首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Summary Sedimentological, paleontological and sequence analyses of Cenomanian limestones in Sicily reveal the facies architecture and dynamics of a Mid Cretaceous rudistdominated platform margin from Western Tethys. The studied deposits outcrop near Palermo, as part of a large structural unit of the Sicilian Maghrebids. They belong to the Panormide carbonate platform, a Mesocenozoic paleogeographic domain of the African margin. The lateral continuity of the beds along three nearly parallel E-W outcrop sections allowed the recording of cm/dm thick lithological and faunal variations. Nine main lithofacies associations have been recognised along about 200 m of subvertical strata. Their vertical and lateral organisation points to a transition from highenergy shelf-margin rudist patches and shoals to more internal lagoonal-tidal environments over a short distance. The lithofacies evolution and stacking pattern along the three sections made it possible to define elementary cycles, composite cycles and larger-scale sequences with a dominant shallowing-upward trend. Their hierarchical organisation implies that sea-level fluctuations were an important factor in their formation. The cycles are characterised by a great variation in facies as a result of transgressive-regressive events in different sectors of the inferred Cenomanian shelf. Subtidal cycles typical of the shelf margin (4–10 m-thick) are particularly well identifiable. They are made of large Caprinidae and Sauvagesiac rudstone-to-floatstone (about 2/3 of the total thickness), capped by rudist-conglomerates, often organised into 3–5 fining-upward amalgamated beds and showing, in places, effects of surface-related diagenesis. In more internal shelf areas the cycles consist of Caprinidae-Radiolitidae floastone grading up into amalgamated beds of angular bioclastic rudstone/grainstone. Alternations of foraminifer/ostracod mudstone/wackestone and bioclastic grainstone/fine-rudstone, capped by loferites and/or by other emersion-related overprintings, characterise the cycles formed in the peritidal zones. these cycles are stacked into three incomplete depositional sequences. The sequence boundaries have been identified by the abrupt interposition of peritidal cycles in subtidal rudist-rich cycles, with evidence of brief subaerial exposure.  相似文献   

2.
The kilometer-sized and 100-meter-thick carbonate platforms of the Escalada Fm. I and II (Middle Pennsylvanian) accumulated in the foredeep of a marine foreland basin during the transgressive phases of 3rd-order sequences and were buried by prograding siliciclastic deltaic systems in the course of the subsequent highstand. The carbonate successions show a general upward trend from grain- to mud-supported carbonates, interfingering landwards with siliciclastic deposits of a mixed siliciclastic-carbonate shelf (Fito Fm.) adjacent to deltaic systems. The spatial variability of the carbonate facies and the high-frequency (4th–5th order) cycles, from the platform margin-outer platform to the deltaic systems, has been interpreted from basin reconstruction. Carbonate facies include skeletal grainstone to packstone, ooidal grainstone, burrowed skeletal wackestone, microbial and algal boundstone to wackestone forming mounds, various algal bafflestone and coral biostromes in areas with siliciclastic input. These high-frequency transgressive–regressive cycles are interpreted to record allocyclic forcing of high-amplitude glacioeustasy because they show characteristic features of icehouse cycles: thickness >5 m, absence of peritidal facies, and in some cases, subaerial exposure surfaces capping the cycles. In the mixed cycles, siliciclastics are interpreted as late highstand to lowstand regressive deposits, whereas carbonates as transgressive-early highstand deposition. The lateral and vertical variability of the facies in the glacioeustatic cycles was a response to deposition in a rapidly subsiding, active foreland basin subjected to siliciclastic input, conditions that might be detrimental to the growth of high-relief carbonate systems.  相似文献   

3.
In this paper, the sedimentology and the stratigraphic architecture of the Devonian Santa Lucia Formation in the Cantabrian Mountains of NW-Spain are described. The Santa Lucia Formation consists of 11 different facies that can be attributed to peritidal/lagoonal, intertidal and subtidal facies associations. These facies associations are arranged in small-scale sedimentary cycles. Three different settings of small-scale sedimentary cycles are recognized: intertidal/supratidal, shallow subtidal/intertidal and subtidal cycles. These cycles reflect spatial differences in the reaction of the depositional system to small-scale relative sea-level changes. Small-scale stratigraphic cycles are stacked into seven medium-scale cycles that in turn are integral parts of three larger-scale cycles. Most of the Santa Lucia Formation (sequences 2–6) forms one major large-scale cycle, whereas sequences 1 and 7 are part of an underlying and an overlying cycle, respectively. Eustatic sea-level changes exerted major control on the formation of these large-scale sequences, whereas the medium-scale cycles seem to be co-controlled by regional tectonism and eustasy. Small-scale cycles seem to be the product of high frequency, eustatic sea-level changes. During the deposition of the Santa Lucia Formation, the morphology of the carbonate platform changed from a gently south-dipping ramp to a rimmed shelf and back to a gently dipping ramp.  相似文献   

