首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The endogenous Mg(2+)-inhibited cation (MIC) current was recently described in different cells of hematopoietic lineage and was implicated in the regulation of Mg2+ homeostasis. Here we present a single channel study of endogenously expressed Mg(2+)-dependent cation channels in the human myeloid leukemia K562 cells. Inwardly directed unitary currents were activated in cell-attached experiments in the absence of Ca2+ and Mg2+ in the pipette solution. The current-voltage (I-V) relationships displayed strong inward rectification and yielded a single channel slope conductance of approximately 30 pS at negative potentials. The I-V relationships were not altered by patch excision into divalent-free solution. Channel open probability (P(o)) and mean closed time constant (tau(C)) were strongly voltage-dependent, indicating that gating mechanisms may underlie current inward rectification. Millimolar concentrations of Ca2+ or Mg2+ applied to the cytoplasmic side of the membrane produced slow irreversible inhibition of channel activity. The Mg(2+)-dependent cation channels described in this study differ from the MIC channels described in human T-cells, Jurkat, and rat basophilic leukemia (RBL) cells in their I-V relationships, kinetic parameters and dependence on intracellular divalent cations. Our results suggested that endogenously expressed Mg(2+)-dependent cation channels in K562 cells and the MIC channels in other hematopoietic cells might be formed by different channel proteins.  相似文献   

2.
BK channels modulate neurotransmitter release due to their activation by voltage and Ca(2+). Intracellular Mg(2+) also modulates BK channels in multiple ways with opposite effects on channel function. Previous single-channel studies have shown that Mg(2+) blocks the pore of BK channels in a voltage-dependent manner. We have confirmed this result by studying macroscopic currents of the mslo1 channel. We find that Mg(2+) activates mslo1 BK channels independently of Ca(2+) and voltage by preferentially binding to their open conformation. The mslo3 channel, which lacks Ca(2+) binding sites in the tail, is not activated by Mg(2+). However, coexpression of the mslo1 core and mslo3 tail produces channels with Mg(2+) sensitivity similar to mslo1 channels, indicating that Mg(2+) sites differ from Ca(2+) sites. We discovered that Mg(2+) also binds to Ca(2+) sites and competitively inhibits Ca(2+)-dependent activation. Quantitative computation of these effects reveals that the overall effect of Mg(2+) under physiological conditions is to enhance BK channel function.  相似文献   

3.
The nematode Caenorhabditis elegans provides numerous experimental advantages for developing an integrative molecular understanding of physiological processes and has proven to be a valuable model for characterizing Ca(2+) signaling mechanisms. This review will focus on the role of Ca(2+) release activated Ca(2+) (CRAC) channel activity in function of the worm gonad and intestine. Inositol 1,4,5-trisphosphate (IP(3))-dependent oscillatory Ca(2+) signaling regulates contractile activity of the gonad and rhythmic posterior body wall muscle contraction (pBoc) required for ovulation and defecation, respectively. The C. elegans genome contains a single homolog of both STIM1 and Orai1, proteins required for CRAC channel function in mammalian and Drosophila cells. C. elegans STIM-1 and ORAI-1 are coexpressed in the worm gonad and intestine and give rise to robust CRAC channel activity when coexpressed in HEK293 cells. STIM-1 or ORAI-1 knockdown causes complete sterility demonstrating that the genes are essential components of gonad Ca(2+) signaling. Knockdown of either protein dramatically inhibits intestinal cell CRAC channel activity, but surprisingly has no effect on pBoc, intestinal Ca(2+) oscillations or intestinal ER Ca(2+) store homeostasis. CRAC channels thus do not play obligate roles in all IP(3)-dependent signaling processes in C. elegans. Instead, we suggest that CRAC channels carry out highly specialized and cell specific signaling roles and that they may function as a failsafe mechanism to prevent Ca(2+) store depletion under pathophysiological and stress conditions.  相似文献   

