首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The cassava green mite (CGM), Mononychellus tanajoa, a native of South America was accidentally introduced into Africa where it causes serious crop losses. The possibility of introducing classical biological agents from the native home of CGM into Africa was investigated. Thus, we conducted a series of laboratory assays of the native fungal pathogens, Neozygites tanajoae from Brazil and Neozygites floridana from Colombia and Brazil, and compared them with N. tanajoae isolates from Benin. Infectivity of both fungal species, was assayed against the twospotted spider mite, Tetranychus urticae, and against the red mite, Oligonychus gossypii. Pathogenicity against CGM and host range studies were conducted by transferring adult females of each mite species to leaf discs containing sporulated cadavers with a halo of conidia of each fungal isolate. All isolates caused some degree of infectivity to CGM. None of the isolates of N. floridana and N. tanajoae tested were pathogenic to O. gossypii, and only two isolates infected T. urticae. Most isolates from Brazil were highly virulent and infected only CGM. Sixteen N. tanajoae isolates caused more than 89% mortality and more than 62% of the CGM became mummified. A mummified CGM is characteristically a swollen, brown fungus-killed mite that has great potential to produce conidia. However, high mortality was not always associated with high mummification. The median mummification time ranged from 4.4 to 6.7 days. Five Brazilian isolates caused >75% mummification with a median mummification time <5 days. Isolates that cause high mummification in a short period of time would be more likely to cause epizootics and to establish in the new environment. Therefore, these isolates would be the best candidates for introduction to Africa.  相似文献   

2.
Neozygites tanajoae is an entomopathogenic fungus which has been used for biocontrol of the cassava green mite (Mononychellus tanajoa, CGM) in Africa. Establishment and dispersal of Brazilian isolates which have been introduced into some African countries in recent years to improve CGM control was followed with specific PCR assays. Two primer pairs, NEOSSU_F/NEOSSU_R and 8DDC_F/8DDC_R, were used to differentiate isolates collected from several locations in Brazil and from three countries in Africa, Benin, Ghana and Tanzania. The first primer pair enabled the species-specific detection of Neozygites tanajoae, while the second differentiated the Brazilian isolates from those of other geographical origin. PCR assays were designed for detection of fungal DNA in the matrix of dead infested mites since N. tanajoae is difficult to isolate and culture on selective artificial media. Our results show that all isolates (Brazilian and African) that sporulated on mummified mites were amplified with the first primer pair confirming their Neozygites tanajoae identity. The second pair amplified DNA from all the Brazilian isolates, but did not amplify any DNA samples from the African isolates. None of the two primers showed amplification neither from any of the non-sporulating mite extracts nor from the dead uninfected mites used as negative controls. We confirmed that the two primer pairs tested are suitable for the detection and differential identification of N. tanajoae isolates from Brazil and Africa and that they are useful to monitor the establishment and spread of the Brazilian isolates of N. tanajoae introduced into Benin or into other African countries for improvement of CGM biocontrol.  相似文献   

3.
Blends of volatile chemicals emanating from cassava leaves infested by the cassava green mite were found to promote conidiation of Neozygites tanajoae, an entomopathogenic fungus specific to this mite. Methyl salicylate (MeSA) is one compound frequently present in blends of herbivore-induced plant volatiles (HIPV) as well as that of mite-infested cassava. Here, we investigated the effect of methyl salicylate in its pure form on the production of pre-infective spores (conidia), and the germination of these spores into infective spores (capilliconidia), by a Brazilian isolate and a Beninese isolate of N. tanajoae. Mummified mites previously infected by the fungal isolates were screened under optimal abiotic conditions for sporulation inside tightly closed boxes with or without methyl salicylate diffusing from a capillary tube. Production of conidia was consistently higher (37%) when the Beninese isolate was exposed to MeSA than when not exposed to it (305.5 ± 52.62 and 223.2 ± 38.13 conidia per mummy with and without MeSA, respectively). MeSA, however, did not promote conidia production by the Brazilian isolate (387.4 ± 44.74 and 415.8 ± 57.95 conidia per mummy with and without MeSA, respectively). Germination of the conidia into capilliconidia was not affected by MeSA for either isolate (0.2%, 252.6 ± 31.80 vs. 253.0 ± 36.65 for the Beninese isolate and 4.2%, 268.5 ± 37.90 vs. 280.2 ± 29.43 for the Brazilian isolate). The effects of MeSA on the production of conidia were similar to those obtained under exposure to the complete blends of HIPV for the case of the Beninese isolate, but dissimilar (no promoting effect of MeSA) for the case of the Brazilian isolate. This shows that MeSA, being one compound out of many HIPV, can be a factor promoting sporulation of N. tanajoae, but it may not be the only factor as its effect varies with the fungal isolate under study.  相似文献   

