首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arginine kinases (AKs) isolated from the adductor muscle of the clams Solen strictus and Corbicula japonica have relative molecular masses of 80 kDa as estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) in contrast to the 40 kDa AKs found in Mollusca and Arthropoda. The cDNAs encoding Solen and Corbicula AKs have open reading frames of 2175 nucleotides (724 amino acid protein) and 2172 nucleotides (723 amino acid protein), respectively. The amino acid sequence clearly indicates that Solen and Corbicula AKs have a two-domain structure: the first-domain includes residues 1-363 and the second-domain includes residue 364 to the end. There is approximately 60% inter-domain amino acid identity. It is clear that gene-duplication and subsequent fusion occurred in the immediate ancestor of the clams Solen, Corbicula, and Pseudocardium. During substrate binding, it is proposed that AK undergoes a substrate-induced conformational change and that the hydrogen bond between D(62) and R(193) stabilizes the substrate-bound structure. However, in Solen and Corbicula two-domain AKs, D(62) is replaced by a G, and R(193) by A, S, or D. Consequently, the two-domain AKs can not form the stabilizing hydrogen bond. Nevertheless, the enzyme activity of Corbicula AK is comparable to those of other molluscan 40 kDa AKs. We assumed that the substrate-bound structure of the two-domain AK is stabilized not by the hydrogen bond between D(62) and R(193) but by the bond between H(60) and D(197), characteristic of the unusual two-domain AKs. This explains why D(62) and R(193), which remain highly conserved in other AKs, have undergone amino acid replacements in Solen and Corbicula AKs.  相似文献   

2.
cDNAs of the two-domain arginine kinase (AK) (contiguous dimer; denoted by 2D/WT) and its separated domains 1 and 2 (denoted by D1/WT and D2/WT) from the sea anemone Anthopleura japonicus, were cloned into the plasmid pMAL, and recombinant enzymes were expressed in E. coli as MBP fusion proteins. The kinetic parameters kcat, Ka and Kia, were determined for all three AKs. All three enzymes showed distinct AK activity, and had high affinity for arginine (Ka Arg=0.25-0.48 mM). The catalytic efficiency, calculated by kcat/Ka ArgKia ATP, of the 2D/WT enzyme (182 mM(-2)s(-1), the value for one active 40 kDa domain) was two- to three-times higher than values for either D1/WT or D2/WT (80.2 and 86.4mM(-2)s(-1), respectively), suggesting the presence of domain-domain interactions (cooperativity) in the contiguous dimer. The Kia/Ka values of the three enzymes ranged from 0.88 to 1.32, indicating that there is no strong synergism in substrate binding, as seen in typical AKs. Asp62 and Arg193, which are conserved in most AKs and play a key role in stabilizing the substrate-bound structure, are also conserved in the two domains of Anthopleura AK. We replaced Asp62 in D2/WT with Glu or Gly. The catalytic efficiency and Kia/Ka for the D62E mutant were comparable to those of D2/WT, but catalytic efficiency for the D62G mutant was decreased to 13% of that of the D2/WT with a significantly increased value of Kia/Ka (1.92), indicating that Asp62 plays an important role in the expression of AK activity.  相似文献   