4.
Peritidal platform carbonates of Late Barremian age (Early Cretaceous) cropping out in the Marseille region (Provence, SE France) tend to be arranged stratigraphically in deepening-up or shallowing-up sequences. Seven facies types (lithofacies) were defined in the studied stratigraphic interval, ranging from supratidal to shallow subtidal settings. There is a good correspondence between the inferred relative water depth of facies and their average bed thickness. Cumulative thickness of facies types expresses quantitatively their palaeobathymetric range and provides an estimate of their average water depth. Calculations show that the palaeobathymetry of supratidal/intertidal facies types is from 0 to 40 cm, i.e. a pertaining to a palaeotidal (microtidal) range. The average palaeobathymetry of rudist facies, ascribed to subtidal settings, fluctuates between 40 cm and nearly 160 cm. Measuring a large number of beds belonging to both shallowing-up and deepening-up sequences, and averaging the results, appear relevant to minimise the effect of compaction, pressure solution and synsedimentary progressive or abrupt changes in accommodation, which are expected to modify bed thickness and its original palaeobathymetric significance. The method proposed here has a good potential for palaeobathymetric reconstruction of ancient peritidal carbonates.  相似文献   

5.
The Jesmond succession of the Cache Creek Terrane in southern British Columbia records late Early Triassic peritidal carbonate sedimentation on a mudflat of a buildup resting upon a Panthalassan seamount. Conodont and foraminiferal biostratigraphy dates the succession as the uppermost Smithian to mid-Spathian. The study section (ca. 91 m thick) is dominated by fine-grained carbonates and organized into at least 12 shallowing-upwards cycles, each consisting of shallow subtidal facies and overlying intertidal facies. The former includes peloidal and skeletal limestones, flat-pebble conglomerates, stromatolitic bindstones, and oolitic grainstone, whereas the latter consists mainly of dolomicrite. The scarcity of skeletal debris, prevalence of microbialite, and intermittent intercalation of flat-pebble conglomerate facies imply environmentally harsh conditions in the mudflat. The study section also records a rapid sea-level fall near the Smithian-Spathian boundary followed by a gradual sea-level rise in the early to mid-Spathian.  相似文献   

6.
The genus Archaeoellipsoides Horodyski & Donaldson comprises large (up to 135 μ long) ellipsoidal and rod-shaped microfossils commonly found in silicified peritidal carbonates of Mesoproterozoic age. Based on morphometric and sedimentary comparisons with the akinetes of modern bloom-forming Anabaena species, Archaeoellipsoides is interpreted as the fossilized remains of akinetes produced by planktic heterocystous cyanobacteria. These fossils set a minimum date for the evolution of derived cyanobacteria capable of marked cell differentiation, and they corroborate geochemical evidence indicating that atmospheric oxygen levels were well above 1% of present day levels 1,500 million years ago. Akinetes, atmospheric oxygen, cyanobacteria, heterocyst, microbial fossils, nitrogen fixation, peritidal, Proterozoic.  相似文献   

7.
Givetian subaqueous density-flow deposits reveal the existence of a peritidal carbonate platform in sedimentary basins preserved within the Rabat-Tiflet-Zone of Morocco. The calcareous component assemblage displays a photozoan carbonate production mode of the neritic source environments. Characteristic elements of the allochthonous faunal association are colonial tabulate corals, stromatoporoids, crinoids, bryozoans and thick-shelled brachiopods. Active growing reefs and cortoid sand shoals at the platform margin as well as periplatform carbonates at the uppermost slope settings contributed bioclastic and lithoclastic lime debris to the toe-of-slope of the carbonate apron. Bipartite cobble rudstone beds are interpreted as deposits of hyperconcentrated density flows, which cannot be maintained on very low-angle slopes for as long as more dilute flows and represent short run-out distances. Beds consisting of mostly well-organized pebbly grainstones, packstones and grainstone-wackestone couplets are deposits of surge-like concentrated flows and turbidity flows.  相似文献   

