首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baclofen and oxazepam enhance extinction of conflict behaviour in the Geller-Seifter test while baclofen and diazepam release punished behaviour in Vogel's conflict test. In order to investigate the possibility that the effect of the selective GABA-B receptor agonist baclofen is mediated indirectly via the GABA-A/benzodiazepine receptor complex, the effect of pretreatment of rats with baclofen on [3H]-diazepam binding to washed and unwashed cortical and cerebellar membranes of rats has been studied. Baclofen pretreatment increased Bmax in washed cerebellar membranes when bicuculline was present in the incubation mixture. No effect was seen in cortical membranes. The present results render it unlikely that the effect of baclofen on extinction of conflict behaviour and punished drinking is mediated via the GABA-A/benzodiazepine receptor complex.  相似文献   

2.
To determine the involvement of the globus pallidus in mediating epilepsy, the effects of microinjection of a GABA uptake blocker (tiagabine), a benzodiazepine agonist (zolpidem) and a GABA-B receptor agonist (baclofen) on pentylenetetrazol (PTZ)-induced tonic seizure were examined in adult rats. Administration of PTZ induced tonic seizures in all control animals, accompanied with a 100% mortality rate. Pretreatment with bilateral intrapallidal microinjection of tiagabine (1 mM) suppressed the incidence of tonic seizures to 67.7% and reduced the mortality rate to 16.7%. Furthermore, the latency to tonic seizures was 1,275 ± 277 s, which was significantly longer than that of the corresponding control animals (319 ± 225 s). On the other hand, administration of zolpidem (1 mM) was without significant effects on the mortality rate, the incidence and latency of the tonic seizure. In sharp contrast, microinjection of baclofen (1mM) completely suppressed PTZ-induced tonic seizures and reduced the mortality rate to 0%. This effect was largely abolished by co-injection of the GABA-B receptor antagonist CGP55845. To elucidate the direct cellular action of baclofen, the excitability and membrane potential of globus pallidus neurons were studied by cell-attached and whole-cell patch-clamp recordings in the brain slice. Bath application of baclofen (50 µM) significantly reduced the firing of these neurons, and was often accompanied by a clear membrane hyperpolarization, in a CGP55845-sensitive manner. These data suggest that activation of GABA-B receptors in globus pallidus could significantly modulate PTZ-induced tonic seizures.  相似文献   

3.
Triiodothyronine (T3) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T3/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T3 at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T3-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T3 response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T3 responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T3/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.  相似文献   

4.
There is a critical need to identify molecules that modulate the biology of neutrophils because activated neutrophils, though necessary for host defense, cause exuberant tissue damage through production of reactive oxygen species and increased lifespan. Angiostatin, an endogenous anti-angiogenic cleavage product of plasminogen, binds to integrin αvβ3, ATP synthase and angiomotin and its expression is increased in inflammatory conditions. We test the hypothesis that angiostatin inhibits neutrophil activation, induces apoptosis and blocks recruitment in vivo and in vitro. The data show immuno-reactivity for plasminogen/angiostatin in resting neutrophils. Angiostatin conjugated to FITC revealed that angiostatin was endocytozed by activated mouse and human neutrophils in a lipid raft-dependent fashion. Co-immunoprecipitation of human neutrophil lysates, confocal microscopy of isolated mouse and human neutrophils and functional blocking experiments showed that angiostatin complexes with flotillin-1 along with integrin αvβ3 and ATP synthase. Angiostatin inhibited fMLP-induced neutrophil polarization, as well as caused inhibition of hsp-27 phosphorylation and stabilization of microtubules. Angiostatin treatment, before or after LPS-induced neutrophil activation, inhibited phosphorylation of p38 and p44/42 MAPKs, abolished reactive oxygen species production and released the neutrophils from suppressed apoptosis, as indicated by expression of activated caspase-3 and morphological evidence of apoptosis. Finally, intravital microscopy and myeloperoxidase assay showed inhibition of neutrophil recruitment in post-capillary venules of TNFα-treated cremaster muscle in mouse. These in vitro and in vivo data demonstrate angiostatin as a broad deactivator and silencer of neutrophils and an inhibitor of their migration. These data potentially open new avenues for the development of anti-inflammatory drugs.  相似文献   