3.
Fujimoto N  Tanaka K  Suzuki T 《FEBS letters》2005,579(7):1688-1692
The purpose of this study is to clarify the amino acid residues responsible for the synergism in substrate binding of arginine kinase (AK), a key enzyme in invertebrate energy metabolism. AKs contain a pair of highly conserved amino acids (D62 and R193) that form an ion pair, and replacement of these residues can cause a pronounced loss of activity. Interestingly, in the oyster Crassostrea AK, these residues are replaced by an N and a K, respectively. Despite this replacement, the enzyme retains high activity and moderate synergism in substrate binding (Kd/Km=2.3). We replaced the N62 by G or D and the K193 by G or R in Crassostrea AK, and also constructed the double mutants of N62G/K193G and N62D/K193R. All of the mutants retained 50-90% of the wild-type activity. In N62G and N62D mutants, the Kmarg for arginine binding was comparable to that of wild-type enzyme, but the Kdarg was increased 2-5-fold, resulting in a strong synergism (Kd/Km=4.9-11.3). On the other hand, in K193G and K193R mutants, the Kmarg was increased 4-fold, and synergism was lost almost completely (Kd/Km=1.0-1.4). The N62G/K193G double mutant showed similar characteristics to the K193G and K193R mutants. Another double mutant, N62D/K193R, similar to the amino acid pair in the wild-type enzyme, had characteristics similar to those of the wild-type enzyme. These results indicate that the amino acid residues 62 and 193 play the key role in mediating the synergism in substrate binding of oyster arginine kinase.  相似文献   

4.
The cDNA and deduced amino acid sequences for arginine kinase (AK) from the deep-sea clam Calyptogena kaikoi have been determined revealing an unusual two-domain (2D) structure with molecular mass of 80 kDa, twice that of normal AK. The amino acid sequences of both domains contain most of the residues thought to be required for substrate binding found in the horseshoe crab Limulus polyphemus AK, a well studied system for which several X-ray crystal structures exist. However, two highly conserved residues, D62 and R193, that form a salt bridge thereby stabilizing the substrate-bound structure have been replaced by G and N in domain 1, and G and P in domain 2, respectively. The present effort probes whether both domains of Calyptogena AK are catalytically competent. Recombinant constructs of the wild-type enzyme of both single domains, and of selected mutants of the Calyptogena AK have been expressed as fusion proteins with the maltose-binding protein. The wild-type two-domain enzyme (2D[WT]) had high AK activity (k(cat)=23 s(- 1), average value of the two domains), and the single domain 2 (D2[WT]) showed 1.5-times higher activity (k(cat)=38 s(- 1)) than the wild-type 2D[WT]. Interestingly, the single domain 1 (D1[WT]) showed only a very low activity (k(cat) approximately 0.016 s(- 1)). Introduction of a Y68A mutation in both domains virtually abolished catalytic activity. On the other hand, significant residual activity was observed (k(cat)=2.8 s(- 1)), when the Y68A mutation was introduced only into domain 2 of the two-domain enzyme. A similar mutation in domain 1 of the two-domain enzyme reduced activity to a much lower extent (k(cat)=11.1 s(- 1)). Although the domains of this "contiguous" dimeric AK each have catalytic capabilities, the presence of domain 2 strongly influences the stability and activity of domain 1.  相似文献   

5.
The central phosphatase domain of Clostridium thermocellum polynucleotide kinase/phosphatase (CthPnkp) belongs to the dinuclear metallophosphoesterase superfamily. Prior mutational studies of CthPnkp identified 7 individual active site side chains (Asp-187, His-189, Asp-233, Asn-263, His-323, His-376, and Asp-392) required for Ni2+-dependent hydrolysis of p-nitrophenyl phosphate. Here we find that Mn2+-dependent phosphomonoesterase activity requires two additional residues, Arg-237 and His-264. We report that CthPnkp also converts bis-p-nitrophenyl phosphate to p-nitrophenol and inorganic phosphate via a processive two-step mechanism. The Ni2+-dependent phosphodiesterase activity of CthPnkp requires the same seven side chains as the Ni2+-dependent phosphomonoesterase. However, the Mn2+-dependent phosphodiesterase activity does not require His-189, Arg-237, or His-264, each of which is critical for the Mn2+-dependent phosphomonoesterase. Mutations H189A, H189D, and D392N transform the metal and substrate specificity of CthPnkp such that it becomes a Mn2+-dependent phosphodiesterase. The H189E change results in a Mn2+/Ni2+-dependent phosphodiesterase. Mutations H376N, H376D, and D392E convert the enzyme into a Mn2+-dependent phosphodiesterase-monoesterase. The phosphodiesterase activity is strongly stimulated compared with wild-type CthPnkp when His-189 is changed to Asp, Arg-237 is replaced by Ala or Gln, and His-264 is replaced by Ala, Asn, or Gln. Steady-state kinetic analysis of wild-type and mutated enzymes illuminates the structural features that affect substrate affinity and kcat. Our results highlight CthPnkp as an "undifferentiated" diesterase-monoesterase that can evolve toward narrower metal and substrate specificities via alterations of the active site milieu.  相似文献   

