首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, stimulates neurite outgrowth and acetylcholinesterase (ACE) activity in C1300 (Neuro-2A) murine neuroblastoma cells. Sprouting of neurites began within 4-8 h, before changes in cell proliferation could be detected by [3H]thymidine incorporation or flow cytometry. In contrast, the increase in ACE activity was temporally correlated with suppression of DNA synthesis, which occurred after 8 h. The activity of the membrane marker enzyme phosphodiesterase I was not stimulated by mevinolin. Suppression of protein synthesis with cycloheximide blocked the induction of ACE activity but only partially inhibited neurite outgrowth in the mevinolin-treated cultures. When mevinolin was removed from the culture medium, most of the cells retracted their neurites within 2 h, but ACE activity did not decline until DNA synthesis began to return to control levels after 10 h. Similarly, retraction of neurites in differentiated cells exposed to colchicine was not accompanied by a decrease in ACE activity. DNA histograms suggested that mevinolin arrests neuroblastoma cells in both the G1 and G2/M compartments of the cell cycle. Other cytostatic drugs that arrest cells at different stages of the cell cycle did not cause Neuro-2A cells to form neurites such as those seen in the mevinolin-treated cultures. When incorporation of [3H]acetate into isoprenoid compounds was studied in cultures containing mevinolin in concentrations ranging from 0.25 microM to 25 microM, the labeling of cholesterol, dolichol, and ubiquinone was suppressed by 90% or more at all concentrations. However, significant growth arrest and cell differentiation were observed only at the highest concentrations of mevinolin. Supplementing the medium with 100 microM mevalonate prevented the cellular response to mevinolin, but additions of cholesterol, dolichol, ubiquinone, or isopentenyl adenine were generally ineffective. The cholesterol content of neuroblastoma cells incubated with 25 microM mevinolin for 24 h was not diminished, and protein glycosylation, measured by [3H]mannose incorporation, was decreased only after 24 h at high mevinolin concentration. These studies suggest that the stimulation of neurite outgrowth and the increase in ACE activity induced by mevinolin are independent phenomena. Whereas neurite outgrowth is not related directly to the effects of mevinolin on cell cycling, the induction of ACE is correlated with the inhibition of cell proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
Inhibition of a plant sesquiterpene cyclase by mevinolin   总被引:2,自引:0,他引:2  
The specificity of mevinolin as an inhibitor of sterol and sesquiterpene metabolism in tobacco cell suspension cultures was examined. Exogenous mevinolin inhibited [14C]acetate, but not [3H]mevalonate incorporation into free sterols. In contrast, mevinolin inhibited the incorporation of both [14C]acetate and [3H]mevalonate into capsidiol, an extracellular sesquiterpene. Microsomal 3-hydroxy-3-methylglutaryl Coenzyme A reductase was inhibited greater than 90% by microM mevinolin, while squalene synthetase was insensitive to even 600 microM mevinolin. Sesquiterpene cyclase, the first branch point enzyme specific for sesquiterpene biosynthesis, was inhibited in a dose-dependent manner by mevinolin with a 50% reduction in activity at 100 microM. Kinetic analysis indicated that the mechanism for inhibition was complex with mevinolin acting as both a competitive and noncompetitive inhibitor. The results suggest that the mevinolin inhibition of [3H]mevalonate incorporation into extracellular sesquiterpenes can, in part, be attributed to a secondary, but specific, site of inhibition, the sesquiterpene cyclase.  相似文献   

3.
H4-II-E-C3 hepatoma cells in culture respond to lipid-depleted media and to mevinolin with increased sterol synthesis from [14C]acetate and rise of 3-hydroxy-3-methylglutaryl coenzyme A reductase levels. Mevalonate at 4 mM concentration represses sterol synthesis and the reductase, and completely abolishes the effects of mevinolin. Mevalonate has little or no effect on sterol synthesis or reductase in enucleated hepatoma cells (cytoplasts) or on reductase in cytoplasts of cultured Chinese hamster ovary (CHO) cells. The sterol-synthesizing system of hepatoma cell cytoplasts and the reductase in the cytoplasts of CHO cells were completely stable for at least 4 hr. While reductase levels and sterol synthesis from acetate followed parallel courses, the effects on sterol synthesis--both increases and decreases--exceeded those on reductase. In vitro translation of hepatoma cell poly(A)+RNAs under various culture conditions gave an immunoprecipitable polypeptide with a mass of 97,000 daltons. The poly(A)+RNA from cells exposed for 24 hr to lipid-depleted media plus mevinolin (1 microgram/ml) contained 2.8 to 3.6 times more reductase-specific mRNA than that of cells kept in full-growth medium, or cells exposed to lipid-depleted media plus mevinolin plus mevalonate. Northern blot hybridization of H4 cell poly(A)+RNAs with [32P]cDNA to the reductase of CHO cells gave two 32P-labeled bands of 4.6 and 4.2 K-bases of relative intensities 1.0, 0.61-1.1, 2.56, and 1.79 from cells kept, respectively, in full-growth medium, lipid-depleted medium plus mevinolin plus mevalonate, lipid-depleted medium plus mevinolin, and lipid-depleted medium. These values approximate the reductase levels of these cells. We conclude that mevalonate suppresses cholesterol biosynthesis in part by being a source of a product that decreases the level of reductase-specific mRNA.  相似文献   

