首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An original approach to overcome interspecific incompatibility when backcrossing the tetraploid Solanum tuberosum + S. bulbocastanum somatic hybrids with cultivated potato was realized. This method is based on the decrease in their ploidy using anther culture and involvement of the haploid producer S. phureja IvP35. The feasibility of obtaining a diploid progeny from the somatic hybrids carrying genetic material of the wild species S. bulbocastanum and crossable with S. tuberosum dihaploids was demonstrated.  相似文献   

2.
Cultivated potato (Solanum tuberosum L.) is one of the first agricultural crops successfully cultured in vitro and used for obtaining of somatic hybrids. The review presents the current state of knowledge of somatic hybridisation involving this and other species from the genus of Solanum. Methods of somatic hybridisation, in particular factors that must be considered during designing the experiments are presented and discussed. The main attention however is focused on processes that are responsible for somatic hybrid formation. Complex interactions between genomes and plasmones lead to formation of symmetric, asymmetric and cytoplasmic recombinants. The concept of alloplasmic incompatibility is presented and discussed in relation to Solanum hybrids. Selected examples of potato somatic hybrids with agronomically important traits derived from wild species are presented in the table and discussed.  相似文献   

3.
Summary Leaf mesophyll protoplasts of Solanum pinnatisectum (2n=24) -irradiated at doses of 200 Gy and consequently unable to divide were fused with untreated protoplasts of genomic chlorophyll deficient mutant IvP 841-1 (2n=24) containing the germplasms of S. tuberosum and S. phureja. Two types of plants differing in their pigmentation characteristics were selected. The regenerants of one group were identified as true somatic hybrids by using isozyme analyses of esterase and aspartate aminotransferase. The anthocyanin marker of S. pinnatisectum was phenotypically expressed in these regenerants and could be used as an additional selection trait for hybrid screening in this species combination. The regenerants of the second group were corrected for the gene controlling chlorophyll deficiency but contained species-specific isozymes of the potato cultivar only. Restriction analysis of chloroplast DNA revealed chloroplasts of the S. pinnatisectum type in all but one of the plants tested. The fusion experiments involving -irradiated protoplasts show that this approach in potato reconstruction has the advantage of producing a wide range of genetically novel plants.Dedicated to Prof. H. F. Linskens on his 65th birthday  相似文献   

4.
Summary Many somatic fusion hybrids have been produced between a dihaploid potato Solanum tuberosum and the sexually-incompatible wild species S. brevidens using both chemical and electrical fusion techniques. S. brevidens was resistant to both potato leaf roll virus (PLRV) and potato virus Y (PVY), the viruses being either at low (PLRV) or undetectable (PVY) concentrations as determined by enzyme-linked immunosorbent assay (ELISA). The S. tuberosum parent was susceptible to both viruses. A wide range of resistance, expressed as a decrease in virus concentration to both viruses was found amongst fusion hybrids, four of which were especially resistant. The practicality of introducing virus resistance from S. brevidens into cultivated potatoes by somatic hybridisation is discussed.  相似文献   

5.
Summary Seventeen potato dihaploids, produced by pollinating the tetraploid (2n = 48) cv Pentland Crown with pollen from Solanum phureja (2n = 24) dihaploid inducer clones, were studied. Since dihaploids are thought to develop parthenogenetically from unfertilized ovules they were expected to be euploid (2n = 24), but somatic chromosome counts showed that 15 of the 17 dihaploids were aneusomatic. Ten of the clones were predominantly diploid (2n = 24) with a proportion of hyperploid cells that contained 25 or 26 chromosomes. Five of the dihaploids contained variable numbers of triploid cells (2n = 36). RFLP analysis was used to determine whether the additional chromosomes were from S. phureja or S. tuberosum. Unique hybridizing fragments present in S. phureja but not in Pentland Crown were identified. These S. phureja-specific restriction fragments were present in some of the dihaploid offspring of Pentland Crown. Of the 5 clones that contained triploid cells 4 had S. phureja type banding. Four of the 10 aneusomatic clones that contained hyperploid cells had the unique S. phureja hybridizing fragments. We propose that ovules of Pentland Crown were fertilized by pollen from S. phureja and that the aneusomatic clones were derived from triploid zygotes from which some of the S. phureja chromosomes were eliminated. We consider that this is an additional mechanism of dihaploid formation in potato.  相似文献   

