首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Genetic dissection of susceptibility to radiation-induced apoptosis of thymocytes was performed by counting dead cells in histologically processed thymuses after 0.5 Gy of whole-body X-irradiation, using recombinant congenic (CcS/Dem) strains derived from inbred mouse strains BALB/cHeA (susceptible) and STS/A (resistant). A high (8/20) number of strains with lower dead cell scores than BALB/cHeA among CcS/ Dem recombinant congenic strains (RCS), which contain 12.5% of STS/A genome in the genetic background of BALB/cHeA strain, indicates that the difference between BALB/cHeA and STS/A is caused by several genes and that susceptibility probably requires BALB/ cHeA alleles at more than one locus. Similar results were obtained with CXS/Hg recombinant inbred (CXS/ Hg) strains. Analysis of F2 hybrids between BALB/ cHeA and CcS-7, one of the CcS/Dem strains that showed lower dead cell scores than BALB/cHeA, demonstrated that a novel gene (Rapop1, radiation-induced apoptosis 1) controlling susceptibility to radiation-induced apoptosis in the thymus is located in the proximal region of mouse chromosome 16.  相似文献   

2.
The strain distribution pattern of susceptibility to thymocyte apoptosis induced by ionizing radiation in 20 CcS/Dem recombinant congenic (RC) strains derived from the strains BALB/cHeA (susceptible) and STS/A (resistant) indicates that this trait is controlled by several genes. Recently, we mapped a novel apoptosis susceptibility gene Rapop1 (radiation-induced apoptosis 1) to chromosome 16 (N. Mori et al., 1995, Genomics 25: 604-614). In the present study, the analysis of F2 crosses between the resistant RC strain CcS-8 and the susceptible strain BALB/cHeA or the highly susceptible RC strain CcS-10 demonstrated two additional apoptosis susceptibility genes, Rapop2 and Rapop3, located in the proximal region of chromosome 9 and the telomeric region of chromosome 3, respectively. The possible candidate genes for these loci are discussed.  相似文献   

3.
Genetic predisposition controlled by susceptibility quantitative trait loci (QTLs) contributes to a large proportion of common cancers. Studies of genetics of cancer susceptibility, however, did not address systematically the relationship between susceptibility to cancers in different organs. We present five sets of data on genetic architecture of colon and lung cancer susceptibility in mice, humans and rats. They collectively show that the majority of genes for colon and lung cancer susceptibility are linked pair-wise and are likely identical or related. Four CcS/Dem recombinant congenic strains, each differing from strain BALB/cHeA by a different small random subset of ±12.5% of genes received from strain STS/A, suggestively show either extreme susceptibility or extreme resistance for both colon and lung tumors, which is unlikely if the two tumors were controlled by independent susceptibility genes. Indeed, susceptibility to lung cancer (Sluc) loci underlying the extreme susceptibility or resistance of such CcS/Dem strains, mapped in 226 (CcS-10 x CcS-19)F2 mice, co-localize with susceptibility to colon cancer (Scc) loci. Analysis of additional Sluc loci that were mapped in OcB/Dem strains and Scc loci in CcS/Dem strains, respectively, shows their widespread pair-wise co-localization (P = 0.0036). Finally, the majority of published human and rat colon cancer susceptibility genes map to chromosomal regions homologous to mouse Sluc loci. 12/12 mouse Scc loci, 9/11 human and 5/7 rat colon cancer susceptibility loci are close to a Sluc locus or its homologous site, forming 21 clusters of lung and colon cancer susceptibility genes from one, two or three species. Our data shows that cancer susceptibility QTLs can have much broader biological effects than presently appreciated. It also demonstrates the power of mouse genetics to predict human susceptibility genes. Comparison of molecular mechanisms of susceptibility genes that are organ-specific and those with trans-organ effects can provide a new dimension in understanding individual cancer susceptibility.  相似文献   