4.
Virulence of entomopathogens is often measured at the individual level using a single host individual or a group of host individuals. To what extent these virulence assessments reflect the impact of an entomopathogen on their host in the field remains largely untested, however. A methodology was developed to induce epizootics of the cassava green mite fungal pathogen Neozygites tanajoae under controlled conditions to evaluate population-level virulence of two (one Beninese and one Brazilian) isolates of the entomopathogen—which had shown similar individual-level virulence but different field impacts. In unrepeated separate experiments we inoculated mite-infested potted cassava plants with either 50 or 25 live mites (high and low inoculum) previously exposed to spores of N. tanajoae and monitored the development of fungal infections for each isolate under the same conditions. Both isolates caused mite infections and an associated decline in host mite populations relative to the control (without fungus) in all experiments, but prevalence of the fungus varied with isolate and increased with inoculum density. Peak infection levels were 90% for the Beninese isolate and 36% for the Brazilian isolate at high inoculum density, and respectively 17% and 25% at low inoculum density. We also measured dispersal from inoculated plants and found that spore dispersal increased with host infection levels, independent of host densities, whereas mite dispersal varied between isolates. These results demonstrate that epizootiology of N. tanajoae can be studied under controlled conditions and suggest that virulence tests at the population level may help to better predict performance of fungal isolates than individual-level tests.  相似文献   

5.
Valdensinia heterodoxa (Sclerotiniacae) is a potential fungal bioherbicide for control of salal (Gaultheria shallon). The effect of culture media, substrates and relative humidity (RH) on growth, sporulation and conidial discharge of V. heterodoxa was determined for two isolates PFC2761 and PFC3027 in vitro. Culture media significantly affected the growth, sporulation, and conidial discharge of V. heterodoxa. Of eight agar media used, colony radial growth was optimal on salal oatmeal agar and salal potato dextrose agar for isolates PFC2761 and PFC3027, respectively; whereas sporulation was at an optimum on salal oatmeal agar for both isolates. Of the eight liquid media tested, mycelial production was highest on wheat bran–salal–potato dextrose broth. Growth on solid substrates greatly stimulated sporulation and conidial discharge of V. heterodoxa. Of the 12 solid substrates used, the greatest numbers of discharged conidia were observed from wheat bran and wheat bran–salal within 14 d of sporulation. Sporulation on solid substrates continued for 42 d. RH significantly affected the sporulation and conidial discharge for both isolates across all solid substrates tested. No conidia were produced or discharged below 93 % RH on wheat bran–salal and millet. With an increase of the RH from 93 to 97 %, sporulation and the number of discharged conidia increased significantly for both isolates on wheat bran–salal, but not on millet.  相似文献   