6.
Here, we report the PCR amplification and cloning of a cDNA for arginine kinase (AK) from the beetle Cissites cephalotes (Olivier). The cDNA is 1210bp and has an open reading frame of 1125bp and 5' and 3'-untranslated regions of 30 and 55bp, respectively. The open reading frame encodes a 374 amino acid protein with most of the residues considered necessary for AK function: five residues predicted to interact with the substrate arginine (S77, Y82, E239, C285 and E328), and five residues predicted to interact with the substrate ADP (R138, R140, R243, R294 and R323). A phylogenetic tree of arthropod AKs indicated clearly that insect AKs can be separated into typical AKs from various insect species (group 1) and putative AK sequences deduced from genomic sequences (group 2). Cissites AK clustered in group 2 and provides the first evidence that a group-2 gene is indeed expressed in insects. Moreover, we expressed Cissites AK protein in Escherichia coli as a fusion with maltose-binding protein, and kinetic constants (K(m), K(d), V(max) and k(cat)) were determined for the forward reaction. Comparison of kinetic constants with those of AKs from other sources (insects, mollusks and echinoderms) indicated that insect AKs from Cissites and Periplaneta have two very unique features, the lowest k(cat) (and k(cat)/K(m)(arg)) among AKs, and a lack of synergistic substrate binding (K(d)/K(m) approximately 1).  相似文献   

7.
Strictly conserved charged residues among polygalacturonases (Asp-180, Asp-201, Asp-202, His-223, Arg-256, and Lys-258) were subjected to site-directed mutagenesis in Aspergillus niger endopolygalacturonase II. Specific activity, product progression, and kinetic parameters (K(m) and V(max)) were determined on polygalacturonic acid for the purified mutated enzymes, and bond cleavage frequencies on oligogalacturonates were calculated. Depending on their specific activity, the mutated endopolygalacturonases II were grouped into three classes. The mutant enzymes displayed bond cleavage frequencies on penta- and/or hexagalacturonate different from the wild type endopolygalacturonase II. Based on the biochemical characterization of endopolygalacturonase II mutants together with the three-dimensional structure of the wild type enzyme, we suggest that the mutated residues are involved in either primarily substrate binding (Arg-256 and Lys-258) or maintaining the proper ionization state of a catalytic residue (His-223). The individual roles of Asp-180, Asp-201, and Asp-202 in catalysis are discussed. The active site topology is different from the one commonly found in inverting glycosyl hydrolases.  相似文献   