4.
 The strains BALB/cHeA (BALB/c) and STS/A (STS) differ in production of IL-4 and IL-10, two Th2 cytokines, after stimulation of spleen cells with Concanavalin A, STS being a low and BALB/c a high producer. We analyzed the genetic basis of this strain difference using the recombinant congenic (RC) strains of the BALB/c-c-STS/Dem (CcS/Dem) series. This series comprises 20 homozygous strains. Each CcS/Dem strain contains a different, random set of approximately 12.5% genes of the "donor" strain STS and approximately 87.5% of the "background" strain BALB/c. We selected for further analysis the RC strain production intermediate between BALB/c and STS. In (CcS-20×BALB/c)F2 hybrids we found that different loci control expression of IL-4 and IL-10. Cypr1 (cytokine production 1) on chromosome 16 near D16Mit15 controls IL-4 production, whereas the production of IL-10 is influenced by loci Cypr2 near D1Mit14 and D1Mit227 on chromosome 1 and Cypr3 marked by D5Mit20 on chromosome 5. In addition, the relationship between the level of these two cytokines depends on the genotype of the F2 hybrids at a locus cora1 (correlation 1) on chromosome 5. This differential genetic regulation may be relevant for the understanding of biological effects of T-helper cells in mice of different genotypes. Received: 2 March 1998 / Revised: 8 June 1998  相似文献   

5.
Lymphocytes of mouse strains BALB/cHeA (BALB/c) and STS/A (STS) differ in their response to CD3 antibody (anti-CD3). We analyzed the genetic basis of this strain difference, using the Recombinant Congenic Strains (RCS) of the BALB/c-c-STS/Dem (CcS/Dem) series. Each of the 20 CcS/Dem strains carries a different, random combination of 12.5% genes from the nonresponding strain STS and 87.5% genes of the intermediate responder strain BALB/c. Differences in the magnitude of anti-CD3-induced response among CcS/Dem strains indicated that in addition to Fcγ receptor 2 (Fcgr2) other genes are involved in the control of this response as well, and we have already mapped loci Tria1 (T cell receptor-induced activation 1), Tria2, and Tria3. In order to map additional Tria genes, we tested F2 hybrids between the high responder RC strain CcS-9 and the low responder strain CcS-11. Proliferation in complete RPMI medium without anti-CD3 is controlled by locus Sprol1 (spontaneous proliferation 1) linked to the marker D4Mit23 on Chr 4. At concentration 0.375 μg/ml anti-CD3 mAb, the response was controlled by a locus Tria4, which maps to the marker D7Mit32 on Chr 7. The response to the higher concentration of mAb, 3 μg/ml, was controlled by Tria5, which mapped to the marker D9Mit15 on Chr 9. Anti-CD3 is being used for modulation of lymphocyte functions in transplantation reactions and in cancer treatment. Study of mechanisms of action of different Tria loci could lead to better understanding of genetic regulation of these reactions. Received: 28 October 1998 / Accepted: 17 March 1999  相似文献   

6.
T lymphocytes of the strain BALB/cHeA exhibit a low proliferative response to IL-2 and a high response to the anti-CD3 monoclonal antibodies, while the strain STS/A lymphocyte response to these stimuli is the opposite. We analyzed the genetic basis of this strain difference, using a novel genetic tool: the recombinant congenic strains (RCS). Twenty BALB/c-c-STS/Dem (CcS/Dem) RCS were used, each containing a different random set of approximately 12.5% of the genes from STS and the remainder from BALB/c. Consequently, the genes participating in the multigenic control of a phenotypic difference between BALB/c and STS become separated into different CcS strains where they can be studied individually. The strain distribution patterns of the proliferative responses to IL-2 and anti-CD3 in the CcS strains are different, showing that different genes are involved. The large differences between individual CcS strains in response to IL-2 or anti-CD3 indicate that both reactions are controlled by a limited number of genes with a relatively large effect. The high proliferative response to IL-2 is a dominant characteristic. It is not caused by a larger major cell subset size, nor by a higher level of IL-2R expression. The response to anti-CD3 is known to be controlled by polymorphism in Fc receptor 2 (Fcgr2) and the CcS strains carrying the low responder Fcgr2 allele indeed responded weakly. However, as these strains do respond to immobilized anti-CD3, while the STS strain does not, and as some CcS strains with the BALB/c allele of Fcgr2 are also low responders, additional gene(s) of the STS strain strongly depress the anti-CD3 response. In a backcross between the high responder and the low responder strains CcS-9 and CcS-11, one of these unknown genes was mapped to the chromosome 10 near D10Mit14. The CcS mouse strains which carry the STS alleles of genes controlling the proliferative response to IL-2 and anti-CD3 allow the future mapping, cloning, and functional analysis of these genes and the study of their biological effects in vivo.  相似文献   