6.
Diagnostic PCR with two specific primer pairs (NEOSSU and 8DDC) were used to monitor the establishment and geographical distribution of Brazilian isolates of Neozygites tanajoae Delalibera, Hajek and Humber (Entomophthorales: Neozygitaceae) released in Benin for the biological control of the cassava green mite, Mononychellus tanajoa (Bondar) (Acari: Tetranychidae). A total of 141 cassava fields were visited and samples of M. tanajoa suspected to be infected by N. tanajoae were collected in 60 fields distributed between the coastal Southern Forest Mosaic (SFM) and the Northern Guinea Savanna (NGS) zones of Benin, West Africa. Analysis of DNA samples of dead mites using the species specific NEOSSU primers revealed the presence of N. tanajoae in 46 fields. The second country specific pair of primers 8DDC revealed the presence of Brazilian isolates of N. tanajoae in 36 fields, representing 78.3% of fields positive for N. tanajoae. Brazilian isolates occurred from SFM to NGS zones in Benin, however, they were concentrated in fields located within former release zones (e.g. Department of Ouémé in the South and Borgou in the North). In contrast, the indigenous African isolates of N. tanajoae were evenly distributed in the sub-humid and humid savannah zones of the country. The mean infection rate of M. tanajoa with indigenous isolates of N. tanajoae was relatively low (5.3%) compared to Brazilian isolates (28%), indicating a higher biocontrol potential of the latter. This first post-release monitoring using PCR techniques showed that the Brazilian strains of N. tanajoae is well established in Benin and spread effectively in this area.  相似文献   

7.
Collaborative research was conducted at the USDA-ARS Subtropical Agricultural Research Center in southern Texas to assess the microbial control potential of Beauveria bassiana and Paecilomyces fumosoroseus against Bemisia whiteflies. Laboratory assays demonstrated the capacity of both pathogens to infect Bemisia argentifolii nymphs on excised hibiscus leaves incubated at relative humidities as low as 25% at 23 ± 2°C (ca. 35% infection by B. bassiana and P. fumosoroseus resulted from applications of 0.6–1.4 × 103 conidia/mm2 of leaf surface). In small-scale field trials using portable air-assist sprayers, applications at a high rate of 5 × 1013 conidia in 180 liters water/ha produced conidial densities of ca. 1–2.5 × 103 conidia/mm2 on the lower surfaces of cucurbit leaves. Multiple applications of one isolate of P. fumosoroseus and four isolates of B. bassiana made at this rate at 4- to 5-day intervals provided >90% control of large (third- and fourth-instar) nymphs on cucumbers and cantaloupe melons. The same rate applied at 7-day intervals also provided >90% control in zucchini squash, and a one-fourth rate (1.25 × 1013 conidia/ha) applied at 4- to 5-day intervals reduced numbers of large nymphs by >85% in cantaloupe melons. In contrast to the high efficacy of the fungal applications against nymphs, effects against adult whiteflies were minimal. The results indicated that both B. bassiana and P. fumosoroseus have strong potential for microbial control of nymphal whiteflies infesting cucurbit crops.  相似文献   

8.
This study determined the pathogenicity and virulence of Beauveria bassiana and Metarhizium anisopliae to eggs of the chinch bug Blissus antillus (Hemiptera: Lygaeidae). Eggs were inoculated under laboratory conditions by immersion in concentrations of 1 × 104 and 5 × 106 conidia/ml. Inoculated eggs were kept under controlled conditions. Evaluations were carried out daily for 20 days. M. anisopliae isolates were highly virulent to eggs, even at 1 × 104 conidia/ml. All B. bassiana isolates tested were considered to be of low virulence or avirulent. The most virulent isolate tested was ESALQ 818 (M. anisopliae), which caused 96.7% infection, when eggs were immersed in suspensions of 1 × 104 conidia/ml. Conidial production on infected eggs was observed to be highest for M. anisopliae isolate CG144, with a mean value of 11.6 × 105 conidia/ml/egg. Infection of Blissus eggs oviposited on plant stems was greater when M. anisopliae isolate CG144 was formulated in mineral oil (63.5% mortality) than when formulated in Tween 80 (27.1% mortality).  相似文献   

