首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modifications of the amino acid sequence generally affect protein stability. Here, we use knowledge-based potentials to estimate the stability of protein structures under sequence variation. Calculations on a variety of protein scaffolds result in a clear distinction of known mutable regions from arbitrarily chosen control patches. For example, randomly changing the sequence of an antibody paratope yields a significantly lower number of destabilized mutants as compared to the randomization of comparable regions on the protein surface. The technique is computationally efficient and can be used to screen protein structures for regions that are amenable to molecular tinkering by preserving the stability of the mutated proteins.  相似文献   

2.
A new approach, MOBILE, is presented that models protein binding-sites including bound ligand molecules as restraints. Initially generated, homology models of the target protein are refined iteratively by including information about bioactive ligands as spatial restraints and optimising the mutual interactions between the ligands and the binding-sites. Thus optimised models can be used for structure-based drug design and virtual screening. In a first step, ligands are docked into an averaged ensemble of crude homology models of the target protein. In the next step, improved homology models are generated, considering explicitly the previously placed ligands by defining restraints between protein and ligand atoms. These restraints are expressed in terms of knowledge-based distance-dependent pair potentials, which were compiled from crystallographically determined protein-ligand complexes. Subsequently, the most favourable models are selected by ranking the interactions between the ligands and the generated pockets using these potentials. Final models are obtained by selecting the best-ranked side-chain conformers from various models, followed by an energy optimisation of the entire complex using a common force-field. Application of the knowledge-based pair potentials proved efficient to restrain the homology modelling process and to score and optimise the modelled protein-ligand complexes. For a test set of 46 protein-ligand complexes, taken from the Protein Data Bank (PDB), the success rate of producing near-native binding-site geometries (rmsd<2.0A) with MODELLER is 70% when the ligand restrains the homology modelling process in its native orientation. Scoring these complexes with the knowledge-based potentials, in 66% of the cases a pose with rmsd <2.0A is found on rank 1. Finally, MOBILE has been applied to two case studies modelling factor Xa based on trypsin and aldose reductase based on aldehyde reductase.  相似文献   

3.
Exploring the sequence space of a DNA aptamer using microarrays   总被引:2,自引:1,他引:1  
The relationship between sequence and binding properties of an aptamer for immunoglobulin E (IgE) was investigated using custom DNA microarrays. Single, double and some triple mutations of the aptamer sequence were created to evaluate the importance of specific base composition on aptamer binding. The majority of the positions in the aptamer sequence were found to be immutable, with changes at these positions resulting in more than a 100-fold decrease in binding affinity. Improvements in binding were observed by altering the stem region of the aptamer, suggesting that it plays a significant role in binding. Results obtained for the various mutations were used to estimate the information content and the probability of finding a functional aptamer sequence by selection from a random library. For the IgE-binding aptamer, this probability is on the order of 1010 to 109. Results obtained for the double and triple mutations also show that there are no compensatory mutations within the space defined by those mutations. Apparently, at least for this particular aptamer, the functional sequence space can be represented as a rugged landscape with sharp peaks defined by highly constrained base compositions. This makes the rational optimization of aptamer sequences using step-wise mutagenesis approaches very challenging.  相似文献   

4.
We introduce a new type of knowledge-based potentials for protein structure prediction, called 'evolutionary potentials', which are derived using a single experimental protein structure and all three-dimensional models of its homologous sequences. The new potentials have been benchmarked against other knowledge-based potentials, resulting in a significant increase in accuracy for model assessment. In contrast to standard knowledge-based potentials, we propose that evolutionary potentials capture key determinants of thermodynamic stability and specific sequence constraints required for fast folding.  相似文献   

5.
  1. Download : Download high-res image (155KB)
  2. Download : Download full-size image
  相似文献   

