首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigated whether free Fe ions were released in erythrocytes during aging process in the circulation. Young and senescent erythrocytes were separated from freshly drawn human blood by Percoll density gradient centrifugation. Two different methods were employed for determination of free Fe ions in erythrocytes, desferrioxamine (DFO) method and bleomycin method. DFO-chelatable Fe ions were detected in whole erythrocytes from 2 donors, and the DFO-chelatable free Fe ion levels in senescent erythrocytes were higher than those in young erythrocytes. Bleomycin-sensitive Fe ions, which was rather lower than DFO-chelatable Fe ions, were also detected in whole erythrocytes from 5 donors, and the free Fe ion levels in senescent erythrocytes were also higher than those in young erythrocytes. Free Fe ions may be derived from oxidative damage of hemoglobin, because treatment of whole erythrocytes or purified oxyhemoglobin with hydrogen peroxide gave increased free Fe ions. The results indicated that free Fe ions were released from erythrocytes during aging process in the circulation. Released free Fe ions would promote oxidative damages of the cells during aging process.  相似文献   

2.
Recent immunological studies demonstrated that proteins in vivo in several diseases are subjected to post-translational modification by advanced glycation end products (AGEs), suggesting a potential role of AGEs in aging and age-enhanced disease processes such as diabetic complications, atherosclerosis and Alzheimer's disease. Nvarepsilon-(Carboxymethyl)lysine (CML) is one of the major AGE-structures demonstrated in vivo so far. In the present study, membrane proteins from young erythrocyte population were compared with those from senescent erythrocytes separated from the same individual in their CML-contents using a monoclonal antibody for CML (6D12). SDS-polyacrylamide gel electrophoresis and subsequent Western blot showed that 6D12 bound to the band 1, 2, 3, 4.2, 5, 6 and 7 proteins from senescent erythrocytes, but not to those from young erythrocytes. Furthermore, quantitative estimation of the reactivity of 6D12 to these erythrocyte membranes by ELISA showed that the reactivity of 6D12 to senescent erythrocyte membranes was 3- to 6-fold higher than that of young erythrocyte membranes. These results indicate that membrane proteins of circulating erythrocytes undergo CML-modification, and the modified proteins accumulated in an age-dependent manner during the life span of erythrocytes.  相似文献   

3.
The basal- and allylisopropylacetamide-induced activities of the first enzyme of heme biosynthesis, δ-aminolevulinic acid synthase (ALAS) were measured in hepatic mitochondria and cytosol of young, adult, and aged Fisher 344 rats. The total cellular ALAS activity induced by allylisopropylacetamide decreased 67% with age. The specific activity of mitochondrial ALAS in normal and induced animals decreased with aging when assayed in whole or broken mitochondria. The levels of ALAS which accumulated in the cytosol after allylisopropylacetamide administration were proportionally greater in both the young and senescent than in the mature animals. During aging, no evidence for a fragile population of mitochondria in either normal or induced animals was observed suggesting that mitochondrial matrix proteins are not released during homogenization. The hepatic mitochondrial content decreased during aging when calculated using both a membrane-bound marker enzyme cytochrome oxidase and a matrix marker enzyme citrate synthase and was unaffected by allylisopropylacetamide treatment. This reduced mitochondrial content further diminishes the level of functional ALAS available in the liver during senescence. This study confirms the age-dependent decrease in mitochondria ALAS in normal and induced animals and also suggests an age-related change in the process by which cytosolic ALAS is translocated into the mitochondria.  相似文献   

4.
Physiological removal of old erythrocytes from the circulation by macrophages is initiated by binding of autologous IgG to senescent cell antigen (SCA). SCA is generated from the anion exchanger band 3. This process is accompanied by a number of alterations in the function and structure of band 3. We measured these aging-related parameters in erythrocytes from individuals with sickle cell anemia. Most sickle erythrocytes have characteristics that are also found in senescent normal erythrocytes, such as an increased density and considerable concentrations of cell-bound IgG. Together with the concomitant changes in structure and function of band 3, these data suggest that most sickle erythrocytes have undergone a process of accelerated aging. Preliminary results indicate that this process is reversed upon vitamin E supplementation. These data show that the erythrocyte aging paradigm may provide a useful conceptual framework for the study of the pathophysiology and the evalution of therapeutic intervention in sickle cell disease, and support the view that oxidation can generate neoantigens that are recognized by autoantibodies.  相似文献   