9.
Submerged conidia and blastospores of the entomopathogenic fungus Isaria fumosorosea are produced in several liquid culture media. However, yields and the ecological fitness of these propagules vary according to culture media composition. In most culture media, hyphae, blastospores and submerged conidia are white but we found that in some media they develop a brown pigmentation. A dark pigment was extracted from brown-pigmented propagules and analyzed by IR spectroscopy. Adsorption bands coincided to those characteristics of melanins.Hadamard's matrices were employed in order to increase submerged conidia yields and brown pigmentation of fungal propagules. Media containing 20–30 mg/l of FeSO4·7H2O and 6–12 mg/l of CuSO4·5H2O allowed reaching the highest pigmentation (9 in a hedonic scale). A maximal concentration of submerged conidia of 1.0 (±1.2) × 1012 cell/l was achieved after 120 h of liquid culture in a improved culture medium, containing 25 ml/l of Polyethylene glycol (MW 200), substance which enhanced submerged conidia production, reducing free mycelia or mycelial pellets formation. In the improved medium, it was estimated that more than 60% of produced biomass corresponded to submerged conidia and blastospores, while in other media, mycelia were the main product (80–97%).  相似文献   

10.
As part of a 3-fold approach to select potential mycoinsecticides for whitefly control, we evaluated infectivity, thermal requirements, and toxicogenic activity of the entomopathogenic fungus Beauveria bassiana (Ascomycota: Clavicipitaceae) under laboratory conditions. Twenty-five native B. bassiana isolates and a commercially available mycoinsecticide (based on B. bassiana) were evaluated for virulence to fourth instar nymphs of sweetpotato whitefly, Bemisia tabaci, and greenhouse whitefly, Trialeurodes vaporariorum, at a concentration of 1 × 107 conidia/ml. All isolates were pathogenic for both whitefly species, whereas mortality rates varied from 3 to 85%. A second series of bioassays was conducted on 10 selected isolates using four 10-fold concentrations ranging from 1 × 105 to 1 × 108 conidia/ml. Median lethal concentrations (LC50) of the four most virulent isolates varied from 1.1 × 105 to 6.2 × 106 conidia/ml and average survival time (AST) of treated nymphs from 5.9 to 7.4 days. T. vaporariorum were significantly more susceptible to all B. bassiana isolates than B. tabaci. The thermal biology of the eight most virulent isolates to both whitefly species was investigated at six temperatures (10–35 °C). The colony radial growth rate was estimated from the slope of the linear regression of colony radius on time and data were then fitted to a modified generalized β function that accounted for 90.5–99.3% of the data variance. Optimum temperatures for extension rate ranged from 23.1 to 27.1 °C, whereas maximum temperatures for fungal growth varied from 31.8 to 36.6 °C. On the basis of their virulence and thermal requirements, three isolates showed promise as candidates for whitefly management in Mediterranean greenhouses. Whilst in vitro production of macromolecular compounds toxic to Galleria mellonella larvae was not a requisite for virulence, ASTs of larvae injected with Sephadex G-25 fractions from candidate isolates ranged from 1.4 to 3.7 days compared with 5–6 days for non-toxic G-25 fractions. In addition, proteinase K treatment significantly reduced their toxic activity suggesting that they were proteins and revealing the potential of these isolates to be further improved through biotechnology to kill the pest more quickly.  相似文献   

11.
Exploratory activities were done in Syria, Turkey, Iran, Uzbekistan, Kazakhstan, The Kyrghyz Republic, and Russia to locate entomopathogenic fungi of Eurygaster integriceps. Isolates from the entomopathogenic genera Beauveria, Paecilomyces, and Verticillium were collected. Beauveria bassiana was the most commonly recovered species. Thirty-one isolates of the 221 recovered were examined at 20, 25, 30, and 35 °C for 20 days for growth and sporulation. Growth and sporulation were generally highest at 25 °C. None of the isolates grew at 35 °C, and at 30 °C growth was retarded with no conidia being produced. Single- and multiple-concentration bioassays were conducted on greenhouse-grown wheat plants and in pine litter to evaluate virulence of fungi from several sources to E. integriceps. When tested at a single concentration, mortality after 15 days ranged from 66 to >95% in the litter assays and 50 to 91% in the plant assays. There was a distinct concentration response for most of the isolates tested in the multiple-concentration assay, particularly in the in-litter environment. In litter, mortality tended to develop earlier than in on-plant assays. Several isolates of B. bassiana and one Metarhizium anisopliae displayed consistently high virulence against E. integriceps and were more virulent than two commercial strains. Our results demonstrate the potential of entomopathogenic fungi for management of E. integriceps in overwintering sites and in wheat fields.  相似文献   