8.
Makde RD  Mahajan SK  Kumar V 《Biochemistry》2007,46(8):2079-2090
The Salmonella typhimurium PhoN protein is a nonspecific acid phosphatase and belongs to the phosphatidic acid phosphatase type 2 (PAP2) superfamily. We report here the crystal structures of phosphate-bound PhoN, the PhoN-tungstate complex, and the T159D mutant of PhoN along with functional characterization of three mutants: L39T, T159D, and D201N. Invariant active site residues, Lys-123, Arg-130, Ser-156, Gly-157, His-158, and Arg-191, interact with phosphate and tungstate oxyanions. Ser-156 also accepts a hydrogen bond from Thr-159. The T159D mutation, surprisingly, severely diminishes phosphatase activity, apparently by disturbing the active site scaffold: Arg-191 is swung out of the active site resulting in conformational changes in His-158 and His-197 residues. Our results reveal a hitherto unknown functional role of Arg-191, namely, restricting the active conformation of catalytic His-158 and His-197 residues. Consistent with the conserved nature of Asp-201 in the PAP2 superfamily, the D201N mutation completely abolished phosphatase activity. On the basis of this observation and in silico analysis we suggest that the crucial mechanistic role of Asp-201 is to stabilize the positive charge on the phosphohistidine intermediate generated by the transfer of phosphoryl to the nucleophile, His-197, located within hydrogen bond distance to the invariant Asp-201. This is in contrast to earlier suggestions that Asp-201 stabilizes His-197 and the His197-Asp201 dyad facilitates formation of the phosphoenzyme intermediate through a charge-relay system. Finally, the L39T mutation in the conserved polyproline motif (39LPPPP43) of dimeric PhoN leads to a marginal reduction in activity, in contrast to the nearly 50-fold reduction observed for monomeric Prevotella intermedia acid phosphatase, suggesting that the varying quaternary structure of PhoN orthologues may have functional significance.  相似文献   

9.
Pyruvate phosphate dikinase (PPDK) catalyzes the interconversion of ATP, P(i), and pyruvate with AMP, PP(i), and phosphoenolpyruvate (PEP) in three partial reactions as follows: 1) E-His + ATP --> E-His-PP.AMP; 2) E-His-PP.AMP + P(i) --> E-His-P.AMP.PP(i); and 3) E-His-P + pyruvate --> E.PEP using His-455 as the carrier of the transferred phosphoryl groups. The crystal structure of the Clostridium symbiosum PPDK (in the unbound state) reveals a three-domain structure consisting of consecutive N-terminal, central His-455, and C-terminal domains. The N-terminal and central His-455 domains catalyze partial reactions 1 and 2, whereas the C-terminal and central His-455 domains catalyze partial reaction 3. Attempts to obtain a crystal structure of the enzyme with substrate ligands bound at the nucleotide binding domain have been unsuccessful. The object of the present study is to demonstrate Mg(II) activation of catalysis at the ATP/P(i) active site, to identify the residues at the ATP/P(i) active site that contribute to catalysis, and to identify roles for these residues based on their positions within the active site scaffold. First, Mg(II) activation studies of catalysis of E + ATP + P(i) --> E-P + AMP + PP(i) partial reaction were carried out using a truncation mutant (Tem533) in which the C-terminal domain is absent. The kinetics show that a minimum of 2 Mg(II) per active site is required for the reaction. The active site residues used for substrate/cofactor binding/activation were identified by site-directed mutagenesis. Lys-22, Arg-92, Asp-321, Glu-323, and Gln-335 mutants were found to be inactive; Arg-337, Glu-279, Asp-280, and Arg-135 mutants were partially active; and Thr-253 and Gln-240 mutants were almost fully active. The participation of the nucleotide ribose 2'-OH and alpha-P in enzyme binding is indicated by the loss of productive binding seen with substrate analogs modified at these positions. The ATP, P(i), and Mg(II) ions were docked into the PPDK N-terminal domain crevice, in an orientation consistent with substrate/cofactor binding modes observed for other members of the ATP-Grasp fold enzyme superfamily and consistent with the structure-function data. On the basis of this docking model, the ATP polyphosphate moiety is oriented/activated for pyrophosphoryl transfer through interaction with Lys-22 (gamma-P), Arg-92 (alpha-P), and the Gly-101 to Met-103 loop (gamma-P) as well as with the Mg(II) cofactors. The P(i) is oriented/activated for partial reaction 2 through interaction with Arg-337 and a Mg(II) cofactor. The Mg(II) ions are bound through interaction with Asp-321, Glu-323, and Gln-335 and substrate. Residues Glu-279, Asp-280, and Arg-135 are suggested to function in the closure of an active site loop, over the nucleotide ribose-binding site.  相似文献   