6.
Summary The microsporogenesis of three somatic hybrids of potato, i.e. one tetraploid Solanum tuberosum (+) S. phureja, one tetraploid and one hypertetraploid S. tuberosum (+) desynaptic mutant, has been examined and compared with the microsporogenesis of the di(ha) ploid fusion partners. The somatic hybrids had a first meiotic division with uni-, bi-, and multivalents like that of tetraploid potatoes, illustrating introgression and dominance over desynapsis. Abnormal spindle orientations at second meiotic division, sporad types with reduced and unreduced cells and viable pollen occurred at various frequencies. Pollen fertility could not be predicted on the basis of pollen fertility of the fusion partners. Pollen sterility was partially due to abnormal chromosome numbers. Only the tetraploid S. tuberosum (+) desynaptic mutant produced normal amounts of viable seeds.  相似文献   

7.
 Somatic hybrids between three dihaploid Solanum tuberosum (2n=2x=24) genotypes and the frost-tolerant, diploid, relative Solanum commersonii (2n=2x=24) were analysed for variation in morphological traits, fertility and frost tolerance. The somatic hybrids were more vigorous than their parents and in many ways resembled a tetraploid S. tuberosum. All of the hybrids flowered profusely, although the male fertility was largely dependent on the S. tuberosum genotype used. In one hybrid combination all plants were both male- and female-fertile, while in the other two combinations the majority of plants were male-sterile but female-fertile. The somatic hybrids showed an increase in direct frost tolerance when compared with the dihaploid S. tuberosum parents, and to a varying extent had gained the capacity to cold acclimate. These somatic hybrids will be used in breeding programmes involving repeated cycles of anther culture and somatic hybridisation. Received: 20 May 1997 / Accepted: 12 June 1997  相似文献   

8.
Somatic hybrids between a potato virus Y (PVY) resistant Solanum etuberosum clone and a susceptible diploid potato clone derived from a cross between S. tuberosum Gp. Tuberosum haploid US-W 730 and S. berthaultii were evaluated for resistance to PVY. All but one of the tested somatic hybrids were significantly more resistant than cultivars Atlantic and Katahdin. However, none was as resistant as the S. etuberosum parent. One hexaploid somatic hybrid, possibly the product of a triple-cell fusion involving one S. etuberosum protoplast and two haploid x S. berthaultii protoplasts, was as susceptible to PVY infection as the cultivars. Tetraploid progeny of the somatic hybrids, obtained from crosses with Gp. Tuberosum cultivars, were neither as resistant as the maternal somatic hybrid parent, nor as susceptible as the paternal cultivar parent. It appears that the introgression of PVY resistance from (1EBN) S. etuberosum into (4EBN) S. tuberosum (EBN-endosperm balance number) will be successful through the use of somatic hybridization and subsequent crosses of the somatic hybrids back to S. tuberosum.  相似文献   

