretreatments prevented glucose utilization apparently by inactivating glyceraldehyde 3-phosphate dehydrogenase (G-3PDH). Instead, the glutathione reductase (Gor)-mediated disulfide reductase system was disabled by deleting the gor gene from the KC6 cell-extract source strain. The thioredoxin reductase (TrxB)-mediated system was disabled by first adding a purification tag to the trxB gene in the chromosome to create strain KGK10 and then by affinity removal of the tagged TrxB. This was expected to result in a cell extract devoid of all disulfide reductase activity, but this was not the case. Although the concentration of IAM required to stabilize oxidized glutathione in the KGK10 extract could be reduced 20-fold, IAM pretreatment was still required to avoid disulfide reduction. Nonetheless, active urokinase and murine granulocyte macrophage-colony stimulating factor (mGM-CSF) were produced in reactions with KGK10 extract either with affinity removal of TrxB or with 50 microM IAM pretreatment. With the less intensive IAM pretreatment, glucose could be used as an energy source in a production system that promotes oxidative protein folding. This new protocol offers an economically feasible cell-free system for the production of secreted mammalian proteins as human therapeutics or vaccines.  相似文献   

7.
A coupled cell-free expression system (CECF) for the production of the transmembrane domain of the human receptor tyrosine kinase ErbB3 (residues from 632 to 675) has been developed based on the Escherichia coli S30 extract. The synthesis of the domain in the soluble form in the presence of various detergents and in the form of an insoluble precipitate of the reaction mixture has been examined. The conditions for the purification of the recombinant domain obtained using the two approaches have been determined. The final yield of the target protein under optimal conditions was 1.8–2.0 mg per 1 ml of the reaction mixture.  相似文献   

8.
An efficient cell-free protein synthesis system has been developed using a novel energy-regenerating source. Using the new energy source, 3-phosphoglycerate (3-PGA), protein synthesis continues beyond 2 h. In contrast, the reaction rate slowed down considerably within 30–45 min using a conventional energy source, phosphoenol pyruvate (PEP) under identical reaction conditions. This improvement results in the production of twice the amount of protein obtained with PEP as an energy source. We have also shown that Gam protein of phage lambda, an inhibitor of RecBCD (ExoV), protects linear PCR DNA templates from degradation in vitro. Furthermore, addition of purified Gam protein in extracts of Escherichia coli BL21 improves protein synthesis from PCR templates to a level comparable to plasmid DNA template. Therefore, combination of these improvements should be amenable to rapid expression of proteins in a high-throughput manner for proteomics and structural genomics applications.  相似文献   

9.
Cell-free protein synthesis (CFPS) is becoming increasingly used for protein production as yields increase and costs decrease. CFPS optimization efforts have focused primarily on energy supply and small molecule metabolism, though little is known about the protein synthesis machinery or what limits protein synthesis rates. Here, quantitative polysome profile analysis was used to characterize cell-free translation, thereby elucidating many kinetic parameters. The ribosome concentration in Escherichia coli-based CFPS reactions was 1.6 +/- 0.1 microM, with 72 +/- 4% actively translating at maximal protein synthesis rate. A translation elongation rate of 1.5 +/- 0.2 amino acids per second per ribosome and an initiation rate of 8.2 x 10(-9) +/- 0.3 x 10(-9) M/s, which correlates to, on average, one initiation every 60 +/- 9 s per mRNA, were determined. The measured CFPS initiation and elongation rates are an order of magnitude lower than the in vivo rates and further analysis identified elongation as the major limitation. Adding purified elongation factors (EFs) to CFPS reactions increased the ribosome elongation rate and protein synthesis rates and yields, as well as the translation initiation rate, indicating a possible coupling between initiation and elongation. Further examination of translation initiation in the cell-free system showed that the first initiation on an mRNA is slower than subsequent initiations. Our results demonstrate that polysome analysis is a valid tool to characterize cell-free translation and to identify limiting steps, that dilution of translation factors is a limitation of CFPS, and that CFPS is a useful platform for making novel observations about translation.  相似文献   