7.
The inbred strain STS/A exhibits a higher proliferative response in the mixed lymphocyte culture (MLC) to stimulator cells of all 11 tested inbred mouse strains with 10 different major histocompatibility complex (MHC) haplotypes, as well as to stimulation with IL-2 than does the strain BALB/cHeA. However, alloantigen-stimulated BALB/c cells produce more IL-2 than STS/A cells. To study the genetic basis of these differences, we used 20 recombinant congenic strains (RCS) of the CcS/Dem series. Each of these CcS/Dem RC strains contains a different subset of about 12.5% of genes from the STS/A strain and the remaining approximately 87.5% of BALB/c origin genes. As a result the multiple non-linked genes responsible for phenotypic differences between BALB/c and STS/A became separated into different CcS/Dem strains. The strain distribution pattern (SDP) of high or low MLC response of individual CcS/Dem strains to stimulator cells of four different strains was almost identical, indicating that differences in responsiveness, rather than the alloantigenic difference itself, determine the magnitude of the response, and that the responsiveness to different alloantigens is largely controlled by the same genes. The SDP of IL-2 stimulation was different from that of MLC responsiveness. The differences in the proliferative responses observed among individual CcS/Dem strains were not due to differences in numbers of CD3+, CD4+ or CD8+ cells or to the observed differences in IL-2 production, and hence they likely reflect genetically determined intrinsic properties of T cells. These results show that a set of non-linked genes controls proliferative responses in MLC irrespective of the MHC haplotype of the stimulator cells, and that stimulation with IL-2 and production of IL-2 are controlled by different subsets of genes. Since the genomes of all RCS are extensively characterized by microsatellite markers, they can be used to map the genes controlling proliferative responsiveness to stimulation with alloantigens and IL-2.  相似文献   

8.
The development of tumors in mice is under multigenic control, but, in spite of considerable efforts, the identification of the genes involved has so far been unsuccessful, because of the insufficient resolution power of the available genetic tools. Therefore, a novel genetic tool, the RC (Recombinant Congenic) strains system, was designed. In this system, a series of RC strains is produced from two inbred strains, a background strain and a donor strain. Each RC strain contains a different small subset of genes from the donor strain and the majority of genes from the background strain. As a consequence, the individual genes of the donor strain which are involved in the genetic control of a multigenic trait, become separated into different RC strains, where they can be identified and studied individually. One of the RC strains series which we produced is made from the parental strains BALB/cHeA (background strain) and STS/A (donor strain). We describe the genetic composition of this BALB/cHeA-C-STS/A (CcS/Dem) series and show, using 45 genetic autosomal markers, that it does not deviate from the theoretical expectation. We studied the usefulness of the CcS/Dem RC strains for analysis of the genetics of colon tumor development. The two parental strains, BALB/cHeA and STS/A, are relatively resistant and highly susceptible, respectively, to the induction of colon tumors by 1,2-dimethylhydrazine (DMH). The individual RC strains differ widely in colon tumor development after DMH treatment; some are highly susceptible, while others are very resistant. This indicates that a limited number of genes with a major effect are responsible for the high susceptibility of the STS strain. Consequently, these genes can be mapped by further analysis of the susceptible RC strains. The differences between the RC strains were not limited to the number of tumors, but the RC strains differed also in size of the tumors and the relative susceptibility of the two sexes. Our data indicate that the number of tumors and the size of tumors are not controlled by the same genes. The genetics of these different aspects of colon tumorigenesis can also be studied by the RC strains. The DMH-treated mice of the parental strains and the RC strains also developed anal tumors and haemangiomas in varying numbers. The strain distribution pattern (SDP) of susceptibility for each of the three types of tumors induced by DMH is different, indicating that development of these tumors is under control of different, largely non-overlapping, sets of genes. Thus, with a single series of RC strains, genes involved in tumorigenesis in various organs and tissues can be studied separately. These results indicate that the novel genetic tool, the RC strain system, offers new possibilities for analysis of the multigenic control of tumor development.  相似文献   