8.
Summary The Middle Ordovician Duwibong Formation (about 100 m thick), Korea, comprises various lithotypes deposited across a carbonate ramp. Their stacking patterns constitute several kinds of meter-scale, shallowing-upward carbonate cycles. Lithofacies associations are grouped into four depositional facies: deep- to mid-ramp, shoal-complex, lagoonal, and tidal-flat facies. These facies are composed of distinctive depositional cycles: deep subtidal, shallow subtidal, restricted marine, and peritidal cycles, respectively. The subtidal cycles are capped by subtidal lithofacies and indicate incomplete shallowing to the peritidal zone. The restricted marine and peritidal cycles are capped by tidal flat lithofacies and show evidence of subaerial exposure. These cycles were formed by higher frequency sea-level fluctuations with durations of 120 ky (fifth order), which were superimposed on the longer term sea-level events, and by sediment redistribution by storm-induced currents and waves. The stratigraphic succession of the Duwibong Formation represents a general regressive trend. The vertical facies change records the transition from a deep- to mid-ramp to shoal, to lagoon, into a peritidal zone. The depositional system of the Duwibong Formation was influenced by frequent storms, especially on the deep ramp to mid-ramp seaward of ooid shoals. The storm deposits comprise about 20% of the Duwibong sequence.  相似文献   

9.
《Palaeoworld》2023,32(3):458-469
The Upper Jurassic Mozduran Formation at Baghak section, Kopet-Dagh area northeast Iran, characterized by multiple units of carbonates and evaporates intercalated with siliciclastic deposits, yielded benthic foraminifera, calcareous algae, and crustacean coprolites, including Alveosepta jaccardi, Charentia aff. nana, Deloffrella quercifoliipora, Marinella cf. lugeoni, Favreina, and Solenopora sp. The almost consistent occurrence of Alveosepta jaccardi in the studied section, i.e., the Alveosepta jaccardi Zone, indicates late Oxfordian to the Kimmeridgian in age. Facies analysis of the formation reveals depositional settings of a peritidal zone, a lagoon, and a high-energy shoal of a carbonate ramp. Terrigenous and evaporites are found in eastern parts of Kopet-Dagh, representing a more proximal sedimentary environment. These siliciclastic inputs are associated with tectonic events during Oxfordian to Tithonian in the region.  相似文献   

10.
Discontinuity surfaces of different types and scales are common in successions of shallow-marine carbonate platforms because sediments there are deposited close to the sea level and therefore are sensitive to any significant physico-chemical changes of environmental factors. Discontinuity surfaces indicate breaks in sedimentation under subaqueous or subaerial conditions. Most discontinuities in shallow-marine carbonate successions are on a bed-scale, and can be determined only by analysis of sedimentologic, diagenetic, taphonomic, and ichnologic features of the rock. The study of small-scale discontinuities has been carried out on two Lower Jurassic successions of the Velebit Mt. Depending upon their common features and environment of formation, three groups of discontinuities are distinguished on simple bedding planes: subaerial exposure surfaces, erosion surfaces, and omission surfaces. The distribution of discontinuity types in both successions is evaluated. Exposure surfaces prevail in both sections, and four units (relatively thin intervals of the sedimentary record) with abundant subaerial exposures are recognized. Dated by biostratigraphy, these units are of earliest Sinemurian, middle Early Sinemurian, earliest Pliensbachian, and late Early Pliensbachian age. Omission surfaces are the least common type of discontinuity. Thickness variations of high-frequency peritidal and shallow subtidal shallowing-upward cycles, highlighted by the Fischer plots show a very similar long-term trend for the two sections. The units with common subaerial exposure surfaces coincide with the falling limb of the Fischer plots and the section with common omission surfaces coincides with the rising limb of the plots. The studied discontinuities are formed by autocyclic and/or allocyclic processes operating on the shallow platform, but the units with abundant subaerial exposures invoke allogenic forcing of the sedimentary record. The use of the units with abundant discontinuities instead of a single surface has proven useful for the correlation of the studied shallow-platform deposits because one type of discontinuity may change laterally into another type or features of different discontinuity types can be superimposed.  相似文献   