10.
A new approach for adenosine triphosphate (ATP) regeneration in a cell-free protein synthesis system is described. We first show that pyruvate can be used as a secondary energy source to replace or supplement the conventional secondary energy source, phosphoenol pyruvate (PEP). We also report that glucose-6-phosphate, an earlier intermediate of the glycolytic pathway, can be used for ATP regeneration. These new methods provide more stable maintenance of ATP concentration during protein synthesis. Because pyruvate and glucose-6-phosphate are the first and last intermediates of the glycolytic pathway, respectively, the results also suggest the possibility of using any glycolytic intermediate, or even glucose, for ATP regeneration in a cell-free protein synthesis system. As a result, the methods described provide cell-free protein synthesis with greater flexibility and cost efficiency.  相似文献   

11.
The NB-C1 gene, acquired from the result of data mining of the lactic acid bacteria genome, is a novel potential class IIa bacteriocin gene with the characteristic YGNGVxC cluster. To produce soluble NB-C1 efficiently and overcome issues of protein toxicity, we adopted a GFP fusion strategy using an Escherichia coli cell-free protein expression system. We constructed the expression vector pIVEX2.4d-GFP-NB-C1, which was expressed in both the batch mode and the continuous exchange cell-free (CECF) systems. The amount of soluble fusion protein achieved from the CECF system (2.2 mg/ml) was approximately three times higher than that in the batch mode (0.73 mg/ml). The soluble fusion protein was purified via one-step Ni–NTA affinity chromatography, with a concentration of 0.26 mg/ml and a purity of 95%. The purified NB-C1 showed strong antimicrobial activity against the indicator bacteria Listeria monocytogenes.  相似文献   

12.
HEPNet is an electronic representation of metabolic reactions occurring within human cellular organization focusing on inflow and outflow of the energy currency ATP, GTP and other energy associated moieties. The backbone of HEPNet consists of primary bio-molecules such as carbohydrates, proteins and fats which ultimately constitute the chief source for the synthesis and obliteration of energy currencies in a cell. A series of biochemical pathways and reactions constituting the catabolism and anabolism of various metabolites are portrayed through cellular compartmentalization. The depicted pathways function synchronously toward an overarching goal of producing ATP and other energy associated moieties to bring into play a variety of cellular functions. HEPNet is manually curated with raw data from experiments and is also connected to KEGG and Reactome databases. This model has been validated by simulating it with physiological states like fasting, starvation, exercise and disease conditions like glycaemia, uremia and dihydrolipoamide dehydrogenase deficiency (DLDD). The results clearly indicate that ATP is the master regulator under different metabolic conditions and physiological states. The results also highlight that energy currencies play a minor role. However, the moiety creatine phosphate has a unique character, since it is a ready-made source of phosphoryl groups for the rapid synthesis of ATP from ADP. HEPNet provides a framework for further expanding the network diverse age groups of both the sexes, followed by the understanding of energetics in more complex metabolic pathways that are related to human disorders.  相似文献   

13.
The role and relative contributions of different forms of energy to the synthesis of amino acids and other organic compounds on the primitive earth, in the parent bodies or carbonaceous chondrites, and in the solar nebula are examined. A single source of energy or a single process would not account for all the organic compounds synthesized in the solar system. Electric discharges appear to produce amino acids more efficiently than other sources of energy and the composition of the synthesized amino acids is qualitatively similar to those found in the Murchison meteorite. Ultraviolet light is also likely to have played a major role in prebiotic synthesis. Although the energy in the sun's spectrum that can be absorbed by the major constituents of the primitive atmosphere is not large, reactive trace components such as H2S and formaldehyde absorb at longer wavelengths where greater amounts of energy are available and produce amino acids by reactions involving hot hydrogen atoms. The thermal reaction of CO + H2 + NH3 on Fischer-Tropsch catalysts generates intermediates that lead to amino acids and other organic compounds that have been found in meteorites. However, this synthesis appears to be less efficient than electric discharges and to require a special set of reaction conditions. It should be emphasized that after the reactive organic intermediates are generated by the above processes, the subsequent reactions which produce the more complete biochemical compounds are low temperature homogenous reactions occurring in an aqueous environment.  相似文献   