10.
The purpose of this study is to clarify that the amino acid residues (Asp62 and Arg193) are responsible for the activity and stability of arginine kinase (AK). The amino acid residues Asp62 (D62) and Arg193 (R193) are strictly conserved in monomeric AKs and form an ion pair in the transition state analogue complex. In this research, we replaced D62 with glutamate (E) or glycine (G) and R193 with lysine (K) or glycine (G). The mutants of D62E and R193K retained almost 90% of the wild-type activity, whereas D62G and R193G had a pronounced loss in activity. A detailed comparison was made between the physic-chemical properties and conformational changes of wild-type AK and the mutants by means of ultraviolet (UV) difference and fluorescence spectra. The results indicated that the conformation of all of the mutants had been changed and the stability in a urea solution was also reduced. We speculated that the hydrogen bond and electrostatic interactions formed between residues 62 and 193 play a key role in stabilizing the structure and mediating the synergism in substrate binding of arginine kinase from greasyback shrimp (Metapenaeus ensis).  相似文献   

11.
Gelatinase B (MMP-9), a member of the matrix metalloproteinase family, is a zinc- and calcium-dependent endopeptidase that is known to play a role in tumor cell invasion and in destruction of cartilage in arthritis. It contains a conserved sequence400His-(X)3-His-(X)28-Asp-Asp-(X)2-436Gly, the function of which is under investigation. The conserved Asp-432 and Asp-433 residues were individually replaced with Gly; these substitutions reduced the gelatinolytic activity of the enzyme to 23% and 0%, respectively. Replacing Asp-433 with Glu, however, decreased the gelatinolytic activity of the enzyme by 93% and proteolytic activity of the enzyme for the Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH2 substrate by 79%. The wild-type and D432G and D433E mutant enzymes had similarK m values for the synthetic substrate and similarK i values for the competitive inhibitor, GM6001. Thek cat/K m values for D432G and D433E mutant enzymes, however, were reduced by a factor of 4 and their K a Ca values were increased by four- and sixfold, respectively. The significance of His-400 in the activity of the enzyme was assessed by replacing this residue with Ala and Phe. Both H400A and H400F mutants were inactive toward gelatin substrate. These data demonstrate that Asp-432, Asp-433, and His-400 residues are important for the activity of gelatinase B. His-400 may act as a zinc-binding ligand similar to the His-197 in interstitial collagenase (MMP-7) and Asp-432 and Asp-433 residues are probably involved in stabilization of the active site of the enzyme. The His-400 and Asp-433 residues are conserved in all members of the MMP family. Therefore, our results are relevant to this group as a whole.Abbreviations MMP Matrix metalloproteinase - TIMP tissue inhibitor of metalloproteinase - IPTG isopropyl-D-thiogalactoside - APMA 4-aminophenyl-mercuric acetate - PCR polymerase chain reaction - Dpa 3(2,4-di-nitrophenyl) diaminopropionic acid - Mca 7-methoxycoumarin acetic acid  相似文献   

12.
Stichopus arginine kinase (AK) is a unique enzyme in that it evolved not from the AK gene but from the creatine kinase (CK) gene: the entire amino acid sequence is homologous with other CKs apart from the guanidine specificity region (GS region), which is identical in structure to that of AK. Ten independent mutations were introduced around the GS region in Stichopus AK. When an insertion or deletion was introduced near the GS region, the Vmax of the mutant enzyme was dramatically decreased to less than 0.1% of the wild type, suggesting that the length of the GS region is crucial for the recognition of the guanidine substrate. Replacement of Phe63 and Leu65 to Gly in the Stichopus enzyme caused a remarkable increase in the Kmarg. This indicates that Phe63 and Leu65 are associated with the arginine substrate-binding affinity. The hydrogen bond formed between the Asp62 and Arg193 residues is thought to play a key role in stabilizing the closed substrate-bound structure of AK. Mutants that eliminated this hydrogen bond had a considerably decreased Vmax, accompanied by a threefold increase in Kmarg. It is noted that the value of the Kmarg of the mutants became very close to the Kdarg value of the wild type. Six independent mutations were introduced in the GS region of Danio M-CK. Almost equivalent values of Kmcr and Kdcr in all of the mutants indicated that a typical synergism was completely lost. The results suggested that the Ile69 to Gly mutant, displaying a high Kmcr and a low Vmax, plays an important role in creatine-binding. This is consistent with the observation that in the structure of Torpedo CK, Ile69 provides a hydrophobic pocket to optimize creatine-binding.  相似文献   