5.
The effect of an IgM class monoclonal antibody (B36) (Greene, G. L., Fitch, F. W., and Jensen, E. V. (1980) Proc. Natl. Acad. Sci. U. S. A. 77, 157-161) raised against the calf uterine estrogen receptor was tested in vitro on certain parameters of estrogen receptor activation by estradiol or 4-hydroxytamoxifen, a potent anti-estrogen. The following results were obtained. The antibody prevented the decrease in the dissociation rate of the receptor-estradiol complex which results from activation of the complex, whereas it did not affect the dissociation rate of the receptor-4-hydroxytamoxifen complex, which remains unchanged upon activation. The antibody also increased the dissociation rate of the preactivated receptor-estradiol complex. The antibody protected the naked estrogen receptor against heat-inactivation. B36 partially inhibited the binding of the estradiol- and 4-hydroxy-tamoxifen-receptor complexes to DNA adsorbed onto cellulose, but did not reverse the receptor-DNA binding. This inhibition was not overcome by higher DNA concentrations and was more pronounced for the receptor interacting with estrogen than with anti-estrogen. All these effects were specific since they were related to antibody/antigen recognition and were dose-dependent. These results indicate that the binding of the antibody to the estrogen-activated receptor induces a conformational change in the receptor and that the antibody can prevent and overcome the effect of activation whatever its mechanism. They also confirm that the conformations of the estrogen receptor differ when bound to estradiol or to 4-hydroxytamoxifen.  相似文献   

6.
7.
The coxsackie adenovirus receptor inhibits cancer cell migration   总被引:6,自引:0,他引:6  
The coxsackie and adenovirus receptor (CAR) is a key factor in adenoviral cancer gene therapy. Reduced expression of CAR during progression of prostate and bladder cancer has been reported. In embryonic development and tissue differentiation, CAR is also differentially expressed. This study suggests a role of CAR expression in cell adhesion and cell motility of human cancer cells. Stable CAR-expressing clones from E-cadherin-deficient A2780 ovarian and CaSki cervical cancer cells with originally low and high CAR expression levels, respectively, were established. CAR reexpression in otherwise singularly growing A2780 parental cells resulted in formation of cell-cell contacts and aggregation in cell clusters. CAR overexpression in cell adhesion-forming CaSki cells did not result in morphological changes. Migration of the A2780 CAR clones was strongly reduced as characterized by using spread-off assays. Using migration chambers, formation of satellite colonies was reduced by 97% in CAR-expressing A2780 cell clones and by 23% in CAR-expressing CaSki cell clones. Parental A2780 and CaSki cells selected for high migratory ability by using migration chambers expressed endogenous CAR on lower levels associated with lower adenoviral transduction efficiency. Our data suggest CAR as a new inhibitory factor for cancer cell migration.  相似文献   

8.
9.
RON is a receptor tyrosine kinase of the MET family that is involved in cell proliferation, cell survival, and cell motility in both normal and disease states. Macrophage-stimulating protein (MSP) is the RON ligand whose binding to RON causes receptor activation. RON is a trans-membrane heterodimer comprised of one alpha- and one beta-chain originating from a single-chain precursor and held together by several disulfide bonds. The intracellular part of RON contains the kinase domain and regulatory elements. The extracellular region is characterized by the presence of a sema domain (a stretch of approximately 500 amino acids with several highly conserved cysteine residues), a PSI (plexin, semaphorins, integrins) domain, and four immunoglobulin-like folds. Here we show that a soluble, secreted molecule representing the sema domain of RON (referred to as ron-sema) has a dominant negative effect on the ligand-induced receptor activation and is capable of inhibiting RON-dependent signaling pathways and cellular responses. Results suggest that the sema domain of RON participates in ligand binding by the full-length receptor. The ability of ron-sema to suppress growth of MSP-responsive cells in culture, including cancer cells, points to a potential therapeutic use of this molecule, and forced expression of it could potentially be used as a gene therapy tool for treating MSP-dependent types of cancer.  相似文献   