4.
"Transient receptor potential" cation channels (TRP channels) play a unique role as cell sensors, are involved in a plethora of Ca(2+)-mediated cell functions, and play a role as "gate-keepers" in many homeostatic processes such as Ca(2+) and Mg(2+) reabsorption. The variety of functions to which TRP channels contribute and the polymodal character of their activation predict that failures in correct channel gating or permeation will likely contribute to complex pathophysiological mechanisms. Dysfunctions of TRPs cause human diseases but are also involved in a complex manner to contribute and determine the progress of several diseases. Contributions to this special issue discuss channelopathias for which mutations in TRP channels that induce "loss-" or "gain-of-function" of the channel and can be considered "disease-causing" have been identified. The role of TRPs will be further elucidated in complex diseases of the intestinal, renal, urogenital, respiratory, and cardiovascular systems. Finally, the role of TRPs will be discussed in neuronal diseases and neurodegenerative disorders.  相似文献   

5.
An emerging concept in signal transduction is the organization of neuronal receptors and channels into microdomains in which signaling proteins are brought together to regulate functional responses. With the multiplicity of potential protein-protein interactions arises the need for the regulation and timing of these interactions. We have identified N-type Ca(2+) channel-signaling molecule complexes formed at different times upon activation of gamma-aminobutyric acid, type B, receptors. The first type of interaction involves pre-association of signaling proteins such as Src kinase with the Ca(2+) channel, because it is rapidly activated by the receptors and regulates the magnitude of the inhibition of the Ca(2+) channel. The second type of interaction involves signaling molecules that are recruited to the channel by receptor activation and control the rate of the channel response. Recruitment of members of the Ras pathway has two effects as follows: 1) modulation of the rate of onset of the gamma-aminobutyric acid-mediated inhibition of Ca(2+) current, and 2) activation of MAP kinase. Our results suggest that the Ca(2+) channel alpha(1) subunit functions as a dynamic scaffold allowing assembly of intracellular signaling components that alter channel activity and route signals to the MAP kinase pathway.  相似文献   

6.
The aim of this study was to identify the existence of anion-dependent Mg transport systems in cardiac muscle. DIDS-sensitive and anion-dependent (either Cl(-)(o) or NO(-)(3o)) increases in [Mg(2+)](i) occurred during Mg(2+) loading conditions. Much larger elevations of [Mg(2+)](i) occurred under Cl(-)(o)-free conditions with 0.1 mmol l(-1) DIDS, compared to Cl(-)(o) replacement alone. All these effects were abolished in Mg(2+)(o)-free medium. These data suggest a novel Mg(2+)-anion symport for Mg(2+) efflux against the electrochemical gradient that is fueled mostly by the efflux of an endogenous anion (HCO(-)(3)?), but with a small contribution from intracellular Cl(-) probably supplied via the Cl(-)-HCO(-)(3) exchanger.  相似文献   

7.
Two families of proteins, the bestrophins (Best) and the recently cloned TMEM16 proteins (anoctamin, Ano), recapitulate properties of Ca(2+)-activated Cl(-) currents. Best1 is strongly expressed in the retinal pigment epithelium and could have a function as a Ca(2+)-activated Cl(-) channel as well as a regulator of Ca(2+) signaling. It is also present at much lower levels in other cell types including epithelial cells, where it regulates plasma membrane localized Cl(-) channels by controlling intracellular Ca(2+) levels. Best1 interacts with important Ca(2+)-signaling proteins such as STIM1 and can interact directly with other Ca(2+)-activated Cl(-) channels such as TMEM16A. Best1 is detected in the endoplasmic reticulum (ER) where it shapes the dynamic ER structure and regulates cell proliferation, which could be important for renal cystogenesis. Ca(2+)-activated Cl(-) channels of the anoctamin family (TMEM16A) show biophysical and pharmacological properties that are typical for endogenous Ca(2+)-dependent Cl(-) channels. TMEM16 proteins are abundantly expressed and many reports demonstrate their physiological importance in epithelial as well as non-epithelial cells. These channels are also activated by cell swelling and can therefore control cell volume, proliferation and apoptosis. To fully understand the function and regulation of Ca(2+)-activated Cl(-) currents, it is necessary to appreciate that Best1 and TMEM16A are embedded in a protein network and that they probably operate in functional microdomains.  相似文献   