4.
To achieve a better understanding of the metabolism and accumulation of paclitaxel and baccatin III in cell cultures of Taxus, inhibitors of the early steps in the terpenoid pathway were applied to a cell suspension culture of Taxus baccata: fosmidomycin as an inhibitor of the non-mevalonate branch of the pathway, and mevinolin as an inhibitor of the mevalonate branch. Synthesis of both taxanes in the cell suspension was first increased when cultured in the product formation medium supplemented with methyljasmonate (100 microM). The product formation medium was selected after assaying 24 different culture media. When fosmidomycin (200 microM) was added to the product formation medium together with the elicitor, the accumulation of paclitaxel and baccatin III was reduced by up to 3.0 and 1.5 times, respectively, whereas the inhibitory effect of mevinolin (1 microM) was only clearly exerted in the case of paclitaxel. Under the conditions of our experiment, we conclude that in the synthesis of both taxanes, the non-mevalonate pathway is the main source of the universal terpenoid precursor isopentenyl diphosphate (IPP).  相似文献   

5.
Transport of mevalonate by Pseudomonas sp. strain M.   总被引:4,自引:4,他引:0       下载免费PDF全文
Pseudomonas sp. M, isolated from soil by elective culture on R,S-mevalonate as the sole source of carbon, possessed an inducible transport system for mevalonate. This high-affinity system had a pH optimum of 7.0, a temperature optimum of 30 degrees C, a Km for R,S-mevalonate of 88 microM, and a V max of 26 nmol of mevalonate transported per min/mg of cells (dry weight). Transport was energy dependent since azide, cyanide, or m-chlorophenylhydrazone caused complete cessation of transport activity. Transport of mevalonate was highly substrate specific. Of the 16 structural analogs of mevalonate tested, only acetoacetate, mevinolin, and mevaldehyde significantly inhibited transport. Growth of cells on mevalonate induced transport activity by 40- to 65-fold over that observed in cells grown on alternate carbon sources. A biphasic pattern for cell growth, as well as for induction of mevalonate transport activity, was observed when mevalonate was added to a culture actively growing on glucose. The induction of transport activity under these conditions began within 30 min after the addition of mevalonate and reached 60% of maximal activity during phase I. A further increase in mevalonate transport activity occurred during phase II of growth. Glucose was the preferred carbon source for growth during phase I, whereas mevalonate was preferred during phase II. Only one isomer of the R,S-mevalonate mixture appeared to be utilized, since growth ceased after 45 to 50% of the total mevalonate was depleted from the medium. However, nearly 30% of the preferred mevalonate isomer was depleted from the medium during phase I without significant metabolism to CO2. These results suggest that mevalonate or a mevalonate catabolite may accumulate in cells of Pseudomonas sp. M during phase I and that glucose metabolism may inhibit or repress the expression of enzymes further along the mevalonate catabolic pathway.  相似文献   