9.

Background

Trypanosoma brucei brucei infects livestock, with severe effects in horses and dogs. Mouse strains differ greatly in susceptibility to this parasite. However, no genes controlling these differences were mapped.

Methods

We studied the genetic control of survival after T. b. brucei infection using recombinant congenic (RC) strains, which have a high mapping power. Each RC strain of BALB/c-c-STS/A (CcS/Dem) series contains a different random subset of 12.5% genes from the parental “donor” strain STS/A and 87.5% genes from the “background” strain BALB/c. Although BALB/c and STS/A mice are similarly susceptible to T. b. brucei, the RC strain CcS-11 is more susceptible than either of them. We analyzed genetics of survival in T. b. brucei-infected F2 hybrids between BALB/c and CcS-11. CcS-11 strain carries STS-derived segments on eight chromosomes. They were genotyped in the F2 hybrid mice and their linkage with survival was tested by analysis of variance.

Results

We mapped four Tbbr (Trypanosoma brucei brucei response) loci that influence survival after T. b. brucei infection. Tbbr1 (chromosome 3) and Tbbr2 (chromosome 12) have effects on survival independent of inter-genic interactions (main effects). Tbbr3 (chromosome 7) influences survival in interaction with Tbbr4 (chromosome 19). Tbbr2 is located on a segment 2.15 Mb short that contains only 26 genes.

Conclusion

This study presents the first identification of chromosomal loci controlling susceptibility to T. b. brucei infection. While mapping in F2 hybrids of inbred strains usually has a precision of 40–80 Mb, in RC strains we mapped Tbbr2 to a 2.15 Mb segment containing only 26 genes, which will enable an effective search for the candidate gene. Definition of susceptibility genes will improve the understanding of pathways and genetic diversity underlying the disease and may result in new strategies to overcome the active subversion of the immune system by T. b. brucei.  相似文献   

10.
Weil MM  Xia C  Xia X  Gu X  Amos CI  Mason KA 《Genomics》2001,72(1):73-77
Jejunal crypt cells undergo apoptosis in response to ionizing radiation exposure. In mice the number of cells deleted by apoptosis is determined by several factors including the dose of radiation, the time of day the apoptosis level is quantified, and the strain of mouse irradiated. We previously found that the difference in radiation-induced apoptosis levels between C57BL/6J (B6) and C3Hf/Kam (C3H) mice is controlled by multiple genes, and this set of genes is distinct from that controlling thymocyte apoptosis levels in the same strain combination. Here, we report that a new quantitative trait locus on chromosome 15, Rapop5, partly accounts for the murine strain difference in susceptibility to radiation-induced jejunal crypt cell apoptosis. In addition, we show sexual dimorphism in the extent of radiation-induced jejunal crypt cell apoptosis, with female mice having higher levels.  相似文献   

11.