5.
Acidic and neutral sialidases (pH optimum 4.7 and 7.2, respectively) were assayed on human circulating erythrocytes during ageing. The assays were performed on intact erythrocytes and resealed erythrocyte ghost membranes. From young to senescent erythrocytes the acidic sialidase featured a 2.7-fold and 2.5-fold decrease in specific activity when measured on intact cells or resealed ghost membranes, whereas the neutral sialidase a 5-fold and 7-fold increase, respectively.The Ca2+-loading procedure was employed to mimic the vesiculation process occurring during erythrocyte ageing. Under these conditions the released vesicles displayed an elevated content of acidic sialidase, almost completely linked through a glycan phosphoinositide (GPI) anchor but no neutral sialidase activity, that was completely retained by remnant erythrocytes together with almost all the starting content of sialoglycoconjugates. The loss with vesiculation of acidic sialidase with a concomitant relative increase of neutral sialidase was more marked in young than senescent erythrocytes.The data presented suggest that during ageing erythrocytes loose acidic sialidase, and get enriched in the neutral enzyme, the vesiculation process, possibly involving GPI-anchors-rich membrane microdomains, being likely responsible for these changes. The enhanced neutral sialidase activity might account for the sialic acid loss occurring during erythrocyte ageing.  相似文献   

6.
Mitochondrial-derived oxidative injury contributes to cellular aging as well as to reperfusion-induced tissue damage. While the aging-heart suffers greater tissue damage following ischemia and reperfusion than the adult heart, the occurrence of aging-related alterations in mitochondrial oxidative metabolism in the elderly heart has remained uncertain. We determined if aging altered oxidative metabolism in either of the two populations of cardiac mitochondria, subsarcolemmal mitochondria (SSM) that reside beneath the plasma membrane or interfibrillar mitochondria (IFM) located between the myofibrils. SSM and IFM were isolated from 6-month adult and 24- and 28-month elderly Fischer 344 rat hearts. Aging-related alterations were limited to IFM, while SSM remained unaffected. Aging decreased the rate of oxidative phosphorylation in IFM, including when stimulated by electron donors specific for cytochrome oxidase. Cytochrome oxidase enzyme activity was decreased in IFM from aging hearts, while activity in SSM remained similar to adult controls. These findings allow future studies of aging-related decrements in oxidative function to focus upon IFM, while SSM provide an inherent control group of mitochondria that are free of aging-related alterations in oxidative function. The selective alteration of IFM during aging raises the possibility that the consequences of aging-induced mitochondrial dysfunction will be enhanced in specific subcellular regions of the senescent myocyte.  相似文献   

7.
Erythrocytes from young and old rats were separated into four age fractions by density-gradient centrifugation. The specific activities per cell were determined for glucose-6-phosphate dehydrogenase (EC 1.1.1.49), glutathione peroxidase (EC 1.11.1.9), glutathione reductase (EC 1.6.4.2) and catalase (EC 1.11.1.6). Decreased specific activities were observed with increasing cell age for all four enzymes in both young and old animals. In addition, significant differences in the activities of these enzymes were observed between cells of the same age fraction from young and old donors. Susceptibility of fractionated erythrocytes to oxidative attack in vitro generated by incubation with xanthine/xanthine oxidase increased with both cell and animal age. The amount of membrane-lipid peroxidation also increased with cell and animal aging, as measured by both thiobarbituric acid and fluorescent chromolipid assays. Increases of 2-3-fold in the contents of lipid peroxides were observed between the youngest and oldest age fractions of young rats. Lipid peroxide contents in young cells of old animals were equal to those in old erythrocytes from young rats and increased by 30% with cell aging in the old donors. These results suggest that the extent of enzymic protection against oxidative and peroxidative damage decreases with erythrocyte aging. More importantly, enzymic protection in cells of old rats is considerably decreased already in the early stages of their lifespan.  相似文献   

8.
Mammalian target of rapamycin (mTOR)/S6K1 signalling emerges as a critical regulator of aging. Yet, a role of mTOR/S6K1 in aging-associated vascular endothelial dysfunction remains unknown. In this study, we investigated the role of S6K1 in aging-associated endothelial dysfunction and effects of the polyphenol resveratrol on S6K1 in aging endothelial cells. We show here that senescent endothelial cells displayed higher S6K1 activity, increased superoxide production and decreased bioactive nitric oxide (NO) levels than young endothelial cells, which is contributed by eNOS uncoupling. Silencing S6K1 in senescent cells reduced superoxide generation and enhanced NO production. Conversely, over-expression of a constitutively active S6K1 mutant in young endothelial cells mimicked endothelial dysfunction of the senescent cells through eNOS uncoupling and induced premature cellular senescence. Like the mTOR/S6K1 inhibitor rapamycin, resveratrol inhibited S6K1 signalling, resulting in decreased superoxide generation and enhanced NO levels in the senescent cells. Consistent with the data from cultured cells, an enhanced S6K1 activity, increased superoxide generation, and decreased bioactive NO levels associated with eNOS uncoupling were also detected in aortas of old WKY rats (aged 20-24 months) as compared to the young animals (1-3 months). Treatment of aortas of old rats with resveratrol or rapamycin inhibited S6K1 activity, oxidative stress, and improved endothelial NO production. Our data demonstrate a causal role of the hyperactive S6K1 in eNOS uncoupling leading to endothelial dysfunction and vascular aging. Resveratrol improves endothelial function in aging, at least in part, through inhibition of S6K1. Targeting S6K1 may thus represent a novel therapeutic approach for aging-associated vascular disease.  相似文献   