6.
We propose a self-consistent approach to analyze knowledge-based atom-atom potentials used to calculate protein-ligand binding energies. Ligands complexed to actual protein structures were first built using the SMoG growth procedure (DeWitte & Shakhnovich, 1996) with a chosen input potential. These model protein-ligand complexes were used to construct databases from which knowledge-based protein-ligand potentials were derived. We then tested several different modifications to such potentials and evaluated their performance on their ability to reconstruct the input potential using the statistical information available from a database composed of model complexes. Our data indicate that the most significant improvement resulted from properly accounting for the following key issues when estimating the reference state: (1) the presence of significant nonenergetic effects that influence the contact frequencies and (2) the presence of correlations in contact patterns due to chemical structure. The most successful procedure was applied to derive an atom-atom potential for real protein-ligand complexes. Despite the simplicity of the model (pairwise contact potential with a single interaction distance), the derived binding free energies showed a statistically significant correlation (approximately 0.65) with experimental binding scores for a diverse set of complexes.  相似文献   

7.
Knowledge-based potentials are extensively used to represent atomic interactions in modeling the protein structure. We consider a number of problems in constructing efficient knowledge-based potentials for biopolymer modeling. We show that some limitations can be overcome by normalizing estimated interactions through the distribution of distances between noninteracting random probes in protein structure space. We demonstrate that knowledge-based potentials thus constructed can be efficiently applied for analysis of the hydration state of proteins atoms. With this approach, one can predict the locations of structural water molecules in a protein globule. We have also succeeded in recognizing the correctly folded protein structure among many misfolded decoys in cases when the interaction with water solvent is dominant for structure formation.  相似文献   

8.
Exploring nitrilase sequence space for enantioselective catalysis   总被引:3,自引:0,他引:3  
Nitrilases are important in the biosphere as participants in synthesis and degradation pathways for naturally occurring, as well as xenobiotically derived, nitriles. Because of their inherent enantioselectivity, nitrilases are also attractive as mild, selective catalysts for setting chiral centers in fine chemical synthesis. Unfortunately, <20 nitrilases have been reported in the scientific and patent literature, and because of stability or specificity shortcomings, their utility has been largely unrealized. In this study, 137 unique nitrilases, discovered from screening of >600 biotope-specific environmental DNA (eDNA) libraries, were characterized. Using culture-independent means, phylogenetically diverse genomes were captured from entire biotopes, and their genes were expressed heterologously in a common cloning host. Nitrilase genes were targeted in a selection-based expression assay of clonal populations numbering 10(6) to 10(10) members per eDNA library. A phylogenetic analysis of the novel sequences discovered revealed the presence of at least five major sequence clades within the nitrilase subfamily. Using three nitrile substrates targeted for their potential in chiral pharmaceutical synthesis, the enzymes were characterized for substrate specificity and stereospecificity. A number of important correlations were found between sequence clades and the selective properties of these nitrilases. These enzymes, discovered using a high-throughput, culture-independent method, provide a catalytic toolbox for enantiospecific synthesis of a variety of carboxylic acid derivatives, as well as an intriguing library for evolutionary and structural analyses.  相似文献   

9.
Following the original idea of Maynard Smith on evolution of the protein sequence space, a novel tool is developed that allows the "space walk", from one sequence to its likely evolutionary relative and further on. At a given threshold of identity between consecutive steps, the walks of many steps are possible. The sequences at the ends of the walks may substantially differ from one another. In a sequence space of randomized (shuffled) sequences the walks are very short. The approach opens new perspectives for protein evolutionary studies and sequence annotation.  相似文献   

10.

