首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The second Sir Hans Krebs Lecture. Informosomes   总被引:32,自引:0,他引:32  
  相似文献   

2.
3.
18th Sir Hans Krebs lecture. Knowledge-based protein modelling and design   总被引:12,自引:0,他引:12  
A systematic technique for protein modelling that is applicable to the design of drugs, peptide vaccines and novel proteins is described. Our approach is knowledge-based, depending on the structures of homologous or analogous proteins and more generally on a relational data base of protein three-dimensional structures. The procedure simultaneously aligns the known tertiary structures, selects fragments from the structurally conserved regions on the basis of sequence homology, aligns these with the 'average structure' or 'framework', builds on the loops selected from homologous proteins or a wider database, substitutes sidechains and energy minimises the resultant model. Applications to modelling an homologous structure, tissue plasminogen activator on the basis of another serine proteinase, and to modelling an analogous protein, HIV viral proteinase on the basis of aspartic proteinases, are described. The converse problem of ab initio design is also addressed: this involves the selection of an amino acid sequence to give a particular tertiary structure, in this case a symmetrical domain of two Greek-key motifs.  相似文献   

4.
5.
6.
7.
8.
Stenmark H 《The FEBS journal》2010,277(23):4837-4848
Phosphorylated derivatives of the membrane lipid phosphatidylinositol (PtdIns), known as phosphoinositides (PIs), regulate membrane-proximal cellular processes by recruiting specific protein effectors involved in cell signalling, membrane trafficking and cytoskeletal dynamics. Two PIs that are generated through the activities of distinct PI 3-kinases (PI3Ks) are of special interest in cancer research. PtdIns(3,4,5)P?, generated by class I PI3Ks, functions as tumour promotor by recruiting effectors involved in cell survival, proliferation, growth and motility. Conversely, there is evidence that PtdIns3P, generated by class III PI3K, functions in tumour suppression. Three subunits of the class III PI3K complex (Beclin 1, UVRAG and BIF-1) have been independently identified as tumour suppressors in mice and humans, and their mechanism of action in this context has been proposed to entail activation of autophagy, a catabolic pathway that is considered to mediate tumour suppression by scavenging damaged organelles that would otherwise cause DNA instability through the production of reactive oxygen species. Recent studies have revealed two additional functions of PtdIns3P that might contribute to its tumour suppressor activity. The first involves endosomal sorting and lysosomal downregulation of mitogenic receptors. The second involves regulation of cytokinesis, which is the final stage of cell division. Further elucidation of the mechanisms of tumour suppression mediated by class III PI3K and PtdIns3P will identify novel Achilles' heels of the cell's defence against tumourigenesis and will be useful in the search for prognostic and diagnostic biomarkers in cancer.  相似文献   

9.
10.
An increasing number of iron-sulfur (Fe-S) proteins are found in which the Fe-S cluster is not involved in net electron transfer, as it is in the majority of Fe-S proteins. Most of the former are (de)hydratases, of which the most extensively studied is aconitase. Approaches are described and discussed by which the Fe-S cluster of this enzyme could be brought into states of different structure, ligation, oxidation and isotope composition. The species, so obtained, provided the basis for spectroscopic and chemical investigations. Results from studies by protein chemistry, EPR, M?ssbauer, 1H, 2H and 57Fe electron-nuclear double resonance spectroscopy are described. Conclusions, which bear on the electronic structure of the Fe-S cluster, enzyme-substrate interaction and the enzymatic mechanism, were derived from a synopsis of the recent work described here and of previous contributions from several laboratories. These conclusions are discussed and summarized in a final section.  相似文献   

11.
Shapely polysaccharides. The eighth Colworth Medal Lecture.   总被引:3,自引:2,他引:3  
  相似文献   

12.
All proteins require physical interactions with other proteins in order to perform their functions. Most of them oligomerize into homomers, and a vast majority of these homomers interact with other proteins, at least part of the time, forming transient or obligate heteromers. In the present paper, we review the structural, biophysical and evolutionary aspects of these protein interactions. We discuss how protein function and stability benefit from oligomerization, as well as evolutionary pathways by which oligomers emerge, mostly from the perspective of homomers. Finally, we emphasize the specificities of heteromeric complexes and their structure and evolution. We also discuss two analytical approaches increasingly being used to study protein structures as well as their interactions. First, we review the use of the biological networks and graph theory for analysis of protein interactions and structure. Secondly, we discuss recent advances in techniques for detecting correlated mutations, with the emphasis on their role in identifying pathways of allosteric communication.  相似文献   