9.
Free radicals have been theorized to play a causative role in the normal aging process. To date, methods used to detect oxidative stress in aged experimental animals have only detected 2- to 3-fold differences or less between young and aged animals. Measurement of F(2)-isoprostanes has emerged as probably the most reliable approach to assess oxidative stress status in vivo. Therefore, we measured levels of F(2)-isoprostanes free in plasma and levels esterified in plasma lipids in young rats (3-4 months of age) and aged rats (22-24 months of age). Plasma concentrations of free F(2)-isoprostanes were increased dramatically by a mean of 20.3-fold (range 4.3 to 42.9-fold) and levels esterified in plasma lipids were also strikingly increased by a mean of 29.9-fold (range 15.8 to 50.0-fold). These findings unveil profound oxidative stress in aged rats which adds considerable support for the free radical theory of aging.  相似文献   

10.
Age-related changes in oxidized proteins   总被引:39,自引:0,他引:39  
We have previously described the oxidative inactivation of several key metabolic enzymes by a variety of mixed function oxidation systems. Because many of the enzymes which are inactivated have been shown by others to accumulate as inactive or less active forms during cellular aging, we have examined the levels of oxidatively modified proteins in two model systems used for studies on aging. The results show that levels of oxidatively modified proteins increase with age in circulating erythrocytes, and this change is correlated with the loss of marker enzyme activity. Our studies also show that in cultured fibroblasts from normal donors the levels of oxidatively modified proteins increase only after the age of 60. However, the levels of oxidatively modified proteins in fibroblasts from individuals with progeria or Werner's syndrome are significantly higher than age-matched controls. Moreover, treatment of glucose-6-phosphate dehydrogenase with a mixed function oxidation system leads to oxidative modification and increased heat lability of the enzyme. Taken together these results suggest that loss of functional enzyme activity and increased heat lability of enzymes during aging may be due in part to oxidative modification by mixed function oxidation systems.  相似文献   

11.
Human erythrocytes were separated into four density (age) groups representing the top 10% (young), bottom 10% (old), and two middle fractions of 40% each (intermediary ages). When these erythrocytes of different age groups were treated with the low levels of a purified basic phospholipase A2 from Agkistrodon halys blomhofii, under conditions where little or no hemolysis occurred, the optimum extent of phosphatidylcholine (PC) hydrolysis in all age groups was the same, but interestingly, the rate of its hydrolysis was two to three times faster in the older cells compared to younger erythrocytes. On the other hand, hydrolysis of phosphatidylethanolamine (PE) of younger erythrocytes by the phospholipase A2 was negligible under the particular experimental conditions. However, in erythrocytes of older age groups, both the rate and extent of PE hydrolysis by the enzyme increased in a distinctive fashion. Concomitant with the above pattern of PC and PE hydrolysis, the shape changes in the erythrocytes also were different; whereas all older erythrocytes became echinocytic only two-thirds of the younger erythrocytes showed a similar shape change. These observations firmly establish that during in vivo aging of normal erythrocytes in circulation significant changes in the structural organization of membrane phospholipids take place. Importance of this phenomenon in membrane phospholipid asymmetry studies and in the elimination of senescent cells also is discussed.  相似文献   

12.
Plasma concentrations of a zinc carrier peptide, namely thymulin, were measured according to a bioassay in young donors, healthy elderly, and patients with senile dementia of Alzheimer’s type (SDAT). Thymulin is a hormone released by thymic epithelial cells and its biological activity on cells of immune system is dependent on the presence of one molecule of zinc bound to the peptide. Plasma from different subjects were fractionated by gel filtration to yield protein-bound thymulin and free thymulin. The biological activity of the peptide was then assessed in the two different fractions. The activity of protein-bound thymulin was higher in young donors than in elderly of SDAT patients, being the lowest in SDAT. Addition of zinc ions to plasma fractions increased the thymulin activity of samples from elderly and SDAT patients to levels observed in young donors. Thymulin activity in free thymulin fractions was lower in the elderly than in the young and was practically undetectable in SDAT patients. The addition of zinc ions normalized the activity of thymulin in these fractions from both the elderly and SDAT patients. These findings confirm the presence of an altered zinc status in the elderly and suggest that an impaired zinc metabolism may be present in SDAT patients.  相似文献   