12.
Leveillula on monocotyledonous plants have been recorded as L. taurica by several authors, whereas the fungus on Allium has been described as an independent species, namely L. allii, by some authors. We sequenced ca 600 bp of the rDNA ITS region for two Leveillula specimens from Allium and Polianthes (both from monocotyledons) and compared them with several already published sequences from Leveillula isolates from dicotyledons. Pair-wise percentages of sequence divergences were calculated for all Leveillula isolates. The ITS sequence of the Polianthes isolate was identical to L. taurica on Helianthus and Vicia. The sequence of the Allium isolate was 99.5 % identical to L. taurica on Euphorbia, Haplophylum, Peganum, etc. These results suggest close relationships between monocot and dicot pathogenic Leveillula species. The identity between two monocot isolates was 98.4 %. Phylogenetic analysis revealed that the two monocot isolates do not group into a clade together. This result suggests that Leveillula acquired parasitism to monocots at least twice independently.  相似文献   

13.
The effect of five constant relative humidity (RH) regimes (12%, 33%, 55%, 75% and 94%) on the preimaginal development and adult longevity and reproduction of Dichochrysa prasina Burmeister was studied at 26 ± 1 °C and a photoperiod of 16:8 (L:D) under laboratory conditions. For the experiments, larvae were fed individually on eggs of the flour moth Ephestia kuehniella (Zeller), whereas adults on a liquid diet consisting of water, yeast hydrolysate, sugar and honey. The experimental insects were maintained individually in sealed plastic containers with saturated water salt solutions at the base to control RH. Preimaginal developmental time from egg to adult for females and males was significantly shorter at 75% and 94% RHs than at other RHs in the range from 12% to 55%. Percentages of adult emergence were similar at all RHs tested and varied from 52.5% to 75.0%. Adult females that had no access to water and were maintained at 12%–75% RH lived on average less than two weeks and laid no eggs, whereas at 94% RH they lived longer and each laid on average 201 eggs. When the females had periodic access to a water source a significant increase in both longevity and egg production occurred and the estimated intrinsic rate of increase was high, irrespective of RH. These results could be useful for the mass-rearing of D. prasina and for better understanding its population dynamics under field conditions.  相似文献   

14.
We determined host plant effect on susceptibility of the silverleaf whitefly,Bemisia argentifolii, to the entomopathogenic fungusPaecilomyces fumosoroseus. Whiteflies were reared on three vegetable species (cucumber, cabbage, and tomato) and three cultivars of tomato (Heatwave, Better Boy, and Rutgers). Second instars were sprayed with 5 × 104conidia/cm2ofPfr97, aP. fumosoroseusstrain, used as a microbial control agent of whiteflies. Trials were conducted in an experimental greenhouse, where temperature and relative humidity were adjusted to favor infection (22–33°C, and 68–100% RH). Larval susceptibility to fungal infection was high and not significantly affected by the host plant. Mortality was > 70% 1 week after treatment and increased further during the second week. Percentages of cadavers with subsequent production of conidia observed in the greenhouse did not vary significantly either with the host vegetable species (85–93% 7 days after treatment and 99–100% 14 days after treatment), or with the cultivar of tomato (96–97% 7 days after treatment and 99–100% 14 days after treatment). After incubation under optimal laboratory conditions, the percentages based on the total number of sporulating cadavers (includingin situsporulating individuals and cadavers sporulating afterin vitroincubation) were not significantly influenced either by host vegetable or cultivar of tomato. According to the conditions prevailing in the series of experiments with the three vegetable species or in the series of experiments with the three cultivars of tomatoes, the production of newly formed conidia varied from approximately 10,000 to 18,000 conidia/cadaver. However, in both series, there was no significant influence of the host vegetable species or cultivar. The survival of the newly formed conidia harvested 7 days following treatment reached more than 50% but was not affected by host plant. These results indicate thatP. fumosoroseusshows potential as a microbial control agent for controllingB. argentifoliion greenhouse crops.  相似文献   