Background

Sex influences susceptibility to many infectious diseases, including some manifestations of leishmaniasis. The disease is caused by parasites that enter to the skin and can spread to the lymph nodes, spleen, liver, bone marrow, and sometimes lungs. Parasites induce host defenses including cell infiltration, leading to protective or ineffective inflammation. These responses are often influenced by host genotype and sex. We analyzed the role of sex in the impact of specific gene loci on eosinophil infiltration and its functional relevance.

Methods

We studied the genetic control of infiltration of eosinophils into the inguinal lymph nodes after 8 weeks of Leishmania major infection using mouse strains BALB/c, STS, and recombinant congenic strains CcS-1,-3,-4,-5,-7,-9,-11,-12,-15,-16,-18, and -20, each of which contains a different random set of 12.5% genes from the parental “donor” strain STS and 87.5% genes from the “background” strain BALB/c. Numbers of eosinophils were counted in hematoxylin-eosin-stained sections of the inguinal lymph nodes under a light microscope. Parasite load was determined using PCR-ELISA.

Results

The lymph nodes of resistant STS and susceptible BALB/c mice contained very low and intermediate numbers of eosinophils, respectively. Unexpectedly, eosinophil infiltration in strain CcS-9 exceeded that in BALB/c and STS and was higher in males than in females. We searched for genes controlling high eosinophil infiltration in CcS-9 mice by linkage analysis in F2 hybrids between BALB/c and CcS-9 and detected four loci controlling eosinophil numbers. Lmr14 (chromosome 2) and Lmr25 (chromosome 5) operate independently from other genes (main effects). Lmr14 functions only in males, the effect of Lmr25 is sex independent. Lmr15 (chromosome 11) and Lmr26 (chromosome 9) operate in cooperation (non-additive interaction) with each other. This interaction was significant in males only, but sex-marker interaction was not significant. Eosinophil infiltration was positively correlated with parasite load in lymph nodes of F2 hybrids in males, but not in females.

Conclusions

We demonstrated a strong influence of sex on numbers of eosinophils in the lymph nodes after L. major infection and present the first identification of sex-dependent autosomal loci controlling eosinophilic infiltration. The positive correlation between eosinophil infiltration and parasite load in males suggests that this sex-dependent eosinophilic infiltration reflects ineffective inflammation.
  相似文献   

12.

Background

Leishmaniasis is a disease caused by protozoan parasites of genus Leishmania. The frequent involvement of Leishmania tropica in human leishmaniasis has been recognized only recently. Similarly as L. major, L. tropica causes cutaneous leishmaniasis in humans, but can also visceralize and cause systemic illness. The relationship between the host genotype and disease manifestations is poorly understood because there were no suitable animal models.

Methods

We studied susceptibility to L. tropica, using BALB/c-c-STS/A (CcS/Dem) recombinant congenic (RC) strains, which differ greatly in susceptibility to L. major. Mice were infected with L. tropica and skin lesions, cytokine and chemokine levels in serum, and parasite numbers in organs were measured.

Principal Findings

Females of BALB/c and several RC strains developed skin lesions. In some strains parasites visceralized and were detected in spleen and liver. Importantly, the strain distribution pattern of symptoms caused by L. tropica was different from that observed after L. major infection. Moreover, sex differently influenced infection with L. tropica and L. major. L. major-infected males exhibited either higher or similar skin pathology as females, whereas L. tropica-infected females were more susceptible than males. The majority of L. tropica-infected strains exhibited increased levels of chemokines CCL2, CCL3 and CCL5. CcS-16 females, which developed the largest lesions, exhibited a unique systemic chemokine reaction, characterized by additional transient early peaks of CCL3 and CCL5, which were not present in CcS-16 males nor in any other strain.

Conclusion

Comparison of L. tropica and L. major infections indicates that the strain patterns of response are species-specific, with different sex effects and largely different host susceptibility genes.  相似文献   

13.