6.
The requirement for the sterol biosynthetic pathway for the occurrence of DNA synthesis in glial cells and, in particular, the relative roles of cholesterol and of mevalonate have been studied. Primary cultures of developing glial cells were synchronized by reducing the content of fetal calf serum (FCS) in the culture medium from 10% to 0.1% (vol/vol) for 48 h between days 4 and 6 in culture. Reversal of the resulting quiescent state by the return of the cultures to 10% serum caused after 24 h a marked increase in DNA synthesis, and this increase was prevented by the simultaneous addition of mevinolin, a specific inhibitor of the sterol biosynthetic pathway at the 3-hydroxy-3-methylglutaryl coenzyme A reductase step, at the time of serum repletion. A dose-dependent reversal of the mevinolin inhibition of DNA synthesis occurred with simultaneous addition of mevalonate to the culture medium. The induction of DNA synthesis by serum repletion, its inhibition by mevinolin, and the reversal of the inhibition by mevalonate were unaffected by a 95% reduction in exogenous cholesterol produced by utilization of lipoprotein-poor serum (LPPS) rather than FCS. Similarly, return of quiescent cultures to 10% LPPS containing mevinolin and sufficient low-density lipoprotein (LDL) to raise the cholesterol concentration 80-fold failed to restore DNA synthesis. In addition, reversal of the mevinolin inhibition of DNA synthesis by mevalonate occurred despite the continuous presence of mevinolin if mevalonate was added as late as 12 h after serum repletion, but not if added after 16 h or more.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In order to investigate a requirement for isoprenoid compounds in the cell cycle, DNA synthesis was examined in cultured Chinese hamster ovary cells in which mevalonate biosynthesis was blocked with mevinolin, a competitive inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Treatment of exponentially-growing cultures with mevinolin led to a decline in DNA synthesis and cell cycle arrest in G1. Synchronous DNA synthesis and cell division could be restored in the arrested cultures, in the absence of exogenous mevalonate, by removing the inhibitor from the culture thereby allowing expression of an induced level of HMG-CoA reductase. In order to quantitate the mevalonate requirement for entry into S phase, recovery of DNA synthesis was made dependent upon added mevalonate by preventing the induction of the enzyme using 25-hydroxycholesterol, a specific repressor of HMG-CoA reductase synthesis. When cultures were treated with both inhibitors, optimal recovery of DNA synthesis was obtained with 200 micrograms/ml mevalonate following an 8 h lag, whereas a progressively longer lag-time was found with lower concentrations of mevalonate. Exogenous dolichol, ubiquinone, or isopentenyladenine had no effect on the arrest or recovery of DNA synthesis. Cholesterol was required during the arrest incubation for cell viability, but was not sufficient for recovery in the absence of mevalonate. The recovery of DNA synthesis by 200 micrograms/ml mevalonate, which was maximal 14-16 h after the addition of mevalonate, only required that the mevalonate be present for the first 4 h, whereas more than an 8-h incubation was required for maximal recovery with 25 micrograms/ml mevalonate. Maximal recovery at either concentration of mevalonate was achieved after approximately 400 fmol mevalonate/micrograms protein was incorporated into non-saponifiable lipids. This quantity represents approximately 0.1% of the mevalonate required for the synthesis of total cellular isoprenoid compounds. The results indicate that production of a quantitatively minor product(s) of mevalonate metabolism is required during the first 4 h following release of the block before other cellular events necessary for entry into S phase can occur.  相似文献   

8.
Apomine (SR-45023A) is a new antineoplastic compound which is currently in clinical trials and representative of the family of cholesterol synthesis inhibitors 1,1-bisphosphonate esters. Apomine inhibits growth of a wide variety of tumor cell lines with IC(50) values ranging from 5 to 14 microM. The antiproliferative activity of apomine was studied in comparison with that of other inhibitors of the mevalonate/isoprenoid pathway of cholesterol synthesis, simvastatin, farnesol, and 25-hydroxycholesterol. All these compounds inhibit 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity. Apomine (IC(50) = 14 microM), simvastatin (IC(50) = 3 microM), farnesol (IC(50) = 60 microM), and 25-hydroxycholesterol (IC(50) = 2 microM) inhibited HL60 cell growth. Growth inhibition due to simvastatin was reverted by mevalonate, whereas the antiproliferative activity of apomine, farnesol, and 25-hydroxycholesterol was not. Apomine triggered apoptosis in HL60 cells in less than 2 h. Apomine and farnesol induced caspase-3 activity at concentrations similar to their IC(50) values for cell proliferation, whereas a 10-fold excess of simvastatin was necessary to trigger apoptosis compared to its potency on proliferation. Caspase-3 activity was not induced by 25-hydroxycholesterol. The overall similar profile on mevalonate synthesis inhibition, cell growth inhibition, and apoptosis suggests that apomine acts as a synthetic mimetic of farnesol.  相似文献   