13.
Human glutathione transferase pi (GST pi) has been crystallized as a homodimer, with a subunit molecular mass of approximately 23 kDa; however, in solution the average molecular mass depends on protein concentration, approaching that of monomer at <0.03 mg/ml, concentrations typically used to measure catalytic activity of the enzyme. Electrostatic interaction at the subunit interface greatly influences the dimer-monomer equilibrium of the enzyme and is an important force for holding subunits together. Arg-70, Arg-74, Asp-90, Asp-94, and Thr-67 were selected as target sites for mutagenesis, because they are at the subunit interface. R70Q, R74Q, D90N, D94N, and T67A mutant enzymes were constructed, expressed in Escherichia coli, and purified. The construct of N-terminal His tag enzyme facilitates the purification of GST pi, resulting in a high yield of enzyme, but does not alter the kinetic parameters or secondary structure of the enzyme. Our results indicate that these mutant enzymes show no appreciable changes in K(m) for 1-chloro-2,4-dinitrobenzene and have similar CD spectra to that of wild-type enzyme. However, elimination of the charges of either Arg-70, Arg-74, Asp-90, or Asp-94 shifts the dimer-monomer equilibrium toward monomer. In addition, replacement of Asp-94 or Arg-70 causes a large increase in the K(m)(GSH), whereas substitution for Asp-90 or Arg-74 primarily results in a marked decrease in V(max). The GST pi retains substantial catalytic activity as a monomer probably because the glutathione and electrophilic substrate sites (such as for 1-chloro-2,4-dinitrobenzene) are predominantly located within each subunit.  相似文献   

14.
Arg-47 of human beta 1 beta 1 alcohol dehydrogenase has been replaced with Lys, His, Gln, and Gly by site-directed mutagenesis. The mutated enzymes were expressed in Escherichia coli and purified to homogeneity. The recombinant enzymes with Arg and His at position 47 exhibit kinetic constants and stability which are similar to beta 1 beta 1 and beta 2 beta 2, respectively. The substitution of Lys, His, or Gln for Arg-47 resulted in active enzymes with lower affinity for coenzyme and higher Vmax values than beta 1 beta 1. The substitution of Gln at position 47 resulted in an enzyme with the highest Vmax for ethanol oxidation of any mammalian alcohol dehydrogenase. In this series of enzymes, the affinity for coenzyme decreases with decreasing pKa of the substituted amino acid side chains. The substitution of Gly at position 47 resulted in an enzyme with a Vmax that was one-half that of the low activity beta 1 beta 1 and coenzyme affinities that are lower than beta 1 beta 1, but are equal to or greater than the affinities exhibited by the His-47 or Gln-47 enzymes. Product inhibition studies indicated a change in mechanism from ordered Bi Bi for beta 1 beta 1 to rapid equilibrium random Bi Bi for the Gly-47 enzyme. The kinetic properties of the Gly-47 enzyme are substantially different from human liver alpha alpha which also has Gly at position 47.  相似文献   