8.
Ca(2+) release via intracellular release channels, IP(3)Rs (inositol 1,4,5-trisphosphate receptors) and RyRs (ryanodine receptors), is perhaps the most ubiquitous and versatile cellular signalling mechanism, and is involved in a vast number of cellular processes. In addition to this classical release pathway there is limited, but yet persistent, information about less well-defined Ca(2+)-leak pathways that may play an important role in the control of the Ca(2+) load of the endo(sarco)plasmic reticulum. The mechanisms responsible for this 'basal' leak are not known, but recent data suggest that both IP(3)Rs and RyRs may also operate as Ca(2+)-leak channels, particularly in pathological conditions. Proteolytic cleavage or biochemical modification (such as hyperphosphorylation or nitrosylation), for example, occurring during conditions of cell stress or apoptosis, can functionally uncouple the cytoplasmic control domains from the channel domain of the receptor. Highly significant information has been obtained from studies of malfunctioning channels in various disorders; for example, RyRs in cardiac malfunction or genetic muscle diseases and IP(3)Rs in neurodegenerative diseases. In this review we aim to summarize the existing information about functionally uncoupled IP(3)R and RyR channels, and to discuss the concept that those channels can participate in Ca(2+)-leak pathways.  相似文献   

9.
Anandamide (arachidonylethanolamide) and 2-arachidonoylglycerol mediate many of their actions via either CB(1) or CB(2) cannabinoid receptor subtypes. These agonist-receptor interactions result in activation of G proteins, particularly those of the G(i/o) family. Signal transduction pathways that are regulated by these G proteins include inhibition of adenylyl cyclase, regulation of ion currents (inhibition of voltage-gated L, N and P/Q Ca(2+)-currents; activation of K(+) currents); activation of focal adhesion kinase (FAK), mitogen activated protein kinase (MAPK) and induction of immediate early genes; and stimulation of nitric oxide synthase (NOS). Other effects of anandamide and/or 2-arachidonoylglycerol that are not mediated via cannabinoid receptors include inhibition of L-type Ca(2+) channels, stimulation of VR(1) vanilloid receptors, transient changes in intracellular Ca(2+), and disruption of gap junction function. Cardiovascular regulation by anandamide appears to occur by a variety of receptor-mediated and non-receptor-mediated mechanisms. This review will describe and evaluate each of these signal transduction pathways and mechanisms.  相似文献   

10.
Calcium ions (Ca2+) play an essential role in cardiac excitation-contraction coupling. Ca2+ is stored in the sarcoplasmic reticulum (SR) and is release via SR-Ca-release channels (ryanodine receptors, RyR2) to trigger contraction. RyR2 is a homotetramer comprising 4 pore-forming subunits. Each subunit is closely associated to regulatory proteins such as calstabine 2 (FKBP12.6), calmodulin, PKA, CamKII, calsequestrin and form a macromolecular complex that plays a critical role in pathological conditions. As a matter of fact, alterations of the channel activity and/or associated regulatory proteins can cause severe functional alterations resulting in arrhythmias and sudden death. Thus, RyR2 represent a novel therapeutic target and the discovery of a new pharmacological agent able to restore a normal RyR2 channel function represents a major challenge in the cardiac field.  相似文献   

11.
12.
TRP family of proteins are components of unique cation channels that are activated in response to diverse stimuli ranging from growth factor and neurotransmitter stimulation of plasma membrane receptors to a variety of chemical and sensory signals. This review will focus on members of the TRPC sub-family (TRPC1-TRPC7) which currently appear to be the strongest candidates for the enigmatic Ca(2+) influx channels that are activated in response to stimulation of plasma membrane receptors which result in phosphatidyl inositol-(4,5)-bisphosphate (PIP(2)) hydrolysis, generation of IP(3) and DAG, and IP(3)-induced Ca(2+) release from the intracellular Ca(2+) store via inositol trisphosphate receptor (IP(3)R). Homomeric or selective heteromeric interactions between TRPC monomers generate distinct channels that contribute to store-operated as well as store-independent Ca(2+) entry mechanisms. The former is regulated by the emptying/refilling of internal Ca(2+) store(s) while the latter depends on PIP(2) hydrolysis (due to changes in PIP(2) per se or an increase in diacylglycerol, DAG). Although the exact physiological function of TRPC channels and how they are regulated has not yet been conclusively established, it is clear that a variety of cellular functions are controlled by Ca(2+) entry via these channels. Thus, it is critical to understand how cells coordinate the regulation of diverse TRPC channels to elicit specific physiological functions. It is now well established that segregation of TRPC channels mediated by interactions with signaling and scaffolding proteins, determines their localization and regulation in functionally distinct cellular domains. Furthermore, both protein and lipid components of intracellular and plasma membranes contribute to the organization of these microdomains. Such organization serves as a platform for the generation of spatially and temporally dictated [Ca(2+)](i) signals which are critical for precise control of downstream cellular functions.  相似文献   