9.
Resistance to potato leafroll virus (PLRV), potato virus Y (PVYo) and potato virus X (PVX) was studied in symmetric and asymmetric somatic hybrids produced by electrofusion between Solanum brevidens (2n=2×=24) and dihaploid S. tuberosum (2n=2×=24), and also in regenerants (B-hybrids) derived through protoplast culture from a single somatic hybrid (chromosome number 48). All of the somatic hybrids between 5. brevidens and the two dihaploid lines of potato cv. Pito were extremely resistant to PLRV and PVYoand moderately resistant to PVX, irrespective of their chromosome number and ploidy level (tetraploid or hexaploid). Most (56%) of the asymmetric hybrids of irradiated S. brevidens and the dihaploid line of potato cv. Pentland Crown (PDH40) had high titres of PVYosimilar to those of PDH40, whereas the rest of the hybrids had PVYotitres less than a tenth of those in PDH40. Three B-hybrids had a highly reduced chromosome number (27, 30 and 34), but were however as resistant to PLRV, PVYoand PVX as 5. brevidens. Two asymmetric hybrids and one B-hybrid were extremely resistant to PLRV but susceptible to both PVY and PVX. The results suggested that resistance to PLRV in 5. brevidens is controlled by a gene or genes different from those controlling resistance to PVY and PVX, and the gene(s) for resistance to PVY and PVX are linked in S. brevidens.  相似文献   

10.
Summary An in situ hybridization procedure was developed for mitotic potato chromosomes by using a potato 24S rDNA probe. This repetitive sequence hybridized to the nucleolar organizer region (NOR) of chromosome 2 in 95%–100% of the metaphase plates. Another repetitive sequence (P5), isolated from the interdihaploid potato HH578, gave a ladderpattern in genomic Southern's of Solanum tuberosum and Solanum phureja, but not in those of Solanum brevidens and two Nicotiana species. This sequence hybridized predominantly on telomeric and centromeric regions of all chromosomes, although chromosomes 7, 8, 10 and 11 were not always labeled clearly.  相似文献   

11.
Nuclear-cytoplasmic interactions can influence fertility and agronomic performance of interspecific hybrids in potato as well as other species. With the aim of assessing the potential value of a novel recombinant cytoplasm derived by interspecific somatic hybridization, backcross progeny were produced by crossing a somatic hybrid between Solanum tuberosum (tbr) and the wild incongruous species S. commersonii (cmm) with various potato clones. BC1 clones were evaluated for male fertility and other agronomic traits. Male fertility clearly depended on the cross direction and the cytoplasm source. Genotypes with cytoplasms sensitive to nuclear genes derived from Solanum commersonii and inducing male sterility showed identical mtDNA composition, as based on mtDNA analyses with various PCR-based and RFLP markers. On the other hand, genotypes with cytoplasms not inducing male sterility in the presence of the cmm nuclear genes showed a different mtDNA organisation. Analysis of cpDNA confirmed similarity of cytoplasmic composition in CMS-inducing genotypes and clear differences with the others. Genotypes with recombinant cytoplasm induced by somatic hybridization generally showed similar agronomic performances in reciprocal hybrids with tbr cytoplasm, suggesting that the novel cytoplasm can be used in potato breeding.Contribution no. 24 from the Institute of Plant Genetics, Research Division of Portici  相似文献   

12.
13.
The use of RAPD markers for the detection of gene introgression in potato   总被引:1,自引:0,他引:1  
Randomly Amplified Polymorphic DNAs were employed to demonstrate that potato dihaploids generated after interspecific pollination of a tetraploid Solanum tuberosum cultivar (Pentland Crown) by Solanum phureja dihaploid inducer clones could not be of parthenogenetic origin. Of six different 10-mer oligonucleotides, four generated products from total potato dihaploid genomic DNAs which were not derived from the S. tuberosum parent. Gel electrophoresis and Southern analysis indicated that these amplified bands originated from S. phureja. The results are discussed in the context of recent cytological and molecular evidence which demonstrates that potato dihaploids are aneusomatic (Clulow et al. 1991) and emphasises this approach as a general methodology for the detection of alien gene introgression in both natural and cultivated plant populations.  相似文献   