9.
Decreased activities of both 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) synthase and HMG CoA reductase are observed in the presence of sterol in the Chinese hamster ovary (CHO) fibroblast. In three different genotypes of CHO cell mutants resistant to 25-hydroxycholesterol both enzyme activities exhibit a decreased response to 25-hydroxycholesterol compared to wild-type cells. Permanently repressed levels of both HMG CoA synthase and HMG CoA reductase activities are observed in another CHO mutant, phenotypically a mevalonate auxotroph. Mevinolin, a competitive inhibitor of HMG CoA reductase, has no effect on HMG CoA synthase activity measured in vitro. Incubation of CHO cells with sublethal concentrations of mevinolin produces an inhibition of the conversion of [14C]acetate to cholesterol and results in elevated levels of both HMG CoA synthase and HMG CoA reductase activities. Studies of CHO cells in sterol-free medium supplemented with cycloheximide indicate that continuous protein synthesis is not required for the maximal expression of HMG CoA synthase activity and provide an explanation for the lack of temporal similarity between HMG CoA synthase and reductase activities after derepression. These results support the hypothesis of a common mode of regulation for HMG CoA synthase and HMG CoA reductase activities in CHO fibroblasts.  相似文献   

10.
Hemmerlin A  Bach TJ 《Plant physiology》2000,123(4):1257-1268
Growth inhibition of tobacco (Nicotiana tabacum L. cv Bright Yellow-2) cells by mevinolin, a specific inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR) could be partially overcome by the addition of farnesol. However, farnesol alone inhibited cell division and growth as measured by determination of fresh weight increase. When 7-d-old tobacco cv Bright Yellow-2 cells were diluted 40-fold into fresh culture, the cells exhibited a dose-dependent sensitivity to farnesol, with 25 microM sufficient to cause 100% cell death, as measured by different staining techniques, cytometry, and monitoring of fragmentation of genomic DNA. Cells were less sensitive to the effects of farnesol when diluted only 4-fold. Farnesol was absorbed by the cells, as examined by [1-(3)H]farnesol uptake, with a greater relative enrichment by the more diluted cells. Both mevinolin and farnesol treatments stimulated apparent HMGR activity. The stimulation by farnesol was also reflected in corresponding changes in the steady-state levels of HMGR mRNA and enzyme protein with respect to HMGR gene expression and enzyme protein accumulation.  相似文献   

11.
Embryonic Drosophila cells (Kc cells) were used to further characterize sterol-independent modulation of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity. 3-Methyl-3-5-dihydroxyvalerate (mevalonate), 3-fluoromethyl-3,5-dihydroxyvalerate (fluoromevalonate), and 3-ethyl-3,5-dihydroxyvalerate (homomevalonate) were tested as modulators. Although mevalonate caused a rapid, reversible suppression of reductase activity, fluoro- and homomevalonate increased activity; fluoromevalonate was more effective than homomevalonate. Mevalonate, added simultaneously with fluoromevalonate, blocked the analogue's effect on Kc cell reductase activity. However, mevalonate did not suppress an established fluoromevalonate increase in HMG-CoA reductase activity. Fluoromevalonate blocked [1-14C, 5-3H]mevalonate conversion to 14CO2- and 3H-labeled lipids and [3H] mevalonate 5-pyrophosphate accumulated. Neither protein nor RNA synthesis were required for mevalonate-mediated suppression of reductase activity. However, fluoromevalonate's effect on reductase activity required protein synthesis. Furthermore, in the absence of protein synthesis, fluoromevalonate-stabilized Kc cell HMG-CoA reductase activity. We have concluded that mevalonate, fluoromevalonate, homomevalonate, and compactin (mevinolin) modulated HMG-CoA reductase activity because they altered isoprenoid carbon flow to a post-isopentenyl 1-pyrophosphate regulatory, signal molecule.  相似文献   

12.
13.
Growth arrest induced by serum depletion and/or treatment with mevinolin (an inhibitor of mevalonate synthesis) in the human breast cancer cell line Hs578T was overcome by exogenous mevalonate, indicating that some product or metabolite of mevalonate may be involved in the mediation of serum-regulated growth of these cells. In the search for such compounds we first tested a variety of known end products of mevalonate with respect to their ability to counteract the inhibition of DNA synthesis caused by serum-free medium and mevinolin. Thereby high doses (10 μg/ml) of dolichol-20 were found to cause a partial counteraction. After straight-phase HPLC purification of endogenous lipids, isolated from 3H- or 14C-mevalonate-labelled Hs578T cultures, we found that non-sterol lipids co-eluting with dolichols efficiently induced DNA synthesis. After further purification with reverse-phase HPLC it was confirmed that virtually all of this effect was achieved by compound(s) (seen as a single UV and radioactive peak) co-eluting with dolichol-20. Nanogram doses, at most, of this (these) compound(s) elicited a substantial stimulation of DNA synthesis. The lipid(s) also counteracted the inhibition by mevinolin of N-linked glycosylation, indicating that it (they) also interfere(s) with this processing. Since treatment with tunicamycin (an inhibitor of N-linked glycosylation) abolished this growth-stimulative effect, N-linked glycosylation seems to be a necessary event in the processes leading to lipid-induced initiation of DNA synthesis.  相似文献   