15.
Pandora nouryi discharged large numbers of primary conidia between 8 and 25°C from cadavers on the surface of water-agar. At 8°C conidial discharge lasted for 120 h, but most conidia were produced within 48 h when temperature was >15°C. Saturated humidity alone was not enough to allow for sporulation to occur freely and where RH?<?95%, no conidia were discharged. Light did not affect the pattern of conidial production nor the total number of conidia. Germination percentages of conidia on the surface of water-agar were 40 and 66% at 8 and 30°C, respectively, and were significantly lower than that at 15–25°C where germination was >95%. Conidia on leaves germinated well when RH?>?74%, while no germination occurred when RH?<?100% on cover slips. All eight insecticides tested entirely inhibited conidial germination at recommended doses (R), in particular, both the organophosphorus pesticides Lorsben (chlorpyrifos) and the organochlorine pesticides Thiodan (endosulfan) completely inhibited conidial germination even at 0.2R dose.  相似文献   

16.
Nine isolates of Botryosphaeria spp. were screened for lipases when cultivated on eight different plant seed oils and glycerol, and all produced lipases. Botryosphaeria ribis EC-01 produced highest lipase titres on soybean oil and glycerol, while eight isolates of Botryosphaeria rhodina produced significantly lower enzyme titres. B. ribis EC-01 produced lipase when grown on different fatty acids, surfactants, carbohydrates and triacylglycerols, with highest enzyme titres produced on Triton X-100-emulsified stearic (316.7 U/mL), palmitic (283.5 U/mL) and oleic (247.4 U/mg) acids, and soybean oil (105.6 U/mL), as well as castor oil (191.2 U/mg); an enhancement of 9-fold over soybean oil-grown cultures. Glycerol was also a good substrate for lipase production. The crude lipase extract was optimally active at pH 8.0 and 55 °C, stable between 30 and 55 °C and pH 1–10, and tolerant to 50% (v/v) glycerol, methanol and ethanol. The crude lipase showed affinity for substrates of short, average and long-chain fatty acids (different esters of p-nitrophenol and triacylglycerols). Zymograms developed with 4-methylumbelliferyl-butyrate showed two bands of lipolytic activity at 45 and 15 kDa. This is the first report on the production of lipases by B. ribis grown on these different carbon sources.  相似文献   

17.
The predatory mite Typhlodromalus aripo and the entomopathogenic fungus Neozygites tanajoae, both introduced from Brazil for control of the cassava green mite (CGM) Mononychellus tanajoa, now co-occur in cassava fields in Benin. However, studies on interactions between these two natural enemies and how they might affect CGM biological control are lacking. We determined in screenhouse experiments the effects of single and combined releases of N. tanajoae and T. aripo on CGM suppression. In the single natural enemy treatment, both T. aripo and N. tanajoae significantly reduced CGM densities, but the results of the predator (T. aripo) are more quickly measurable than those of the pathogen (N. tanajoae) in our short-term experiment. The level of CGM suppression in the combined natural enemy treatment was reduced considerably compared with T. aripo-alone, but only slightly when compared with N. tanajoae alone, with a simultaneous reduction in T. aripo and N. tanajoae abundance or prevalence. In a laboratory experiment, T. aripo fed more on N. tanajoae-infected CGM than on healthy CGM and its oviposition and survival were reduced when fed on the former compared with the latter, which can help in explaining the reduction in numbers of T. aripo and consequently the considerable loss in suppression of CGM in the combined natural enemy treatment in the screenhouse experiment. Together, the screenhouse and the laboratory experiments predicted negative interactions between the two natural enemies with negative consequences for CGM biological control. Long-term field observations and rigorous field experiments that simultaneously manipulate T. aripo and N. tanajoae abundance and prevalence are needed to validate the prediction of this study.  相似文献   