13.
Ryanodine receptors (RyRs), intracellular calcium release channels required for cardiac and skeletal muscle contraction, are macromolecular complexes that include kinases and phosphatases. Phosphorylation/dephosphorylation plays a key role in regulating the function of many ion channels, including RyRs. However, the mechanism by which kinases and phosphatases are targeted to ion channels is not well understood. We have identified a novel mechanism involved in the formation of ion channel macromolecular complexes: kinase and phosphatase targeting proteins binding to ion channels via leucine/isoleucine zipper (LZ) motifs. Activation of kinases and phosphatases bound to RyR2 via LZs regulates phosphorylation of the channel, and disruption of kinase binding via LZ motifs prevents phosphorylation of RyR2. Elucidation of this new role for LZs in ion channel macromolecular complexes now permits: (a) rapid mapping of kinase and phosphatase targeting protein binding sites on ion channels; (b) predicting which kinases and phosphatases are likely to regulate a given ion channel; (c) rapid identification of novel kinase and phosphatase targeting proteins; and (d) tools for dissecting the role of kinases and phosphatases as modulators of ion channel function.  相似文献   

14.
Calmodulin (CaM) is a ubiquitous cytosolic protein that plays a critical role in regulating cellular functions by altering the activity of a large number of ion channels. There are many examples for CaM directly mediating the feedback effects of Ca2+ on Ca2+ channels. Recently the molecular mechanisms by which CaM interacts with voltage-gated Ca2+ channels, Ca(2+)-activated K+ channels and ryanodine receptors have been clarified. CaM plays an important role in regulating these ion channels through lobe-specific Ca2+ detection. CaM seems to behave as a channel subunit. It binds at low [Ca2+] and undergoes conformational changes upon binding of Ca2+, leading to an interaction with another part of the channel to regulate its gating. Here we focus on the mechanism by which CaM regulates the inositol 1,4,5-trisphosphate receptor (IP3R). Although the IP3R is inhibited by CaM and by other CaM-like proteins in the presence of Ca2+, we conclude that CaM does not act as the Ca2+ sensor for IP3R function. Furthermore we discuss a novel Ca(2+)-induced Ca(2+)-release mechanism found in A7r5 (embryonic rat aorta) and 16HBE14o- (human bronchial mucosa) cells for which CaM acts as a Ca2+ sensor.  相似文献   

15.
T-type calcium channels play critical roles in controlling neuronal excitability, including the generation of complex spiking patterns and the modulation of synaptic plasticity, although the mechanisms and extent to which T-type Ca(2+) channels are modulated by G-protein-coupled receptors (GPCRs) remain largely unexplored. To examine specific interactions between T-type Ca(2+) channel subtypes and muscarinic acetylcholine receptors (mAChRS), the Cav3.1 (alpha(1G)), Cav3.2 (alpha(1H)), and Cav3.3 (alpha) T-type Ca(2+)(1I)channels were co-expressed with the M1 Galpha(q/11)-coupled mAChR. Perforated patch recordings demonstrate that activation of M1 receptors has a strong inhibitory effect on Cav3.3 T-type Ca(2+) currents but either no effect or a moderate stimulating effect on Cav3.1 and Cav3.2 peak current amplitudes. This differential modulation was observed for both rat and human T-type Ca(2+) channel variants. The inhibition of Cav3.3 channels by M1 receptors is reversible, use-independent, and associated with a concomitant increase in inactivation kinetics. Loss-of-function experiments with genetically encoded antagonists of Galpha and Gbetagamma proteins and gain-of-function experiments with genetically encoded Galpha subtypes indicate that M1 receptor-mediated inhibition of Cav3.3 occurs through Galpha(q/11). This is supported by experiments showing that activation of the M3 and M5 Galpha(q/11)-coupled mAChRs also causes inhibition of Cav3.3 currents, although Galpha(i)-coupled mAChRs (M2 and M4) have no effect. Examining Cav3.1-Cav3.3 chimeric channels demonstrates that two distinct regions of the Cav3.3 channel are necessary and sufficient for complete M1 receptor-mediated channel inhibition and represent novel sites not previously implicated in T-type channel modulation.  相似文献   