10.
《The Journal of cell biology》1993,120(4):1011-1019
Endothelial cell (EC) migration is a critical and initiating event in the formation of new blood vessels and in the repair of injured vessels. Compelling evidence suggests that oxidized low density lipoprotein (LDL) is present in atherosclerotic lesions, but its role in lesion formation has not been defined. We have examined the role of oxidized LDL in regulating the wound-healing response of vascular EC in vitro. Confluent cultures of bovine aortic EC were "wounded" with a razor, and migration was measured after 18 to 24 h as the number of cells moving into the wounded area and the mean distance of cells from the wound edge. Oxidized LDL markedly reduced migration in a concentration- and oxidation-dependent manner. Native LDL or oxidized LDL with a thiobarbituric acid (TBA) reactivity < 5 nmol malondialdehyde equivalents/mg cholesterol was not inhibitory; however, oxidized LDL with a TBA reactivity of 8-12 inhibited migration by 75- 100%. Inhibition was half-maximal at 250-300 micrograms cholesterol/ml and nearly complete at 350-400 micrograms/ml. The antimigratory activity was not due to cell death since it was completely reversed 16 h after removal of the lipoprotein. The inhibitor molecule was shown to be a lipid; organic solvent extracts of oxidized LDL inhibited migration to nearly the same extent as the intact particle. When LDL was variably oxidized by dialysis against FeSO4 or CuSO4, or by UV irradiation, the inhibitory activity correlated with TBA reactivity and total lipid peroxides, but not with electrophoretic mobility or fluorescence (360 ex/430 em). This indicates that a lipid hydroperoxide may be the active species. These results suggest the possibility that oxidized LDL may limit the healing response of the endothelium after injury.  相似文献   

11.
Urokinase receptor (uPAR) plays a key role in physiological and pathological processes sustained by an altered cell migration. We have developed peptides carrying amino acid substitutions along the Ser(88)-Arg-Ser-Arg-Tyr(92) (SRSRY) uPAR chemotactic sequence. The peptide pyro glutamic acid (pGlu)-Arg-Glu-Arg-Tyr-NH2 (pERERY-NH(2)) shares the same binding site with SRSRY and competes with N-formyl-Met-Leu-Phe (fMLF) for binding to the G-protein-coupled N-formyl-peptide receptor (FPR). pERERY-NH(2) is a dose-dependent inhibitor of both SRSRY- and fMLF-directed cell migration, and prevents agonist-induced FPR internalization and fMLF-dependent ERK1/2 phosphorylation. pERERY-NH(2) is a new and potent uPAR inhibitor which may suggest the generation of new pharmacological treatments for pathological conditions involving increased cell migration.  相似文献   

12.
Background: Total saponins from Rubus parvifolius L. (TSRP) are the main bioactive fractions responsible for the anti-tumor activities. The work was aimed to evaluate the anti-tumor effect of TSRP in malignant melanoma (MM) in vitro and in vivo.Methods and results: Anti-melanoma cell proliferation, invasion and migration effect of TSRP were detected in human MM A375 cells under the indicated time and dosages. In vivo anti-tumor effect of TSRP was measured in A375 xenograft immunodeficient nude mice. Sixty A375 xenografts were randomly divided into five groups: Vehicle, cyclophosphamide (CTX, 20 mg/kg), TSRP (25 mg/kg), TSRP (50 mg/kg) and TSRP (100 mg/kg) groups for 14 days’ treatment. In addition, the melanoma metastasis in lung in vivo of TSRP was detected in A375 tail vein injection mice, and the histopathalogical analysis of the lung metastasis was detected by Hematoxylin–Eosin (H&E) staining. TSRP significantly inhibited the cell proliferation, invasion and migration of A375 in vitro at the indicated time and dosages. TSRP treatment effectively blocked the tumor growth in immunodeficient nude mice. In addition, TSRP also significantly inhibited the lung metastasis of melanoma.Conclusion: The present study indicated that the TSRP has a remarkable anti-MM effect, which mainly through the inhibition of the cell invasion, migration and tumor metastasis.  相似文献   