15.
Imidazolonepropionase (EC 3.5.2.7) catalyzes the third step in the universal histidine degradation pathway, hydrolyzing the carbon-nitrogen bonds in 4-imidazolone-5-propionic acid to yield N-formimino-l-glutamic acid. Here we report the crystal structures of the Bacillus subtilis imidazolonepropionase and its complex at 2.0-A resolution with substrate analog imidazole-4-acetic acid sodium (I4AA). The structure of the native enzyme contains two domains, a TIM (triose-phosphate isomerase) barrel domain with two insertions and a small beta-sandwich domain. The TIM barrel domain is quite similar to the members of the alpha/beta barrel metallo-dependent hydrolase superfamily, especially to Escherichia coli cytosine deaminase. A metal ion was found in the central cavity of the TIM barrel and was tightly coordinated to residues His-80, His-82, His-249, Asp-324, and a water molecule. X-ray fluorescence scan analysis confirmed that the bound metal ion was a zinc ion. An acetate ion, 6 A away from the zinc ion, was also found in the potential active site. In the complex structure with I4AA, a substrate analog, I4AA replaced the acetate ion and contacted with Arg-89, Try-102, Tyr-152, His-185, and Glu-252, further defining and confirming the active site. The detailed structural studies allowed us to propose a zinc-activated nucleophilic attack mechanism for the hydrolysis reaction catalyzed by the enzyme.  相似文献   

16.
Heparan sulfate interacts with antithrombin, a protease inhibitor, to regulate blood coagulation. Heparan sulfate 3-O-sulfotransferase isoform 1 performs the crucial last step modification in the biosynthesis of anticoagulant heparan sulfate. This enzyme transfers the sulfuryl group (SO(3)) from 3'-phosphoadenosine 5'-phosphosulfate to the 3-OH position of a glucosamine residue to form the 3-O-sulfo glucosamine, a structural motif critical for binding of heparan sulfate to antithrombin. In this study, we report the crystal structure of 3-O-sulfotransferase isoform 1 at 2.5-A resolution in a binary complex with 3'-phosphoadenosine 5'-phosphate. This structure reveals residues critical for 3'-phosphoadenosine 5'-phosphosulfate binding and suggests residues required for the binding of heparan sulfate. In addition, site-directed mutagenesis analyses suggest that residues Arg-67, Lys-68, Arg-72, Glu-90, His-92, Asp-95, Lys-123, and Arg-276 are essential for enzymatic activity. Among these essential amino acid residues, we find that residues Arg-67, Arg-72, His-92, and Asp-95 are conserved in heparan sulfate 3-O-sulfotransferases but not in heparan N-deacetylase/N-sulfotransferase, suggesting a role for these residues in conferring substrate specificity. Results from this study provide information essential for understanding the biosynthesis of anticoagulant heparan sulfate and the general mechanism of action of heparan sulfate sulfotransferases.  相似文献   

17.
In order to test the biological importance of amino acids in the C-terminal quarter of aminoglycoside 3'-phosphotransferase II enzyme, seven of the highly conserved residues in this region, His-188, Asp-190, Asp-208, Gly-210, Arg-211, Asp-216 and Asp-220, were changed via site-directed mutagenesis. The phenotype of each mutant was compared to wildtype in terms of antibiotic susceptibilities and enzymatic activities. All of the substitutions either abolished or significantly reduced the resistance of the resulting strains to kanamycin, neomycin, butirosin, ribostamycin, paromomycin, gentamicin A, and G-418. Similarly, enzyme activities in crude extracts were substantially reduced for the mutant strains. Affinity of the enzyme for Mg+2-ATP decreased with His-188, Asp-190, Asp-216 and Asp-220 substitutions as revealed by Km measurements. Secondary structure analysis predicted that substitutions at the conserved residues caused severe conformational distortions at the corresponding regions of the protein.  相似文献   