11.
In the Late Triassic, an extremely large carbonate platform system (Dachstein-type platforms) developed on the margin of the Neotethys. On the wide inner platform cyclic peritidal, lagoonal successions were deposited. In the Transdanubian Range (Hungary), the lower part of the 1.5–2-km-thick cyclic succession (Upper Tuvalian–mid-Norian) is pervasively dolomitised, the upper part (Upper Norian–Rhaetian) is non-dolomitised; there is a transitional interval between them made up of partially dolomitised cycles. The peritidal–lagoonal cycles are commonly bounded by well-developed disconformity surfaces reflecting subaerial erosion that punctuated the marine carbonate accumulation. Truncation of the cycles was preceded by pervasive cementation of the previously deposited cycle. In the early stage of the platform evolution, tidal flat dolomitisation under semi-arid conditions led to the consolidation of the previously deposited sediments. The truncation surfaces were commonly covered by dolocretes. During the more humid Late Norian–Rhaetian period, the early cementation was followed by karstification, accumulation of wind-blown dust and pedogenesis. Erosion during regularly recurring subaerial exposure that commonly reached the previously deposited subtidal beds suggests eustatic control of the cyclicity and supports the application of an allocyclic model, even if the Milankovitch signal is imperfect.  相似文献   

12.
Uppermost-Tortonian temperate carbonates occur at the southern margin of the Sorbas Basin (Almería, SE Spain). These carbonates, included in the Azagador Member, formed in a gentle, shallow-water ramp. Six facies cycles in ramp deposits comprise alternating bivalve-shell concentrations and coralline algal beds. The basic cycle reflects the landward advance, as relative sea level rose, of coralline algal deposits, which were the facies of the outer ramp, over bivalve biostromes, which grew in the shallower areas of the mid-ramp. Biostromes were mainly built by oysters and locally by Isognomon. In many cases, however, the removal of smaller shells by storms left only thin, discontinuous patches of large bivalves as residual remains of the oyster biostromes. Some original cycles might be missing due to complete removal of bivalve shells from the biostromes. The six cycles recognised, therefore, should be considered as the minimum number of original cycles in the Azagador carbonates. The available age constraints suggest these cycles were forced by orbital precession or some higher-frequency process. Lithological cycles forced by precession are characteristic of the basinal deposits laterally equivalent to the Azagador carbonates.  相似文献   

13.
Based on their lithologic characteristics and stratal geometries, the Middle Cambrian Fasham and Deh-Sufiyan Formations of the lower Mila Group in the Central Alborz, northern Iran, exhibit 39 lithofacies representing several supratidal to deep subtidal facies belts. The siliciclastic successions of the Fasham Formation are divided into two facies associations, suggesting deposition in a tide-dominated, open-mouthed estuarine setting. The mixed, predominantly carbonate successions of the Deh-Sufiyan Formation are grouped into ten facies associations. Four depositional zones are recognized on the Deh-Sufiyan ramp: basinal, outer ramp (deep subtidal associations), mid ramp (shallow subtidal to lower intertidal associations), and inner ramp (shoal and upper intertidal to supratidal associations). These facies associations are arranged in small-scale sedimentary cycles, i.e., peritidal, shallow subtidal, and deep subtidal cycles. These cycles reflect spatial differences in the reaction of the depositional system to small-scale relative sea-level changes. Small-scale cycles are stacked into medium-scale cycles that in turn are building blocks of large-scale cycles. Systematic changes in stacking pattern (cycle thickness, cycle type, and facies proportion) allow to reconstruct long-term changes in sea-level. Six large-scale cycles (S1–S6) have been identified and are interpreted as depositional sequences showing retrogradational (transgressive systems tract) and progradational (highstand systems tract) packages of facies associations. The six depositional sequences provide the basis for inter-regional sequence stratigraphic correlations and have been controlled by eustatic sea-level changes.  相似文献   