16.
TRPV6 (CaT1/ECaC2), a highly Ca(2+)-selective member of the TRP superfamily of cation channels, becomes permeable to monovalent cations in the absence of extracellular divalent cations. The monovalent currents display characteristic voltage-dependent gating and almost absolute inward rectification. Here, we show that these two features are dependent on the voltage-dependent block/unblock of the channel by intracellular Mg(2+). Mg(2+) blocks the channel by binding to a site within the transmembrane electrical field where it interacts with permeant cations. The block is relieved at positive potentials, indicating that under these conditions Mg(2+) is able to permeate the selectivity filter of the channel. Although sizeable outward monovalent currents were recorded in the absence of intracellular Mg(2+), outward conductance is still approximately 10 times lower than inward conductance under symmetric, divalent-free ionic conditions. This Mg(2+)-independent rectification was preserved in inside-out patches and not altered by high intracellular concentrations of spermine, indicating that TRPV6 displays intrinsic rectification. Neutralization of a single aspartate residue within the putative pore loop abolished the Mg(2+) sensitivity of the channel, yielding voltage-independent, moderately inwardly rectifying monovalent currents in the presence of intracellular Mg(2+). The effects of intracellular Mg(2+) on TRPV6 are partially reminiscent of the gating mechanism of inwardly rectifying K(+) channels and may represent a novel regulatory mechanism for TRPV6 function in vivo.  相似文献   

17.
Native and recombinant G protein-gated inwardly rectifying potassium (GIRK) channels are directly activated by the betagamma subunits of GTP-binding (G) proteins. The presence of phosphatidylinositol-bis-phosphate (PIP(2)) is required for G protein activation. Formation (via hydrolysis of ATP) of endogenous PIP(2) or application of exogenous PIP(2) increases the mean open time of GIRK channels and sensitizes them to gating by internal Na(+) ions. In the present study, we show that the activity of ATP- or PIP(2)-modified channels could also be stimulated by intracellular Mg(2+) ions. In addition, Mg(2+) ions reduced the single-channel conductance of GIRK channels, independently of their gating ability. Both Na(+) and Mg(2+) ions exert their gating effects independently of each other or of the activation by the G(betagamma) subunits. At high levels of PIP(2), synergistic interactions among Na(+), Mg(2+), and G(betagamma) subunits resulted in severalfold stimulated levels of channel activity. Changes in ionic concentrations and/or G protein subunits in the local environment of these K(+) channels could provide a rapid amplification mechanism for generation of graded activity, thereby adjusting the level of excitability of the cells.  相似文献   