13.
G J Bosman  M M Kay 《Blood cells》1988,14(1):19-46
Senescent cell antigen (SCANT) is a "neo antigen" that appears on the surface of normal old cells and initiates IgG binding and cellular removal. To investigate the mechanism by which SCANT is generated from its parent molecule, band 3, we subjected intact human erythrocytes to treatments that have been reported to result in changes in band 3 and/or to mimick aging in vitro. The validity of these treatments as model systems for erythrocyte aging was evaluated using a "red cell aging panel" that provides a biochemical profile of a senescent red cell. Treatments were assessed for their ability to induce in vitro the following changes observed in normal erythrocytes aged in vivo: 1 increased breakdown of band 3 as detected by immunoblotting, 2 decrease in anion transport efficiency as detected with a sulfate self-exchange assay, 3 decrease in total glyceraldehyde 3-phosphate dehydrogenase activity with an increase in membrane-bound activity, and 4 increase in the binding of autologous IgG as detected with a protein A binding assay. Neither incubation with the free radical-generating xanthine oxidase/xanthine system, nor treatment with malondialdehyde, and end product of free radical-initiated lipid (per)oxidation, results in age-specific changes. Loading of the cells with calcium and oxidation with iodate results in increased breakdown of band 3, but does not lead to increased binding of autologous IgG. Only erythrocytes that have been stored for 3-4 weeks show the same structural and functional changes as observed during aging in vivo.  相似文献   

14.
According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain. However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated from the vastus lateralis of young and elderly donors. Mitochondrial respiratory functions were addressed by high-resolution respirometry, and ROS production was analyzed by in situ staining with the redox-sensitive dye dihydroethidium. We found that aged human skeletal muscles contain fully functional mitochondria and that the level of ROS production is higher in young compared to aged muscle. Accordingly, we could not find any increase in oxidative modification of proteins in muscle from elderly donors. However, the accumulation of lipofuscin was identified as a robust marker of human muscle aging. The data support a model, where ROS-induced molecular damage is continuously removed, preventing the accumulation of dysfunctional mitochondria despite ongoing ROS production.  相似文献   

15.
Our previous studies have shown that iron is released in a free (desferrioxamine-chelatable) form when erythrocytes undergo oxidative stress (incubation with oxidizing agents or aerobic incubation in buffer for 24-60 h (a model of rapid in vitro ageing)). The release is accompanied by oxidative alterations of membrane proteins as well as by the appearance of senescent antigen, a signal for termination of old erythrocytes. In hemolytic anemias by hereditary hemoglobin alterations an accelerated removal of erythrocytes occurs. An increased susceptibility to oxidative damage has been reported in beta-thalassemic erythrocytes. Therefore we have investigated whether an increased iron level and an increased susceptibility to iron release could be observed in the erythrocytes from patients with beta-thalassemia. Erythrocytes from subjects with thalassemia intermedia showed an extremely higher content (0 time value) of free iron and methemoglobin as compared to controls. An increase, although non-statistically-significant, was seen in erythrocytes from subjects with thalassemia major. Upon aerobic incubation for 24 h the release of iron in beta-thalassemic erythrocytes was by far greater than in controls, with the exception of thalassemia minor. When the individual values for free iron content (0 time) seen in thalassemia major and intermedia were plotted against the corresponding values for HbF, a positive correlation (P < 0.001) was observed. Also, a positive correlation (P < 0.01) was seen between the values for free iron release (24 h incubation) and the values for HbF. These results suggest that the presence of HbF is a condition favourable to iron release. Since in beta-thalassemia the persistance of HbF is related to the lack or deficiency of beta chains and therefore to the excess of alpha chains, the observed correlation between free iron and HbF, is consistent with the hypothesis by others that excess of alpha chains represents a prooxidant factor.  相似文献   