Background  

Knowledge-based potentials have been widely used in the last 20 years for fold recognition, protein structure prediction from amino acid sequence, ligand binding, protein design, and many other purposes. However generally these are not readily accessible online.  相似文献   

11.
Methods for analyzing the amino-acid sequence of a protein for the purposes of predicting its three-dimensional structure were systematically analyzed using knowledge engineering techniques. The resulting entities (data) and relations (processing methods and constraints) have been represented within a generalized dependency network consisting of 29 nodes and over 100 links. It is argued that such a representation meets the requirements of knowledge-based systems in molecular biology. This network is used as the architecture for a prototype knowledge-based system that simulates logically the processes used in protein structure prediction. Although developed specifically for applications in protein structure prediction, the network architecture provides a strategy for tackling the general problem of orchestrating and integrating the diverse sources of knowledge that are characteristic of many areas of science.  相似文献   

12.
From protein sequence space to elementary protein modules   总被引:2,自引:0,他引:2  
Frenkel ZM  Trifonov EN 《Gene》2008,408(1-2):64-71
The formatted protein sequence space is built from identical size fragments of prokaryotic proteins (112 complete proteomes). Connecting sequence-wise similar fragments (points in the space) results in the formation of numerous networks, that combine sometimes different types of proteins sharing, though, fragments with similar or distantly related sequences. The networks are mapped on individual protein sequences revealing distinct regions (modules) associated with prominent networks with well-defined functional identities. Presence of multiple sites of sequence conservation (modules) in a given protein sequence suggests that the annotated protein function may be decomposed in "elementary" subfunctions of the respective modules. The modules correspond to previously discovered conserved closed loop structures and their sequence prototypes.  相似文献   

13.
A universal platform for efficiently mapping antibody epitopes would be of great use for many applications, ranging from antibody therapeutic development to vaccine design. Here we tested the feasibility of using a random peptide microarray to map antibody epitopes. Although peptide microarrays are physically constrained to ~10(4) peptides per array, compared with 10(8) permitted in library panning approaches such as phage display, they enable a much more high though put and direct measure of binding. Long (20 mer) random sequence peptides were chosen for this study to look at an unbiased sampling of sequence space. This sampling of sequence space is sparse, as an exact epitope sequence is unlikely to appear. Commercial monoclonal antibodies with known linear epitopes or polyclonal antibodies raised against engineered 20-mer peptides were used to evaluate this array as an epitope mapping platform. Remarkably, peptides with the most sequence similarity to known epitopes were only slightly more likely to be recognized by the antibody than other random peptides. We explored the ability of two methods singly and in combination to predict the actual epitope from the random sequence peptides bound. Though the epitopes were not directly evident, subtle motifs were found among the top binding peptides for each antibody. These motifs did have some predictive ability in searching for the known epitopes among a set of decoy sequences. The second approach using a windowing alignment strategy, was able to score known epitopes of monoclonal antibodies well within the test dataset, but did not perform as well on polyclonals. Random peptide microarrays of even limited diversity may serve as a useful tool to prioritize candidates for epitope mapping or antigen identification.  相似文献   

14.
15.
MOTIVATION: Since the newly developed Grid platform has been considered as a powerful tool to share resources in the Internet environment, it is of interest to demonstrate an efficient methodology to process massive biological data on the Grid environments at a low cost. This paper presents an efficient and economical method based on a Grid platform to predict secondary structures of all proteins in a given organism, which normally requires a long computation time through sequential execution, by means of processing a large amount of protein sequence data simultaneously. From the prediction results, a genome scale protein fold space can be pursued. RESULTS: Using the improved Grid platform, the secondary structure prediction on genomic scale and protein topology derived from the new scoring scheme for four different model proteomes was presented. This protein fold space was compared with structures from the Protein Data Bank, database and it showed similarly aligned distribution. Therefore, the fold space approach based on this new scoring scheme could be a guideline for predicting a folding family in a given organism.  相似文献   

16.
We have recently developed a computational technique that uses mutually orthogonal Latin square sampling to explore the conformational space of oligopeptides in an exhaustive manner. In this article, we report its use to analyze the conformational spaces of 120 protein loop sequences in proteins, culled from the PDB, having the length ranging from 5 to 10 residues. The force field used did not have any information regarding the sequences or structures that flanked the loop. The results of the analyses show that the native structure of the loop, as found in the PDB falls at one of the low energy points in the conformational landscape of the sequences. Thus, a large portion of the structural determinants of the loop may be considered intrinsic to the sequence, regardless of either adjacent sequences or structures, or the interactions that the atoms of the loop make with other residues in the protein or in neighboring proteins.  相似文献   