18.
Inositol 1,4,5-trisphosphate receptors (IP(3)Rs) are a family of tetrameric intracellular calcium (Ca(2+)) release channels that are located on the sarcoplasmic reticulum (SR) membrane of virtually all mammalian cell types, including smooth muscle cells (SMC). Here, we have reviewed literature investigating IP(3)R expression, cellular localization, tissue distribution, activity regulation, communication with ion channels and organelles, generation of Ca(2+) signals, modulation of physiological functions, and alterations in pathologies in SMCs. Three IP(3)R isoforms have been identified, with relative expression and cellular localization of each contributing to signaling differences in diverse SMC types. Several endogenous ligands, kinases, proteins, and other modulators control SMC IP(3)R channel activity. SMC IP(3)Rs communicate with nearby ryanodine-sensitive Ca(2+) channels and mitochondria to influence SR Ca(2+) release and reactive oxygen species generation. IP(3)R-mediated Ca(2+) release can stimulate plasma membrane-localized channels, including transient receptor potential (TRP) channels and store-operated Ca(2+) channels. SMC IP(3)Rs also signal to other proteins via SR Ca(2+) release-independent mechanisms through physical coupling to TRP channels and local communication with large-conductance Ca(2+)-activated potassium channels. IP(3)R-mediated Ca(2+) release generates a wide variety of intracellular Ca(2+) signals, which vary with respect to frequency, amplitude, spatial, and temporal properties. IP(3)R signaling controls multiple SMC functions, including contraction, gene expression, migration, and proliferation. IP(3)R expression and cellular signaling are altered in several SMC diseases, notably asthma, atherosclerosis, diabetes, and hypertension. In summary, IP(3)R-mediated pathways control diverse SMC physiological functions, with pathological alterations in IP(3)R signaling contributing to disease.  相似文献   

19.
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) channel, localized primarily in the endoplasmic reticulum (ER) membrane, releases Ca(2+) into the cytoplasm upon binding InsP(3), generating and modulating intracellular Ca(2+) signals that regulate numerous physiological processes. Together with the number of channels activated and the open probability of the active channels, the size of the unitary Ca(2+) current (i(Ca)) passing through an open InsP(3)R channel determines the amount of Ca(2+) released from the ER store, and thus the amplitude and the spatial and temporal nature of Ca(2+) signals generated in response to extracellular stimuli. Despite its significance, i(Ca) for InsP(3)R channels in physiological ionic conditions has not been directly measured. Here, we report the first measurement of i(Ca) through an InsP(3)R channel in its native membrane environment under physiological ionic conditions. Nuclear patch clamp electrophysiology with rapid perfusion solution exchanges was used to study the conductance properties of recombinant homotetrameric rat type 3 InsP(3)R channels. Within physiological ranges of free Ca(2+) concentrations in the ER lumen ([Ca(2+)](ER)), free cytoplasmic [Ca(2+)] ([Ca(2+)](i)), and symmetric free [Mg(2+)] ([Mg(2+)](f)), the i(Ca)-[Ca(2+)](ER) relation was linear, with no detectable dependence on [Mg(2+)](f). i(Ca) was 0.15 +/- 0.01 pA for a filled ER store with 500 microM [Ca(2+)](ER). The i(Ca)-[Ca(2+)](ER) relation suggests that Ca(2+) released by an InsP(3)R channel raises [Ca(2+)](i) near the open channel to approximately 13-70 microM, depending on [Ca(2+)](ER). These measurements have implications for the activities of nearby InsP(3)-liganded InsP(3)R channels, and they confirm that Ca(2+) released by an open InsP(3)R channel is sufficient to activate neighboring channels at appropriate distances away, promoting Ca(2+)-induced Ca(2+) release.  相似文献   

20.
TRIC channel subtypes, namely TRIC-A and TRIC-B, are intracellular monovalent cation channels postulated to mediate counter-ion movements facilitating physiological Ca(2+) release from internal stores. Tric-a-knockout mice developed hypertension during the daytime due to enhanced myogenic tone in resistance arteries. There are two Ca(2+) release mechanisms in vascular smooth muscle cells (VSMCs); incidental opening of ryanodine receptors (RyRs) generates local Ca(2+) sparks to induce hyperpolarization, while agonist-induced activation of inositol trisphosphate receptors (IP(3)Rs) evokes global Ca(2+) transients causing contraction. Tric-a gene ablation inhibited RyR-mediated hyperpolarization signaling to stimulate voltage-dependent Ca(2+) influx, and adversely enhanced IP(3)R-mediated Ca(2+) transients by overloading Ca(2+) stores in VSMCs. Moreover, association analysis identified single-nucleotide polymorphisms (SNPs) around the human TRIC-A gene that increase hypertension risk and restrict the efficiency of antihypertensive drugs. Therefore, TRIC-A channels contribute to maintaining blood pressure, while TRIC-A SNPs could provide biomarkers for constitutional diagnosis and personalized medical treatment of essential hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号