13.
Robo4 is a vascular-specific receptor that inhibits endothelial migration   总被引:20,自引:0,他引:20  
Guidance and patterning of axons are orchestrated by cell-surface receptors and ligands that provide directional cues. Interactions between the Robo receptor and Slit ligand families of proteins initiate signaling cascades that repel axonal outgrowth. Although the vascular and nervous systems grow as parallel networks, the mechanisms by which the vascular endothelial cells are guided to their appropriate positions remain obscure. We have identified a putative Robo homologue, Robo4, based on its differential expression in mutant mice with defects in vascular sprouting. In contrast to known neuronal Robo family members, the arrangement of the extracellular domains of Robo4 diverges significantly from that of all other Robo family members. Moreover, Robo4 is specifically expressed in the vascular endothelium during murine embryonic development. We show that Robo4 binds Slit and inhibits cellular migration in a heterologous expression system, analogous to the role of known Robo receptors in the nervous system. Immunoprecipitation studies indicate that Robo4 binds to Mena, a known effector of Robo-Slit signaling. Finally, we show that Robo4 is the only Robo family member expressed in primary endothelial cells and that application of Slit inhibits their migration. These data demonstrate that Robo4 is a bona fide member of the Robo family and may provide a repulsive cue to migrating endothelial cells during vascular development.  相似文献   

14.
PGD(2) is the major mediator released by mast cells during allergic responses, and it acts through two different receptors, the D prostanoid receptor 1 (DP1) and DP2, also known as CRTH2. Recently, it has been shown that PGD(2) inhibits the migration of epidermal Langerhans cells to the skin draining lymph nodes (LNs) and affects the subsequent cutaneous inflammatory reaction. However, the role of PGD(2) in the pulmonary immune response remains unclear. Here, we show that the intratracheal instillation of FITC-OVA together with PGD(2) inhibits the migration of FITC(+) lung DC to draining LNs. This process is mimicked by the DP1 agonist BW245C, but not by the DP2 agonist DK-PGD(2). The ligation of DP1 inhibits the migration of FITC-OVA(+) DCs only temporarily, but still inhibits the proliferation of adoptively transferred, OVA-specific, CFSE-labeled, naive T cells in draining LNs. These T cells produced lower amounts of the T cell cytokines IL-4, IL-10, and IFN-gamma compared with T cells from mice that received FITC-OVA alone. Taken together, our data suggest that the activation of DP receptor by PGD(2) may represent a pathway to control airway DC migration and to limit the activation of T cells in the LNs under steady state conditions, possibly contributing to homeostasis in the lung.  相似文献   

15.
Chronic hepatitis C is a common cause of liver disease, the complications of which include cirrhosis and hepatocellular carcinoma. Treatment of chronic hepatitis C is based on the use of alpha interferon (IFN-alpha). Recently, indirect evidence based on mathematical modeling of hepatitis C virus (HCV) dynamics during human IFN-alpha therapy suggested that the major initial effect of IFN-alpha is to block HCV virion production or release. Here, we used primary cultures of healthy, uninfected human hepatocytes to show that: (i) healthy human hepatocytes can be infected in vitro and support HCV genome replication, (ii) hepatocyte treatment with IFN-alpha results in expression of IFN-alpha-induced genes, and (iii) IFN-alpha inhibits HCV replication in infected human hepatocytes. These results show that IFN-alpha acts primarily through its nonspecific antiviral effects and suggest that primary cultures of human hepatocytes may provide a good model to study intrinsic HCV resistance to IFN-alpha.  相似文献   