Background

L. tropica can cause both cutaneous and visceral leishmaniasis in humans. Although the L. tropica-induced cutaneous disease has been long known, its potential to visceralize in humans was recognized only recently. As nothing is known about the genetics of host responses to this infection and their clinical impact, we developed an informative animal model. We described previously that the recombinant congenic strain CcS-16 carrying 12.5% genes from the resistant parental strain STS/A and 87.5% genes from the susceptible strain BALB/c is more susceptible to L. tropica than BALB/c. We used these strains to map and functionally characterize the gene-loci regulating the immune responses and pathology.

Methods

We analyzed genetics of response to L. tropica in infected F2 hybrids between BALB/c×CcS-16. CcS-16 strain carries STS-derived segments on nine chromosomes. We genotyped these segments in the F2 hybrid mice and tested their linkage with pathological changes and systemic immune responses.

Principal Findings

We mapped 8 Ltr (Leishmania tropica response) loci. Four loci (Ltr2, Ltr3, Ltr6 and Ltr8) exhibit independent responses to L. tropica, while Ltr1, Ltr4, Ltr5 and Ltr7 were detected only in gene-gene interactions with other Ltr loci. Ltr3 exhibits the recently discovered phenomenon of transgenerational parental effect on parasite numbers in spleen. The most precise mapping (4.07 Mb) was achieved for Ltr1 (chr.2), which controls parasite numbers in lymph nodes. Five Ltr loci co-localize with loci controlling susceptibility to L. major, three are likely L. tropica specific. Individual Ltr loci affect different subsets of responses, exhibit organ specific effects and a separate control of parasite load and organ pathology.

Conclusion

We present the first identification of genetic loci controlling susceptibility to L. tropica. The different combinations of alleles controlling various symptoms of the disease likely co-determine different manifestations of disease induced by the same pathogen in individual mice.  相似文献   

14.
A new strain of mice with cataracts was developed in BALB/cHeA and STS/A recombinant inbred strain, CXS4 (D). In this study the mapping of spontaneous autosomal recessive cataract mutation is described. This mutation was characterized by ruptures of the lens nucleus, vitreous chamber through the posterior capsule, and the vacuolization of the lens. For the linkage analysis, we produced two kinds of backcross progenies, (BALB/cHeA × D)F1 and (STS/A × D)F1 females crossed to D male mice. The gene (lr2, lens rupture2) was mapped to the central part of Chromosome(Chr) 14, 0.7 ± 0.7cM from the micosatellite marker D14Mit28. Received: 13 October 1996 / Accepted: 22 July 1997  相似文献   

15.
Low infiltration of lymphocytes into cancers is associated with poor prognosis, but the reasons why some patients exhibit a low and others a high infiltration of tumors are unknown. Previously we mapped four loci (Lynf1–Lynf4) controlling lymphocyte infiltration of mouse lung tumors. These loci do not encode any of the molecules that are involved in traffic of lymphocytes. Here we report a genetic relationship between these loci and the control of production of IFNγ in allogeneic mixed lymphocyte cultures (MLC). We found that IFNγ production by lymphocytes of O20/A mice is lower than by lymphocytes of OcB-9/Dem mice (both H2 pz ) stimulated in MLC by irradiated splenocytes of C57BL/10SnPh (H2 b ) or BALB/cHeA (H2 d ) mice, or by ConA. IFNγ production in MLCs of individual (O20 × OcB-9)F2 mice stimulated by irradiated C57BL/10 splenocytes and genotyped for microsatellite markers revealed four IFNγ-controlling loci (Cypr4-Cypr7), each of which is closely linked with one of the four Lynf loci and with a cluster of susceptibility genes for different tumors. This suggests that inherited differences in certain lymphocyte responses may modify their propensity to infiltrate tumors and their capacity to affect tumor growth.  相似文献   