14.
Growth of rat intestinal crypt derived cells IEC-6 ceased when the key enzyme of cholesterol synthesis, hydroxymethylglutaryl-CoA reductase, was blocked by the competitive inhibitor mevinolin. This effect was reversed by the addition of mevalonolactone. LDL suppressed reductase activity as well as cholesterol synthesis from [14C]octanoate and stimulated acyl-CoA cholesterol acyltransferase, but failed to support cell growth despite rapid receptor mediated degradation even in the presence of low mevalonolactone concentrations. Inhibition of cholesterol esterification by Sandoz-Compound 58-035 enhanced cell growth in the presence of mevinolin, but did not promote proliferation in the additional presence of low-density lipoproteins. HDL3 but not HDL2 or tetranitromethane-modified HDL3 totally reversed the mevinolin induced inhibition of cell growth. This rescue by HDL3 was overcome by an increased dose of mevinolin. HDL3 derepressed reductase, stimulated cholesterol synthesis and reduced cholesterol esterification, but did not reverse the cholesterol synthesis inhibition by mevinolin. It is concluded that IEC-6 cells preferentially use endogenously synthesized cholesterol for membrane formation rather than low-density lipoprotein cholesterol. High-density lipoproteins appear to normalize cell growth in the presence of mevinolin by inhibition of cholesterol esterification and probably by inducing the formation of non sterol products of mevalonate.  相似文献   

15.
The relationship between mevalonate and cell cycling was investigated in developing glial cells. Primary cultures of newborn rat brains were serum-depleted (0.1%, vol/vol) for 48 h on days 4-6 in vitro, then returned to 10% calf serum (time 0). After 48 h, 70-80% of the cells were glial fibrillary acidic protein (GFAP)-negative by indirect immunofluorescence; 79 +/- 7% were GFAP-positive after an additional 3 days. Serum shift-up resulted in 12 h of quiescence, and then by 20 h (S phase) in increased proportions of cells synthesizing DNA (from 15 +/- 6% to 75 +/- 4% by bromodeoxyuridine immunofluorescence at 12 h and 20 h, respectively) and rates of DNA synthesis (42 +/- 6 versus 380 +/- 32 cpm/micrograms of protein/h of [3H]thymidine uptake). Additional mevalonate (25 mM) for 30 min at 10 h reversed the inhibition of DNA synthesis apparent with mevinolin (150 microM), an inhibitor of mevalonate synthesis, present from time 0. Cycloheximide added simultaneously with mevalonate prevented this reversal of inhibition. To cause arrest at G1/S, cultures were exposed to hydroxyurea between 10 and 22 h. By 3 h after hydroxyurea removal, bromodeoxyuridine-labeled nuclei increased from 0% to 75 +/- 9%, and DNA synthesis increased 10-fold. Mevinolin failed to inhibit these increases. Thus, primary astroglial precursors stimulated to progress through the cell cycle express a mevalonate requirement in late G1, but before the G1/S transition. The effect of mevalonate was characterized further as being brief (30 min) and as requiring polypeptides.  相似文献   

16.
Cell line C-4-1 which produces alkaline phosphatase (EC 3.1.1.4) of the placental type in response to glucocorticoids was grown in the presence of inhibitors of mevalonate formation for periods ranging from 1 to 4 days. When C-4-1 cells were incubated in the presence of 25-hydroxycholesterol (1 microM) or compactin (11.6 microM) the induction of alkaline phosphatase by 0.2 microM dexamethasone was suppressed. This suppression could be partially prevented by the addition of mevalonolactone to the growing culture. The reversal effect by mevalonate was most evident with compactin, a well known competitive inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. In contrast, the effect of tunicamycin which inhibits N-linked protein glycosylation and also prevents alkaline phosphatase induction by glucocorticoids could not be reversed by mevalonate. These results implicate mevalonate in alkaline phosphatase induction, possibly through its role as a precursor of dolichols.  相似文献   