14.
In order to set up a quick and easy procedure for determining the cytoplasmic composition of somatic hybrids, we tested a set of ’universal primers’ for plastidial and mitochondrial DNA on 13 genotypes belonging to the following species: Nicotiana tabacum, Solanum commersonii, Solanum tuberosum, Solanum etuberosum, Solanum phureja, Brassica oleracea, Brassica rapa, ’Anand’ CMS B. rapa, ’Chiang’ CMS B. oleracea, and ’Ogura’ CMS B. oleracea. Such primers are homologous to conserved coding sequences and amplify polymorphic intergenic or intronic regions. cpDNA polymorphism within Solanum and Brassica spp. was found with two and four primer pairs, respectively. The primers for the intergenic region between the trnF and trnV genes gave polymorphism among several tested species and were used in S. commersonii (+) S. tuberosum somatic hybrids,and B. oleracea (+) ’Anand’ CMS B. rapacybrids. Two primer pairs for mtDNA revealed polymorphism between S. commersonii and S. tuberosum, and one showed intraspecific polymorphism in S. tuberosum. The primer pair for the intergenic region between the rps14 and cob genes (pumD) showed a fragment of about 1.5 kb in S. tuberosum and S. phureja. A shorter fragment and no amplification were found in S. etuberosum and S. commersonii, respectively, suggesting frequent intrageneric rearrangements in this genome region. All Brassicaceae evidenced a fragment about 150-bp longer than in S. tuberosum. The same primers were also used with interspecific Solanum spp. somatic hybrids. Both PCR with pumD primers and hybridization with rpl5/rps14 genes indicated lack of linkage between rpl5/rps14 and cob genes in S. commersonii. Compared to direct visualization of restricted organellar DNA or Southern analysis with labelled probes, amplification of cpDNA and mtDNA with universal primers, followed by electrophoresis of either entire or restricted amplified fragments, is a simpler, more rapid and less expensive method to determine the organelle genome composition of interspecific Solanum and Brassica somatic hybrids. Received: 2 August 2000 / Accepted: 22 September 2000  相似文献   

15.
Summary Following both chemical and electrical fusion of protoplasts of a dihaploid line of potato (Solanum tuberosum), (PDH40), with those of the wild species, Solanum brevidens, 11 and 40 somatic hybrid plants, respectively were obtained. Fifteen of these somatic hybrid genotypes and the two parents were studied further in a small field trial to assess field performance and phenotypic variability. In the UK, somatic hybrid plants are classified as genetically engineered organisms, and the UK Advisory Committee on Genetic Manipulation have imposed various restrictions on field experiments. Examination of the somatic hybrids in the field showed extensive phenotypic variability, and no two genotypes were identical. Some of the variation reflected changes in chromosome numbers, but other factors were also involved. Half the somatic hybrid genotypes produced tubers in the field, although the tubers were smaller and differed morphologically from those of PDH40. The results of the study suggest that the extent of somaclonal variation manifested in somatic hybrids is greater than that found in protoplast-derived plants of potato. The implications of this observation and the current regulations concerning field experiments of somatic hybrid plants in the UK are discussed.  相似文献   

16.
Summary A modified protoplast isolation technique, applicable to a range of dihaploidSolanum tuberosum genotypes, has been developed. A combination of high calcium and high pH was used to fuse mesophyl protoplasts of dihaploidS. tuberosum (PDH40) and the diploid wild speciesS. brevidens. Large numbers of colonies were obtained after fusion and putative hybrids selected on the basis of phenotype from regenerated shoots. From these, 11 somatic hybrid plants have been identified by their isoenzyme patterns and morphologic characteristics. Four of these hybrids had the expected chromosome number of 48. The approach of mass culture after fusion followed by selection of hybrids from regenerated shoots and the application of somatic hybridization to potato breeding are discussed.  相似文献   

17.
Summary Asymmetric somatic hybrids were obtained by fusion of Solanum tuberosum (PDH40) protoplasts with 300- or 500-Gy irradiated protoplasts of S. brevidens. These radiation doses were sufficient to prevent the growth of the S. brevidens protoplasts. Putative hybrids were selected on the basis of phenotype from regenerated shoots and identified with a S. brevidens-specific probe. From these, 31 asymmetric hybrids were confirmed by morphological characteristics, isoenzyme patterns and RFLP analysis. The morphology of the asymmetric hybrids was intermediate between that of S. tuberosum and symmetric hybrids of both species (obtained without irradiation treatment). Chromosome counts from 17 asymmetric hybrids showed that the chromosome number of the hybrids ranged from 31 to 64. The asymmetric hybrids probably had one or two genome complements (i.e. either 24 or 48 chromosomes) from S. tuberosum and 7–22 chromosomes from S. brevidens. There was no clear correlation between the radiation dose and the degree of elimination of the S. brevidens genome.  相似文献   