16.
One-week dextran sulfate treatment of conventional (CV) immunodeficient (SCID) mice gave rise to acute colitis in the colon mucosa; germ-free (GF) SCID mice did not exhibit any changes in colon morphology. Dextran sulfate application to CV immunocompetent (BALB/c) mice did induce substantial changes in the colon mucosa (grade4); GF BALB/c mice showed mild changes in the colon morphology (grade1) only. GF SCID mice and CV SCID mice died during the second round of dextran sulfate treatment suffering from chronic colitis; GF BALB/c mice exhibited mild crypt distortion while CV BALB/c mice showed a complete loss of the surface epithelium (grade4), accompanied by T and B lymphocyte infiltration.  相似文献   

17.
We explore the potential for the biologically based two-stage clonal expansion model to make statements about the influence of genetic factors on the steps in the model. We find evidence that the different susceptibility of BALB/C and CBA/Ca mice to bone cancer after 227Thorium injection may be mostly due to different promotional responses to radiation. In BALB/C × CBA/Ca back-crossed mice, we analyzed the specific contribution of two individual loci in the carcinogenic process. This analysis suggests that the two high- or low-risk alleles are acting on promotion or on the background parameters, but not on radiation-induced initiation. Taken together with the comparison of CBA/Ca and BALB/C mice, this hints at the possibility that the two loci are candidates for modifying radiation-induced promotion.  相似文献   

18.
Recombinant congenic strains (RCS) constitute a set of inbred strains which are designed to dissect the genetic control of multigenic traits, such as tumour susceptibility or disease resistance. Each RCS contains a small fraction of the genome of a common donor strain, while the majority of genes stem from a common background strain. We tested at two stages of the inbreeding process in 20 RCS, derived from BALB/cHeA and STS/A, to see whether alleles from the STS/A donor strain are distributed over the RCS in a ratio as would theoretically be expected. Four marker genes (Pep-3; Pgm-1; Gpi-1 and Es-3) located at 4 different chromosomes were selected and the allelic distribution was tested after 3-4 and after 12 generations of inbreeding. The data obtained do not significantly deviate from the expected pattern, thus supporting the validity of the concept of RCS.  相似文献   

19.
Systematic assessment of the role of host genes in clinico-pathological and immunological manifestations of Leishmania major-induced disease in mice was performed using 20 recombinant congenic (RC) strains. As the RC strains are homozygous and each carries a different, random set of 12.5% genes from the resistant strain, STS/A, and 87.5% genes from the susceptible strain, BALB/cHeA, they allowed us to study the pathological and immunological characteristics of infected hosts in 20 fixed different random combinations of BALB/c and STS genes. The 20 RC strains differ widely in expression of different symptoms of disease and in immunological characteristics. Disease or healing in different strains occurred in association with different components of immune response -- with the exception of a frequently occurring correlation between the disease and IgE levels. Moreover, some parameters of the immune response were highly correlated in some strains but not at all in others. This shows that several patterns of the immune response may be associated with the same clinical outcome, depending on the host genotype. Our data also suggest that despite the complexity of regulation, when a sufficient number of controlling loci is known, the prediction of a phenotype is possible. Combining functional and clinical information with multilocus genotyping may improve our ability to predict the progression of the disease and to optimize the treatment.  相似文献   

20.
Inherited predisposition to lung cancer is a phenotypic trait shared by different mouse inbred strains that show either a high or an intermediate predisposition. Other strains are instead genetically resistant. The Pas1 locus is the major determinant of lung cancer predisposition in the A/J strain (Gariboldi et al. 1993). To define the determinants of susceptibility to lung tumorigenesis in the highly susceptible SWR/J and in the intermediately susceptible BALB/c mice, we analyzed (BALB/c × SWR/J)F2 and (BALB/c × C3H/He)F2 crosses by genetic linkage experiments. The present results provide unequivocal evidence that the same Pas1/+ allele that leads to lung cancer predisposition is shared by A/J, SWR/J, and BALB/c strains. The intermediate susceptibility of the BALB/c strain would result by interaction of Pas1 locus with lung cancer resistance loci. Received: 18 April 1997 / Accepted: 15 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号