17.
Mevinolin, which is a highly specific competitive inhibitorof 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase,was used in a search for photoinducible enzyme(s) other thanHMG-CoA reductase in the pathway of carotenoid biosynthesisin Rhodotorula minuta. The photoinduced production of carotenoids was competitivelyinhibited by mevinolin. The concentration of mevinolin thatis required to inhibit completely the production of carotenoidsdepends on the light dose given to the cells. However, the relationshipbetween the inhibition ratio and the concentration of mevinolinwas almost identical regardless of the light dose. These resultssuggest that the activity of enzymes involved in the formationof HMG-CoA may not be affected by light. When an adequate amount of mevalonate was added to the growthmedium that contained sufficient mevinolin for the completeinhibition of the photoinduction of the production of carotenoids,the same quantity of carotenoids was produced as in the absenceof mevinolin. Moreover, the production of carotenoids in thepresence of both mevinolin and mevalonate was inhibited by cycloheximide. It appears from these results that one or more photoinducibleenzymes, such as HMG-CoA reductase, may be present in the carotenogenicpathway beyond mevalonate. (Received April 12, 1989; Accepted January 16, 1990)  相似文献   

18.
3-Hydroxy-3-methylglutaryl coenzyme A reductase (NADPH) was solubilized by trypsin digestion from sliced potato tuber microsomes, and purified to apparent homogeneity in the absence of detergent with a recovery of 1.8%. The enzyme had a specific activity of 7,910 nmol of mevalonate formed per min per mg of protein. On molecular-sieving high-performance liquid chromatography, the activity was coincident with the single protein peak corresponding to a molecular weight of approximately 110 kDa. On SDS-polyacrylamide gel electrophoresis, the purified enzyme showed only one protein staining band corresponding to a molecular weight of approximately 55 kDa. The apparent Km value for S-HMG-CoA was 6.4 microM and that for NADPH was 25 microM.  相似文献   

19.
The relationship between absolute isopentenoidogenesis (total and specific) and 3-hydroxy-3-methylglutaryl-coenzyme A suppression in response to increased mevalonate availability is unknown. We determined absolute isopentenoidogenesis values for the nonsterologenic Drosophila Kc cell incubated (2 h) with increasing [3H]mevalonate concentrations. At least 80% of the maximum suppression of 3-hydroxy-3-methyl glutaryl-co-enzyme A activity was achieved when total isopentenoidogenesis was increased only 2-fold. However, a 12-fold increase in total isopentenoidogenesis was achieved at higher exogenous [3H]mevalonate concentrations. Thus, modulation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity was coupled to physiological changes in mevalonate/nonsterol isopentenoid availability. In contrast, isopentenoid accumulation, oxidation, and secretion were enhanced with pharmacological increases in mevalonate availability. Furthermore, an apparent constancy of total isopentenoidogenesis values plus increased metabolism of exogenous mevalonate and a significant (35-45%) suppression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity, in response to exogenous substrate concentrations (less than 150 microM), supported a partial or complete compensatory dimunition in endogenous substrate synthesis. Since these responses occurred within the 2-h study, earlier time periods must be assessed to (i) define the initial nonsterol-mediated regulatory response and (ii) to trap the nonsterol isopentenoid regulatory signal molecule(s).  相似文献   

20.
Large amounts of the sesquiterpenoid capsidiol accumulated in the media of tobacco (Nicotiana tabacum L. cv KY14) cell suspension cultures upon addition of fungal elicitor. Capsidiol accumulation was proportional to the amount of elicitor added. The accumulation of capsidiol was preceded by a transient increase in the capsidiol de novo synthesis rate as measured by the incorporation of exogenous [14C]acetate. Changes in 3-hydroxy-3-methylglutaryl-CoA reductase activity (HMGR; EC 1.1.1.34), an enzyme of general isoprenoid metabolism, paralleled the changes in [14C]acetate incorporation into capsidiol. Incubation of the cell cultures with mevinolin, a potent in vitro inhibitor of the tobacco HMGR enzyme activity, inhibited the elicitor-induced capsidiol accumulation in a concentration dependent manner. [14C]Acetate incorporation into capsidiol was likewise inhibited by mevinolin treatment. Unexpectedly, [3H] mevalonate incorporation into capsidiol was also partially inhibited by mevinolin, suggesting that mevinolin may effect secondary sites of sesquiterpenoid biosynthesis in vivo beyond HMGR. The data indicated the importance of the induced HMGR activity for capsidiol production in elicitor-treated tobacco cell suspension cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号