18.
Summary The identification of somatic hybrids between Solanum tuberosum and S. brevidens can be carried out using polymerase chain reaction (PCR) and arbitrary 10-mer primers to generate random amplified polymorphic DNA (RAPD) markers. Five commercial primers have been tested. Each primer directed the amplification of a genome-specific fingerprint for the fusion parents and S. brevidens. The size of the amplified DNA fragments ranged from 100 to 1800 base pairs. The somatic hybrids showed a combination of the parental banding profiles with four of the five primers surveyed, whereas regenerants from one of the parents had the same or a similar banding pattern to that of the parent. Thus RAPD markers provide a quick, simple and preliminary screening method for putative somatic hybrids.Abbreviations EDTA ethylenediaminetetraacetic acid, - PCR polymerase chain reaction - RAPD random amplified polymorphic DNA - RFLP restriction fragment length polymorphisms - TBE Tris-borate-EDTA buffer - Tris trizma base  相似文献   

19.
Hexaploid somatic hybrids resulting from mesophyll protoplast fusions between Solanum brevidens Phil., PI 218228, and Solanum tuberosum L., PI 203900 were tested for late blight resistance using two races of Phytophthora infestans Monte., de Bary. The S. tuberosum parent was a late blight differential possessing the R4 gene which confers resistance to race 0. The S. brevidens parent is resistant to potato leaf roll virus. Inoculations with both compatible (race 1.3.4.5) and incompatible (race 0) races of P. infestans clearly demonstrated the expression of the late blight resistance gene in all of the hybrid progeny tested. Most of the hybrids tested were also resistant to potato leaf roll virus (PLRV), indicating that the S. brevidens genes for PLRV resistance were present and expressed.  相似文献   

20.
Solanum tarnii, a wild diploid, tuber-bearing Mexican species belonging to the series Pinnatisecta is highly resistant to Potato virus Y (PVY) and Colorado potato beetle and shows a strong hypersensitive reaction to Phytophthora infestans. Therefore, it could be a potential source of resistance to pathogens for potato breeders. S. tarnii (2n = 2x = 24) is reproductively isolated from tetraploid Solanum tuberosum and hence difficult to include in potato breeding programmes. In this study, interspecific somatic hybrids were produced for the first time by protoplast electrofusion of the cells of potato cv. Delikat (Solanum tuberosum L.) and Solanum tarnii. The hybrid nature of the regenerants was confirmed by simple sequence repeat (SSR) and amplified fragment length polymorphism (AFLP) markers and by morphological analysis and flow cytometry. Selected somatic hybrids were successfully backcrossed with cv. Delikat. Parental lines, primary somatic hybrids and BC1 progeny were assessed for resistance to PVY by mechanical inoculation, grafting and exposure to viruliferous aphid vectors in the field, and resistance to late blight (P. infestans) by detached leaflet and whole tuber tests. The somatic hybrids showed no symptoms of viral infection and most of them displayed high levels of resistance to foliage blight. The BC1 progenies were highly resistant to PVY and a few were resistant to foliage blight. Selected hybrids and BC1 clones were evaluated in the field for tuber quality and tuber yield. Some BC1 clones produced yields of good quality tubers. The results confirm that both the resistance to PVY and to late blight of S. tarnii is expressed in somatic hybrids, and PVY resistance is transferred to BC1 progeny, whereas blight resistance is harder to transfer. Somatic hybridization again proved to be a valuable tool for producing pre-breeding material with increased genetic diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号