14.
Growths of Escherichia coli strain A19 were investigated in a 5-L fermentor at 37 and 42 degrees C either in Pratt's medium (a standard medium for cell-free protein synthesis using its S30 extract) or in a casamino acids supplemented Pratt's medium (aa-enriched medium). Specific growth rates in Pratt's medium at 37 and 42 degrees C were 0.77 and 0.46 h(-1), respectively, whereas those in the aa-enriched medium at 37 and 42 degrees C were 0.87 and 1.49 h(-1), respectively. The extent of cell-free chloramphenicol acetyltransferase (CAT) synthesis was compared at 37 degrees C incubation (from a plasmid pK7-CAT) for S30 extracts prepared from the cells cultured in the aa-enriched medium at 37 or 42 degrees C. A 40% increase in CAT synthesis occurred when the 42 degrees C/S30 extract was used as compared with 37 degrees C/S30 extract. CAT and both the light and heavy chains (Lc and Hc) of the Fab fragment of an antibody 6D9 were synthesized at 37 degrees C in the cell-free synthesis in the presence of [(14)C]Leu. Their reaction mixtures were subjected to SDS-PAGE autoradiographic analysis. It was found that most of the synthesized proteins were in the soluble fraction when 42 degrees C/S30 extract was used, suggesting that the 42 degrees C/S30 extract contained greater amounts of various protein folding factors. A dialysis membrane minibioreactor with a reaction volume ca. 0.5 mL was handmade by the authors. The advantages of the minibioreactor are a simple configuration, a low manufacturing cost, and the capability of the dialysis membrane replacement. Increased CAT synthesis was also observed for continuous exchange cell-free (CECF) protein synthesis at 37 degrees C when the 42 degrees C/S30 extract was used in the minibioreactor. Some plausible reasons to give higher protein synthesis activity of the 42 degrees C/S30 extract are discussed.  相似文献   

15.
The dependence of the general aminoacid permease and protein synthesis on the availability of D-glucose as energy source was studied. Stimulation by the sugar was immediate once added to the cell suspensions and seems to be mediated by energy derived directly from glycolysis. The general aminoacid permease was saturated linearly with D-glucose whereas protein synthesis was saturated sigmoidealy requiring much higher concentration of the sugar than the general aminoacid permease.  相似文献   

16.
Translation of poliovirion RNA in HeLa S10 extracts resulted in the formation of RNA replication complexes which catalyzed the asymmetric replication of poliovirus RNA. Synthesis of poliovirus RNA was detected in unfractionated HeLa S10 translation reactions and in RNA replication complexes isolated from HeLa S10 translation reactions by pulse-labeling with [32P]CTP. The RNA replication complexes formed in vitro contained replicative-intermediate RNA and were enriched in viral protein 3CD and the membrane-associated viral proteins 2C, 2BC, and 3AB. Genome-length poliovirus RNA covalently linked to VPg was synthesized in large amounts by the replication complexes. RNA replication was highly asymmetric, with predominantly positive-polarity RNA products. Both anti-VPg antibody and guanidine HCl inhibited RNA replication and virus formation in the HeLa S10 translation reactions without affecting viral protein synthesis. The inhibition of RNA synthesis by guanidine was reversible. The reversible nature of guanidine inhibition was used to demonstrate the formation of preinitiation RNA replication complexes in reaction mixes containing 2 mM guanidine HCl. Preinitiation complexes sedimented upon centrifugation at 15,000 x g and initiated RNA replication upon their resuspension in reaction mixes lacking guanidine. Initiation of RNA synthesis by preinitiation complexes did not require active protein synthesis or the addition of soluble viral proteins. Initiation of RNA synthesis by preinitiation complexes, however, was absolutely dependent on soluble HeLa cytoplasmic factors. Preinitiation complexes also catalyzed the formation of infectious virus in reaction mixes containing exogenously added capsid proteins. The titer of infectious virus produced in such trans-encapsidation reactions reached 4 x 10(7) PFU/ml. The HeLa S10 translation-RNA replication reactions represent an efficient in vitro system for authentic poliovirus replication, including protein synthesis, polyprotein processing, RNA replication, and virus assembly.  相似文献   