16.
To add an additional aspect to the process of recognition and removal of senescent human erythrocytes from the circulation, the binding of wheat germ agglutinin (WGA) to separated young, old and sialidase-treated human erythrocytes is evaluated with the immune-electron microscopical method. WGA/gold conjugate binding to old erythrocytes was lower (27%) than to young erythrocytes and even lower following treatment with sialidase (82%), exhibiting a clustered, non-continuous labeling pattern in all three erythrocyte populations, thus showing a possible redistribution of WGA binding sites. The decrease in bound WGA/gold particles correlates well with the previously reported decrease in surface sialic acid on old erythrocytes. The binding of WGA/gold are indicative of the changes occurring on erythrocyte membrane surfaces when interacting with different agglutinins.  相似文献   

17.
The buckwheat metallothionein-like (MT3) gene expression was studied throughout seed and leaf development, as well as under the influence of different external stimuli. MT3 mRNAs were detected from the early stage of seed development to the end of maturation, reaching the highest level during the mid-maturation stage. High MT3 mRNA level was noticed for both green and senescent leaves. The influence of raising Cu ion concentrations on MT3 gene expression was studied only in leaves, while the effect of Zn ions was analyzed through seed development as well. It was found that Cu and Zn ions had stimulatory effects on expression in leaves. MT3 expression was significantly enhanced in the early stage of seed development in response to Zn ions, while after this stage, influence of Zn ions was not detected. After H2O2/NaCl treatment, MT3 mRNA level was decreased in green leaves, contrary to senescent leaves where expression levels remained unchanged. H2O2 treatment caused the increase of MT3 mRNA levels in the mid-maturation stage of seed development. NaCl had no effect on expression levels in seeds. According to obtained results, proposed functions in different plant organs regarding oxidative stress and metal homeostasis are discussed.  相似文献   

18.
H Gershon  D Gershon 《Blood cells》1988,14(1):93-101
Experimentation performed to determine the parameters of the life-span of the erythrocyte in hosts of various ages have determined that, in aged individuals, the rate of turnover of cells is considerably increased over that observed in young individuals. These observations are based on studies in humans, rats, mice, and rabbits in which either in situ 59Fe labelling or age-density gradient separation were used. The mechanisms for the recognition of the effete red cell in the aged host and the nature of the membrane alterations that bring about the premature sequestration are not fully understood. However, it has been consistently observed that the red cells of aged individuals have higher levels of IgG bound to their membranes than do young cells, with the most dense cells having the highest levels of immunoglobulin. Studies of most enzymes, particularly those involved in protection against oxidative damage have shown reduced activity as a function of both cell and donor age. Evidence of enzyme damage has been observed even in the youngest circulating red blood cells of old individuals. This fact leads us to hypothesize that the erythrocyte of the aged individual as it differentiates and is released from the bone marrow is less functional and partially damaged. The erythrocytes of both old and young individuals age in the circulation, accumulating subtle alterations that are recognized by the immune and/or reticuloendothelial systems and lead to sequestration. The cells of the elderly individual accumulate a greater degree of damage due to their initially reduced capacity to protect themselves from environmental stress. These alterations eventually bring them to their early sequestration.  相似文献   

19.
There were no differences in the number of A and M antigen sites between young and old human erythrocyte surfaces. No essential differences in the number of A1, N and Vicia graminea N antigen sites could be observed between young and old erythrocytes. The number of B and H antigen sites on cell surface was significantly higher in young erythrocytes than in old ones. The distribution density of A and M antigen sites on young erythrocyte was remarkably higher than that on old ones. Compared with young erythrocytes, significant increases in the distribution density of A1, B, H, N and Vicia graminea N antigen sites were observed in aged erythrocytes. It is suggested from these and other observations that human erythrocyte aging is accompanied by elimination of a small amount of B and H antigens from cell membranes, while A, A1, M, N and Vicia graminea N antigens are not released from cell membranes during in vivo aging.  相似文献   

20.
Evidence is presented to indicate a generalized role for the terminal sialic acid residues of circulating erythrocytes. After reinjection into their donors, neuraminidase-treated human, rabbit, rat and dog erythrocytes were promptly removed from the circulation : intect erythrocytes, previously incubated under the same conditions but without neuraminidase, were removed after a significantly longer period. The neuraminidase-treated erythrocytes were cleared by the liver and in a little part by the spleen. Old and young human, rabbit, rat erythrocytes contained different quantities of stromal sialic acid, significantly lowered on the old cells. But the half-life of old intact rabbit erythrocytes is sigificantly shorter than that of neuraminidase-treated young erythrocytes with a similar minidase-treated young erythrocytes with a similar sialic acid content. Indeed sialic acid is not the only carbohydrate component of the membrane that is decreased during erythrocyte ageing, the others membranous sugars are decreased too. Theses changes in the carbohydrate moity could have a role in the clearance of the erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号