14.
Due to a long-term transgression since the Early Cambrian, an extensive shallow-water carbonate platform was developed in the entire Tarim Basin (NW China). During the deposition of the Yingshan Formation (Early-Middle Ordovician), a carbonate ramp system was formed in the intrashelf basin in the Bachu-Keping area of the western basin. Four well-exposed outcrop sections were selected to investigate their depositional facies, cycles, and sequences, as well as the depositional evolution. Detailed facies analyses permit the recognition of three depositional facies associations, including peritidal, semi-restricted subtidal, and open-marine subtidal facies, and eleven types of lithofacies. These are vertically arranged into meter-scale, shallowing-upward peritidal, semi-restricted subtidal, and open-marine subtidal cycles, in the span of Milankovitch frequency bands, suggesting a dominant control of Earth’s orbital forcing on the cyclic sedimentation on the platform. On the basis of vertical facies (or lithofacies) and cycle stacking patterns, as well as accommodation changes illustrated graphically by Fischer plots at all studied sections, six third-order depositional sequences are recognized and consist of lower transgressive and upper regressive parts. In shallow depositional settings, the transgressive packages are dominated by thicker-than-average, shallow subtidal cycles, whereas the regressive parts are mainly represented by thinner-than-average, relatively shallow subtidal to peritidal cycles. In relatively deep environments, however, the transgressive and regressive successions display the opposite trends of cycle stacking patterns, i.e., thinner-than-average subtidal cycles of transgressive packages. Sequence boundaries are mainly characterized by laterally traceable, transitional zones without apparent subaerial exposure features. Good correlation of the long-term changes in accommodation space inferred from vertical facies and cycle stacking patterns with sea-level fluctuations elsewhere around the world suggests an overriding eustatic control on cycle origination, platform building-up and evolution during the Early-Middle Ordovician, although with localized influences of syndepositional faulting and depositional settings.  相似文献   

15.
Summary On the basis of the lithostratigraphy and microscopic characters, the paper describes the facies interpretation of the upper Upper Permian (Changhsingian) and Lower Triassic (Griesbachian to Spathian) carbonates of southwest Japan, with a focus upon the lowermost Triassic (Griesbachian) microbial bindstone-cementstone. We emphasize the significant sediment-binding and stabilizing agencies of microbes chiefly of cyanobacteria along with the syndepositional cementation for the carbonate deposition on a Panthalassan buildup in a period of the Scythian reef gap. Cyanobacteria flourished as postmass extinction disaster forms in the beginning of the Triassic. The Griesbachian microbial bindstone-cementstone we describe comprises the oldest known Triassic microbial facies. Examined were the Changhsingian Mitai Formation and the Triassic Kamura Formation (Griesbachian to Norian) in southwest Japan. These units consist entirely of carbonates and are reconstructed as relict of a shallowmarine buildup upon a seamount in the Panthalassa. The Changhsingian Mitai carbonates (ca. 35 m thick) consist mainly of grainstone and packstone with a small amount of lime-mudstone. The topmost part is intensely dolomitized. The carbonate succession is characterized by an upward-decrease in number and taxonomic diversity of shallow-marine skeletal debris and an increase up-section in an amount of peloidal particles. The lower Mitai rocks are interpreted to have accumulated as skeletal sand in an oxygenated subtidal environment and the upper Mitai carbonates are considered to have been formed in a quiet intertidal environment where peloidal particles predominantly accumulated. The facies interpretation suggests the late Changhsingian regression, which led to an increase of an inhospitable condition for shallow-marine benthic communities and to an intensive dolomitization. The Kamura Formation (ca. 38 m thick) disconformably rests upon the Mitai Formation with a drastic lithologic change. The Lower Triassic rocks we focused reach 15.5 m thick and comprise the Griesbachian and Dienerian to Spathian sections. The lower part (ca. 5.5 m) of the Griesbachian section consists of dark gray carbonaceous limestone composed of thinly layered triplets of a gastropod-bearing peloidal grainstone layer, a spar-cemented frame of clotted peloids, and a thin-laminated and occasionally stromatolitic cover of cryptomicrobial micrite in ascending order. The upper two members of a triplet often form a bindstone-cementstone layer characterized by a low-relief domed structure, or a broad hump. The upper part (ca. 2 m thick) of the Griesbachian section is composed of oncolitic limestone that contains laminae packed with gastropods. The Dienerian to Spathian section (ca. 8 m thick) consists of coquinites comprising an explosive flourish and accumulation of pectinacean bivalves. We interpret the Griesbachian rocks to have accumulated in a stagnant, ecologically rigorous tidal flat, where microbes, of possible cyanobacteria, flourished. The flourish of gastropods reflects an intermittent inundation by spring tide into the peritidal environment. The deposition of gastropods was followed by a dominant cyanobacterial activity that formed a microbial bindstone-cementstone layer along with the syndepositional cementation in an intertidal zone. The cyanobacterial activity contributed to the formation of gently undulated, sediment-binding and stabilizing mats. The oncolitic limestone in the upper part of the Griesbachian section also suggests the cyanobacterial, or algal activity. The Griesbachian microbial-controlled sedimentation was followed by the mass accumulation of bivalves that most possibly reflects a rapid transgression in Dienerian time. All the results permit us to conclude that possible cyanobacteria were the significant rock-forming organisms as post-mass extinction disaster forms on a panthalassan buildup in the beginning of the Scythian reef gap. The Griesbachian carbonates here described are similar in having the important microbial control on the sedimentation to the Lower Triassic stromatolitic and thrombolitic carbonates previously known in the Tethyan platform.  相似文献   