18.
Preimaginal development and adult longevity and reproduction of Dichochrysa prasina Burmeister were studied at six constant temperatures (15, 20, 25, 27, 30 and 33 °C) and a photoperiod of 16:8 (L:D). Eggs of the flour moth Ephestia kuehniella (Zeller) were used as food throughout preimaginal development, whereas the adults of D. prasina fed on a liquid diet of water, yeast hydrolysate, sugar and honey. At the highest tested temperature of 33 °C no larvae completed their development. At the rest of the tested temperatures the egg to adult developmental period ranged from approximately 92 days at 15 °C to 25 days at 30 °C. Percentages of adult emergence ranged from 36% at 15 °C to 84% at 30 °C. Both adult longevity and fecundity were significantly affected by temperature and the intrinsic rate of increase (rm) reached its maximum value at 27 °C. These results could be useful for the establishment of a small scale rearing and mass production of D. prasina.  相似文献   

19.
When dried organisms are immersed in water, rapid imbibition may cause severe damage to plasma membranes; in unicellular organisms, such damage is usually lethal. This study investigated effects of water activity (dryness) of organisms and immersion temperature on imbibitional damage in three insect pathogenic fungi. Conidial powders of Beauveria bassiana (Bb), Metarhizium anisopliae (Ma) and Metarhizium acridum (Mac) were dried/hydrated to a broad range of water activities (aw) (0.023–0.961) prior to immersion in water at 0.5–33 °C. Imbibitional damage in conidia of each fungus occurred rapidly, with no differences in viabilities observed following immersion for 2 vs. 60 min. Damage increased with decreasing water activity of the conidia and decreasing temperature of the immersion water. Dry (aw  0.333) Metarhizium spp. conidia were highly susceptible to imbibitional damage, with viability declining to 5% after immersion at 0.5 °C and 63% following immersion at 15 °C. Germination of the driest Ma conidia was reduced to 66% after treatment at 25 °C. In contrast, Bb was highly tolerant to damage, with significant reductions in viability (to levels as low as 43–65%) occurring only when dry conidia were immersed at 0.5 °C. Damage was prevented when conidia were slowly rehydrated by humidification prior to immersion and immersion temperature was increased to 33–34 °C; germination of all fungi was 94% under these optimal conditions. However, immersion of the driest Bb, Ma, and Mac powders in warm water (33 °C) also resulted in high viabilities (95%, 89%, and 94%, respectively), and slow-rehydrated conidia also retained high viability (87%, 92%, and 83%, respectively) after immersion in ice-cold water (0.5 °C). Formulation of conidia in pure (non-emulsifiable) paraffinic oil provided considerable protection from imbibitional damage. This study underscores a need for establishing standard protocols for preparing aqueous suspensions of sensitive fungi for both research and commercial applications.  相似文献   

20.
Microsphaeropsis amaranthi and Phomopsis amaranthicola are potential biological control agents for several Amaranthus species. In an effort to understand the initial infection processes with these pathogens, a study was conducted of the conidial germination and germ tube length (μm) on the weed leaf surfaces at 21 °C and 28 °C. Weeds included Amaranthus rudis, A. palmeri, A. powellii, A. retroflexus, A. spinosus, A. hybridus, and A. albus. For P. amaranthicola, conidial germination and germ tube length varied among the seven weed species at both temperatures, while for M. amaranthi the differences in germ tube lengths were significant among weed species only at 21 °C. While the conidia of M. amaranthi and P. amaranthicola germinated on the leaf surfaces of all seven weed species, temperature appeared to impact the number and length of germ tubes on the leaf surfaces. The percentage of germinated conidia and the length of germ tubes at both temperatures were often greater for M. amaranthi than for P. amaranthicola. In order for the fungal pathogen to successfully infect and kill a weedy host, conidia must germinate and form a germ tube, two processes that vary with host species and temperature for M. amaranthi and P. amaranthicola. The extent to which successive infection processes, e.g., penetration, invasion and colonization, contribute to host specificity warrants study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号