18.
Adenosine kinase (AK) is a purine salvage enzyme that catalyzes the phosphorylation of adenosine to AMP. In Mycobacterium tuberculosis, AK can also catalyze the phosphorylation of the adenosine analog 2-methyladenosine (methyl-Ado), the first step in the metabolism of this compound to an active form. Purification of AK from M. tuberculosis yielded a 35-kDa protein that existed as a dimer in its native form. Adenosine (Ado) was preferred as a substrate at least 30-fold (Km = 0.8 +/- 0.08 microM) over other natural nucleosides, and substrate inhibition was observed when Ado concentrations exceeded 5 micro M. M. tuberculosis and human AKs exhibited different affinities for methyl-Ado, with Km values of 79 and 960 microM, respectively, indicating that differences exist between the substrate binding sites of these enzymes. ATP was a good phosphate donor (Km = 1100 +/- 140 microM); however, the activity levels observed with dGTP and GTP were 4.7 and 2.5 times the levels observed with ATP, respectively. M. tuberculosis AK activity was dependent on Mg2+, and activity was stimulated by potassium, as reflected by a decrease in the Km and an increase in Vmax for both Ado and methyl-Ado. The N-terminal amino acid sequence of the purified enzyme revealed complete identity with Rv2202c, a protein currently classified as a hypothetical sugar kinase. When an AK-deficient strain of M. tuberculosis (SRICK1) was transformed with this gene, it exhibited a 5,000-fold increase in AK activity compared to extracts from the original mutants. These results verified that the protein that we identified as AK was coded for by Rv2202c. AK is not commonly found in bacteria, and to the best of our knowledge, M. tuberculosis AK is the first bacterial AK to be characterized. The enzyme shows greater sequence homology with ribokinase and fructokinase than it does with other AKs. The multiple differences that exist between M. tuberculosis and human AKs may provide the molecular basis for the development of nucleoside analog compounds with selective activity against M. tuberculosis.  相似文献   

19.
The bacterial mechanosensitive channel MscS protects the bacteria from rupture on hypoosmotic shock. MscS is composed of a transmembrane domain with an ion permeation pore and a large cytoplasmic vestibule that undergoes significant conformational changes on gating. In this study, we investigated whether specific residues in the transmembrane and cytoplasmic domains of MscS influence each other during gating. When Asp-62, a negatively charged residue located in the loop that connects the first and second transmembrane helices, was replaced with either a neutral (Cys or Asn) or basic (Arg) amino acid, increases in both the gating threshold and inactivation rate were observed. Similar effects were observed after neutralization or reversal of the charge of either Arg-128 or Arg-131, which are both located near Asp-62 on the upper surface of the cytoplasmic domain. Interestingly, the effects of replacing Asp-62 with arginine were complemented by reversing the charge of Arg-131. Complementation was not observed after simultaneous neutralization of the charge of these residues. These findings suggest that the cytoplasmic domain of MscS affects both the mechanosensitive gating and the channel inactivation rate through the electrostatic interaction between Asp-62 and Arg-131.  相似文献   

20.
We amplified the cDNA coding for arginine kinase (AK) from the parasitic nematode Ascaris suum, cloned it in pMAL plasmid and expressed the enzyme as a fusion protein with the maltose-binding protein. The whole cDNA was 1260 bp, encoding 400 amino acids, and the recombinant protein had a molecular mass of 45,341 Da. Ascaris suum recombinant AK showed significant activity and strong affinity ( K(m)(Arg) = 0.126 mM) for the substrate L-arginine. It also exhibited high catalytic efficiency ( k(ca)/K(m)(Arg) = 352) comparable with AKs from other organisms. Sequence analysis revealed high amino acid sequence identity between A. suum AK and other nematode AKs, all of which cluster in a phylogenetic tree. However, comparison of gene structures showed that A. suum AK gene intron/exon organization is quite distinct from that of other nematode AKs. Phosphagen kinases (PKs) from certain parasites have been shown to be potential novel drug targets or tools for detection of infection. The characterization of A. suum AK will be useful in the development of strategies for control not only of A. suum but also of related species infecting humans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号