16.
We present a comprehensive facies scheme for west-central Jordan platform deposits of upper Albian to Turonian age, discuss Cenomanian and Turonian carbonate cycles, and reconstruct the paleogeographic evolution of the platform. Comparisons with adjacent shelf areas (Israel, Sinai) emphasize local characteristics as well as the regional platform development. Platform deposits are subdivided into fifteen microfacies types that define eight environments of deposition of three facies belts. Main facies differences between Cenomanian and Turonian platforms are: rudist-bearing packstones that characterise the higher-energy shallow subtidal (transition zone) during the Cenomanian, and fossiliferous (commonly with diverse foraminifer assemblages) wackestones and packstones of an open shallow subtidal environment. On Turonian platforms high-energy environments are predominantly characterised by oolithic or bioclastic grainstones and packstones, whereas peritidal facies are indicated by dolomitic wackestones with thin, wavy (cryptmicrobial) lamination. Rhythmic facies changes define peritidal or subtidal shallowing-up carbonate cycles in several Cenomanian and Turonian platform intervals. Cyclicities are also analysed on the base of accommodation plots (Fischer Plots). High-frequency accommodation changes within lower Cenomanian cyclic bedded limestones of the central and southern area exhibit two major cyclic sets (set I and II) each containing regionally comparable peaks. Accommodation patterns within cyclic set II coincide with the sequence boundary zone of CeJo1. The lateral and vertical facies distributions on the inner shelf allow the reconstruction of paleogeographic conditions during five time intervals (Interval A to E). An increased subsidence is assumed for the central study area, locally (area of Wadi Al Karak) persisting from middle Cenomanian to middle Turonian times. In contrast, inversion and the development of a paleo-high have been postulated for an adjacent area (Wadi Mujib) during late Cenomanian to early Turonian times, while small-scale sub-basins with an occasionally dysoxic facies developed northwards and further south during this time interval. A connection between these structural elements in Jordan with basins and uplift areas in Egypt and Israel during equivalent time intervals is assumed. This emphasises the mostly concordant development of that Levant Platform segment.  相似文献   

17.
Detailed core observation of the Akiyoshi Limestone, Southwest Japan, reveals a sequence boundary and related sedimentary and diagenetic facies formed on a late Murgabian (Middle Permian) mid-oceanic carbonate platform. The sequence boundary lies upon karstified bioclastic grainstone and is overlain by peritidal lime- and dolo-mudstone. The karstified bioclastic grainstone, which had been affected by subaerial exposure and early diagenetic processes, is characterized by crystal silts, prismatic, bladed and dogtooth cements, blackened limestone features, and alveolar textures. The overlying peritidal lime- and dolo-mudstone is 8 m thick and exhibits fenestrae, fissures, laminations, black pebbles, and low-diversity biota composed exclusively of ostracodes and calcispherids. The sequence boundary almost coincides with a major fusulinoidean biostratigraphic boundary. A sea-level fall in the late Murgabian resulted in a biotic turnover and formed the sequence boundary and the karst textures. The following relatively slow transgression resulted in the deposition of the thick transgressive peritidal unit.  相似文献   