17.
Naturally occurring proteins comprise a special subset of all plausible sequences and structures selected through evolution. Simulating protein evolution with simplified and all-atom models has shed light on the evolutionary dynamics of protein populations, the nature of evolved sequences and structures, and the extent to which today's proteins are shaped by selection pressures on folding, structure and function. Extensive mapping of the native structure, stability and folding rate in sequence space using lattice proteins has revealed organizational principles of the sequence/structure map important for evolutionary dynamics. Evolutionary simulations with lattice proteins have highlighted the importance of fitness landscapes, evolutionary mechanisms, population dynamics and sequence space entropy in shaping the generic properties of proteins. Finally, evolutionary-like simulations with all-atom models, in particular computational protein design, have helped identify the dominant selection pressures on naturally occurring protein sequences and structures.  相似文献   

18.
A landscape in protein sequence space shows the relationship between the primary structure and the level of a property of each protein. We developed methods for observing local landscapes experimentally using catalase I from Bacillus stearothermophilus with respect to its catalatic activity, peroxidatic activity, and thermostability. The enzyme gene was randomly mutated and a mutant library composed of 2648 transformants was obtained. Based on the activity and productivity of these transformants, 82 were selected as a sample group for measuring the altitude of catalase I. The altitude of the wild-type enzyme is close to the highest level in the mutant population for the thermostability landscape, but is at the average level for the peroxidatic activity. As for the catalatic activity, its altitude lies in between the two positions. A positive correlation was found between the altitudes of the catalatic and the peroxidatic activities, indicating that the locations of the hills and valleys in the landscapes of the two activities roughly correspond with each other. In contrast, the thermostability landscape appeared quite differently. The smoothness of the landscape was examined via the number of mutations in the structural genes of the mutant enzymes of different properties. The correlation between the number of mutations and the level of each property showed that the thermostability landscape is smooth, but not the two activity landscapes. Thus, the results show that even from a rough sketch of the landscapes based on the experimental data, the characteristic features of catalase I can be elucidated. The sketch of a landscape, therefore, provides a new view in understanding enzymes.  相似文献   

19.
The process of protein engineering is currently evolving towards a heuristic understanding of the sequence-function relationship. Improved DNA sequencing capacity, efficient protein function characterization and improved quality of data points in conjunction with well-established statistical tools from other industries are changing the protein engineering field. Algorithms capturing the heuristic sequence-function relationships will have a drastic impact on the field of protein engineering. In this review, several alternative approaches to quantitatively assess sequence space are discussed and the relatively few examples of wet-lab validation of statistical sequence-function characterization/correlation are described.  相似文献   

20.
Ribonucleic acid (RNA) molecules play important roles in a variety of biological processes. To properly function, RNA molecules usually have to fold to specific structures, and therefore understanding RNA structure is vital in comprehending how RNA functions. One approach to understanding and predicting biomolecular structure is to use knowledge-based potentials built from experimentally determined structures. These types of potentials have been shown to be effective for predicting both protein and RNA structures, but their utility is limited by their significantly rugged nature. This ruggedness (and hence the potential's usefulness) depends heavily on the choice of bin width to sort structural information (e.g. distances) but the appropriate bin width is not known a priori. To circumvent the binning problem, we compared knowledge-based potentials built from inter-atomic distances in RNA structures using different mixture models (Kernel Density Estimation, Expectation Minimization and Dirichlet Process). We show that the smooth knowledge-based potential built from Dirichlet process is successful in selecting native-like RNA models from different sets of structural decoys with comparable efficacy to a potential developed by spline-fitting - a commonly taken approach - to binned distance histograms. The less rugged nature of our potential suggests its applicability in diverse types of structural modeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号