17.
The accumulation of inorganic phosphate inhibits protein synthesis in cell-free protein synthesis reactions that are energized by high-energy-phosphate-containing compounds. This study developed a new scheme for supplying energy using dual energy sources to enhance the regeneration of ATP and lower the rate of phosphate accumulation. In the proposed scheme, where creatine phosphate (CP) and glucose were simultaneously used as the energy sources, the phosphate released from the CP was subsequently used in the glycolytic pathway for the utilization of the glucose, which enhanced the ATP supply and reduced the rate of inorganic phosphate accumulation. When tested against different proteins, the developed method produced 2-3 times more protein than the conventional ATP regeneration methods using single energy sources.  相似文献   

18.
Summary The primitiveness of contemporary fatty acid biosynthesis was evaluated by using the thermodynamics and kinetics of its component reactions to estimate the extent of its dependence on powerful and selective catalysis by enzymes. Since this analysis indicated that the modern pathway is not primitive because it requires sophisticated enzymatic catalysis, we here propose an alternative pathway of primitive fatty acid synthesis that uses glycolaldehyde as a substrate. In contrast to the modern pathway, this primitive pathway is not dependent on an exogenous source of phosphoanhydride energy (ATP). Furthermore, the chemical spontaneity of its reactions suggests that it could have been readily catalyzed by the rudimentary biocatalysts available at an early stage in the origin of life.  相似文献   

19.
Due to its small size and intense luminescent signal, Gaussia princeps luciferase (GLuc) is attractive as a potential imaging agent in both cell culture and small animal research models. However, recombinant GLuc production using in vivo techniques has only produced small quantities of active luciferase, likely due to five disulfide bonds being required for full activity. Cell-free biology provides the freedom to control both the catalyst and chemical compositions in biological reactions, and we capitalized on this to produce large amounts of highly active GLuc in cell-free reactions. Active yields were improved by mutating the cell extract source strain to reduce proteolysis, adjusting reaction conditions to enhance oxidative protein folding, further activating energy metabolism, and encouraging post-translational activation. This cell-free protein synthesis procedure produced 412 μg/mL of purified GLuc, relative to 5 μg/mL isolated for intracellular Escherichia coli expression. The cell-free product had a specific activity of 4.2×1024 photons/s/mol, the highest reported activity for any characterized luciferase.  相似文献   

20.
Cell-free translation systems generally utilize high-energy phosphate compounds to regenerate the adenosine triphosphate (ATP) necessary to drive protein synthesis. This hampers the widespread use and practical implementation of this technology in a batch format due to expensive reagent costs; the accumulation of inhibitory byproducts, such as phosphate; and pH change. To address these problems, a cell-free protein synthesis system has been engineered that is capable of using pyruvate as an energy source to produce high yields of protein. The "Cytomim" system, synthesizes chloramphenicol acetyltransferase (CAT) for up to 6 h in a batch reaction to yield 700 microg/mL of protein. By more closely replicating the physiological conditions of the cytoplasm of Escherichia coli, the Cytomim system provides a stable energy supply for protein expression without phosphate accumulation, pH change, exogenous enzyme addition, or the need for expensive high-energy phosphate compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号