18.
The Upper Cretaceous succession in the Madenli area (western Central Taurides, Southern Turkey) consists of platform carbonate rocks deposited in entirely peritidal environments, which are sensitive to sea level changes driven by global eustasy, but also strongly affected by local and regional tectonics. It includes economically important bauxite deposits. Previous works suggest different ages for bauxite formation ranging from the Albian to the Santonian. Benthic foraminiferal biostratigraphy and facies analysis of the Madenli and Doğankuzu outcrop sections allow for a more precise dating of the platform emersion periods. The footwall limestones of the bauxite deposits consist of well-bedded limestones (Unit-1), which contain a benthic foraminiferal assemblage (BFA) including mainly Biconcava bentori and Pastrikella biplana, Chrysalidina gradata (BFA I), assigned to the middle-upper Cenomanian. In the Madenli section, the first bauxite deposit occurs in the upper part of Unit-1 as a layer interbedded with pinkish sparitic and dolomitic beds (subunit-1a) deposited in supratidal environment. Subunit-1a is stratigraphically equivalent to the Doğankuzu and Mortaş bauxite deposits considered as karst-related, unconformity-type deposits. The hanging-wall limestones of the bauxite are represented by the massive limestones (Unit-2) starting locally with either the upper Cenomanian characterized mainly by the presence of Pseudolituonella reicheli or upper Campanian comprising mainly Murciella cuvillieri and Moncharmontia apenninica (BFA II). There is no field evidence of a discontinuity surface at the contact between the lower part of Unit-2, including BFA I, and the upper part of Unit-2, including BFA II. This contact is defined as a paraconformity indicating a stratigraphic gap from the Turonian to the early Campanian. The top of Unit-2 is truncated by another discontinuity surface associated with a minor bauxite deposit. The overlying Unit-3 is characterized by well-bedded, rudist-bearing limestones topped by laminated and dolomitized limestones organized in shallowing upward cycles. It is assigned to the upper Maastrichtian based on the presence of Rhapydionina liburnica (BFA III) and rudist assemblage. A third emersion period of the platform corresponds to the early Maastrichtian.  相似文献   

19.
The Upper Ordovician (late Whiterockian to Mohawkian) Lourdes Formation represents a narrow (tens of kilometers), short-lived [∼5–7 million years (my)], open-ocean (high-energy) mixed siliciclastic-carbonate ramp that onlapped allochthonous strata along the orogen side of the local Taconic foreland basin. Platform development followed a 6–8 my hiatus during which weathering had concentrated chemically mature siliciclastics that were admixed with initial carbonate sediments. A cross-platform facies gradient contains paleokarst and peritidal carbonates and sandstones, shallow-ramp carbonate bioherms and skeletal shoals, and deeper ramp calcareous shales. Transgressive systems tracts are marked by ramp-wide sheets and shoals of skeletal grainstone and low accumulation rates, and highstand systems tracts are marked by significant admixture and interbedding of siliciclastics with cross-ramp carbonate facies. Platform demise coincides with increased siliciclastic input, which is likely tectonically influenced. The Lourdes platform is equivalent to epicontinental foreland ramps along eastern Laurentia, but its narrower width precluded formation of oceanographically restricted platform-interior facies.  相似文献   

20.
In the Central Lombardy Basin (Southern Alps) Anisian carbonate platform marginal facies yielding the first documented occurrence of coral colonies in this area of the Western Tethys has been recognized. These marginal facies identify the east-west transition between two sectors with a different Anisian evolution. West of the recognized marginal facies the Anisian succession is characterised by subtidal bioturbated limestones passing upward to peritidal dolostones, whereas toward the east a thicker succession of subtidal facies persist until the end of the Anisian. The margin belt develops at the passage between a more subsiding eastern portion and a less subsiding one toward the west. The different facies and thickness of the Anisian succession east and west of the marginal facies is indicative of syndepositional tectonics. The transition from subtidal to peritidal facies in the western sector is ascribed to a sea-level fall that favoured the onsetting of peritidal facies on the less subsiding block and of marginal facies on its border. The occurrence of a N-S trending syndepositional Anisian fault system could also explain the scarce progradational evolution of the margin facies, prevented both by the paleobathymetric setting and by the scarce productivity of the Anisian marginal communities. The presence, in the Anisian marginal facies, of crinoids and corals (together with the occurrence of one of the oldest specimen of coralline red algae) outlines the return to normal marine conditions and documents the recovery of the carbonate platform marginal faunal association after the Permo-Triassic crisis in the Western Southern Alps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号