16.
Malignant gliomas, the most common subtype of primary brain tumors, are characterized by high proliferation, great invasion, and neurological destruction and considered to be the deadliest of human cancers. Analgesic-antitumor peptide (AGAP), one of scorpion toxic polypeptides, has been shown to have antitumor activity. Here, we show that recombinant AGAP (rAGAP) not only inhibits the proliferation of gliomas cell SHG-44 and rat glioma cell C6, but also suppresses the migration of SHG-44 cells during wound healing. To explain these phenomena, we find that rAGAP leads to cell cycle of SHG-44 arrested in G1 phase accompanied by suppressing G1 cell cycle regulatory proteins CDK2, CDK6, and p-RB by means of the down-regulated protein expression of p-AKT. Meanwhile, rAGAP significantly decreases the production of NF-κB, BCL-2, p-p38, p-c-Jun, and p-Erk1/2 and further suppresses the activation of VEGF and MMP-9 in SHG-44 cells. These findings suggest rAGAP inhibit proliferation and migration of SHG-44 cells by arresting cell cycle and interfering p-AKT, NF-κB, BCL-2, and MAPK signaling pathways.  相似文献   

17.
Pertussis toxin is an ADP-ribosyltransferase which alters the function of some of the GTP-binding proteins and inhibits some actions of insulin. In vivo, pertussis toxin (2 micrograms/ml/2h) inhibited insulin-stimulated tyrosyl autophosphorylation of the insulin receptor by 50% in FaO cells, and nearly completely inhibited phosphorylation of the cellular insulin receptor substrate pp185. Similarly, insulin-stimulated autophosphorylation and kinase activity of the insulin receptor purified on wheat germ agglutinin-agarose from pertussis toxin-treated FaO cells was diminished 50%; however, treatment of cells with the catalytically inactive B-oligomer of the toxin had no effect on receptor tyrosine kinase activity in vitro. Pertussis toxin did not alter insulin binding or the cellular levels of ATP, cAMP, and cGMP. Furthermore, immunoprecipitation of the insulin receptor from intact cells with anti-insulin receptor antibodies showed that pertussis toxin did not increase the phosphorylation of serine or threonine residues in the insulin receptor. These results suggest that pertussis toxin can modulate signal transduction of insulin at the level of the insulin receptor kinase.  相似文献   

18.
Although the retinoic X receptor (RXR) forms heterodimers with many members of the estrogen receptor subfamily, the interaction between RXR and the members of the glucocorticoid receptor subfamily remains unclear. Here we show that the RXR can form a heterodimer with the androgen receptor (AR) under in vitro and in vivo conditions. Functional analyses further demonstrated that the AR, in the presence or absence of androgen, can function as a repressor to suppress RXR target genes, thereby preventing the RXR binding to the RXR DNA response element. In contrast, RXR can function as a repressor to suppress AR target genes in the presence of 9-cis-retinoic acid, but unliganded RXR can function as a weak coactivator to moderately enhance AR transactivation. Together, these results not only reveal a unique interaction between members of the two nuclear receptor subfamilies, but also represent the first evidence showing a nuclear receptor (RXR) may function as either a repressor or a coactivator based on the ligand binding status.  相似文献   

19.
E-cadherin is an essential adhesion protein as well as a tumor suppressor that is silenced in many cancers. Its adhesion-dependent regulation of signaling has not been elucidated. We report that E-cadherin can negatively regulate, in an adhesion-dependent manner, the ligand-dependent activation of divergent classes of receptor tyrosine kinases (RTKs), by inhibiting their ligand-dependent activation in association with decreases in receptor mobility and in ligand-binding affinity. E-cadherin did not regulate a constitutively active mutant RTK (Neu*) or the ligand-dependent activation of LPA receptors or muscarinic receptors, which are two classes of G protein-coupled receptors. EGFR regulation by E-cadherin was associated with complex formation between EGFR and E-cadherin that depended on the extracellular domain of E-cadherin but was independent of beta-catenin binding or p120-catenin binding. Transfection of E-cadherin conferred negative RTK regulation to human melanoma and breast cancer lines with downregulated endogenous E-cadherin. Abrogation of E-cadherin regulation may contribute to the frequent ligand-dependent activation of RTK in tumors.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号