13.
Cardiac troponin I (cTnI) is well known as a biomarker for the diagnosis of myocardial damage. However, because of its central role in the regulation of contraction and relaxation in heart muscle, cTnI may also be a potential target for the treatment of heart failure. Studies in rodent models of cardiac disease and human heart samples showed altered phosphorylation at various sites on cTnI (i.e. site-specific phosphorylation). This is caused by altered expression and/or activity of kinases and phosphatases during heart failure development. It is not known whether these (transient) alterations in cTnI phosphorylation are beneficial or detrimental. Knowledge of the effects of site-specific cTnI phosphorylation on cardiomyocyte contractility is therefore of utmost importance for the development of new therapeutic strategies in patients with heart failure. In this review we focus on the role of cTnI phosphorylation in the healthy heart upon activation of the beta-adrenergic receptor pathway (as occurs during increased stress and exercise) and as a modulator of the Frank-Starling mechanism. Moreover, we provide an overview of recent studies which aimed to reveal the functional consequences of changes in cTnI phosphorylation in cardiac disease.  相似文献   

14.
It has been a generally held view that insulin does not significantly affect the incorporation of amino acids into liver protein. This interpretation was based on data obtained from studies using the branched chain amino acids, which are poorly metabolized by the hepatic tissue. The effect of insulin on 14CO2 formation and protein incorporation of several 1-14C-labeled or U-14C-labeled amino acids was studied in isolated rat hepatocytes and diaphragm pieces. It was shown that insulin enhanced 14CO2 formation and protein incorporation primarily of those carbons of amino acids which are metabolized through the mitochondrial Krebs cycle. Using aminooxyacetic acid (0.5 mM), a potent inhibitor of the transamination reaction, it was shown that there exists an "insulin-sensitive" pool of glutamate which is preferentially utilized for protein synthesis in the presence of insulin. The insulin effect on protein incorporation of 14C-labeled glutamate generated in the Krebs cycle was abolished in the presence of aminooxyacetic acid. We interpret these results to signify that mitochondrial transamination of alpha-ketoglutarate to glutamate is essential for insulin stimulation of 14C incorporation into hepatocyte protein.  相似文献   

15.
Studies on those enzymes and electron-transfer proteins involved in the catabolism of 'C1' substrates in methylotrophic bacteria have provided a wealth of information concerning the transfer of electrons and hydrogen by quantum tunnelling mechanisms. With regard to H-transfer, studies with MADH have provided the first example of ground-state tunnelling of hydrogen driven by the natural, thermally activated, low-frequency motions of the enzyme molecule. Subsequent studies with related enzymes (e.g. TMADH and bacterial sarcosine oxidase) and with thermophilic alcohol dehydrogenase suggest that vibrationally assisted tunnelling of hydrogen may be more widespread than originally assumed. Our studies of electron transfer in TMADH and ETF have established a role for large-scale protein dynamics in interprotein electron transfer, and have made a contribution to the ongoing debate concerning the mechanism of amine oxidation by enzymes. Moreover, our work has identified a hitherto unknown mechanism for the control of electron density in reduced flavin that influences the rate of electron transfer between redox centres within a protein molecule. Despite this progress, however, many questions still remain to be resolved. With the development of more sophisticated experimental techniques (and also continued financial support from the funding agencies!), the mechanistic uncertainties surrounding the quantum mechanical transfer of electrons and hydrogen in biological molecules should be transmogrified into the certainties one more readily acquaints with the classical world.  相似文献   

16.
17.
The ribosomes of Krebs II ascites cells contain an acidic protein, apparently analogous to proteins L7/12 of Escherichia coli. When ascites cells were incubated with [32P]Pi, this protein became labelled, indicating that it is a phosphoprotein.  相似文献   

18.
19.
Endothelium plays a fundamental role in maintaining the vascular tone by releasing various biochemical factors that modulate the contractile and relaxatory behavior of the underlying vascular smooth muscle, regulation of inflammation, immunomodulation, platelet aggregation, and thrombosis. Endothelium regulates these cellular processes by activating endothelial nitric oxide synthase (eNOS) responsible for nitric oxide (NO) production. eNOS is constitutively expressed in ECs in response to humoral, mechanical or pharmacological stimulus. eNOS activity is regulated mainly by protein-protein interactions and multisite phosphorylations. The phosphorylation state of specific serine, threonine and tyrosine residues of the enzyme plays a pivotal role in regulation of eNOS activity. Perturbations of eNOS phosphorylation have been reported in a number of diseases thereby emphasizing the importance of regulation of eNOS activity. This review summarizes the mechanism of eNOS regulation through multi-site phosphorylation in different pathologies. Attempts have been made to highlight phosphorylation of eNOS at various residues, regulation of the enzyme activity via posttranslational modifications and its implications on health and disease.  相似文献   

20.
Many proteins that are implicated in human disease are posttranslationally modified. This includes the microtubule-associated protein tau that is deposited in a hyperphosphorylated form in brains of Alzheimer's disease patients. The focus of this review article is on the physiological and pathological phosphorylation of tau; the relevance of aberrant phosphorylation for disease; the role of kinases and phosphatases in this process; its modeling in transgenic mice, flies, and worms; and implications of phosphorylation for therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号