首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Rose-scented geranium (Pelargonium sp.) is a valuable monoterpene-yielding plant. It has been well characterised phytochemically through the isolation of >270 secondary metabolites, however, there is hardly any biochemical or metabolic information concerning this plant. Initial attempts to investigate its metabolism failed to produce any enzyme activity in the tissue extracts prepared in routine extraction buffers owing to the intrinsic properties of the tissue matrix. It was recognised that cellular hyper-acidity (cell sap pH approximately 3.0) gave rise to very low protein levels in the extracts, thus prohibiting detection of activities of even primary metabolic enzymes that are usually abundantly present in plants. Tissue extraction in Tris solution without pH adjustment (as used for studies involving citrus and banana) led to little or no improvement. Therefore, a novel approach using sodium carbonate solution as an efficient extraction system for enzymes and proteins from the plant was studied. Functionality of the carbonate extraction has been demonstrated through its effectiveness, a several-fold superior performance, in yielding protein, monitoring primary metabolism and secondary metabolic enzymes, and isozymic and polypeptide profiling. The process may also be helpful in the reliable analysis of other acidic plant tissues.  相似文献   

3.
4.
5.
Plants display an immense diversity of specialized metabolites, many of which have been important to humanity as medicines, flavors, fragrances, pigments, insecticides and other fine chemicals. Apparently, much of the variation in plant specialized metabolism evolved through events of gene duplications followed by neo- or sub-functionalization. Most of the catalytic diversity of plant enzymes is unexplored since previous biochemical and genomics efforts have focused on a relatively small number of species. Interdisciplinary research in plant genomics, microbial engineering and synthetic biology provides an opportunity to accelerate the discovery of new enzymes. The massive identification, characterization and cataloguing of plant enzymes coupled with their deployment in metabolically optimized microbes provide a high-throughput functional genomics tool and a novel strain engineering pipeline.  相似文献   

6.
L C Vining 《Gene》1992,115(1-2):135-140
Evidence now being obtained through nucleotide (nt) sequence analysis supports the concept that secondary metabolism has arisen by modification of existing primary metabolic reactions. Although amino acid sequence identity deduced from nt sequences of genes encoding proteins from related primary and secondary metabolic pathways is sufficient to indicate a common ancestry, the match is often better when genes in different rather than in the same species are compared. The information so far available suggests that gene transfer between organisms has been an important factor in the evolution of secondary metabolism. Many secondary pathways may be of relatively ancient origin and they may have arisen only infrequently. Much subsequent elaboration of the pathways has probably taken place after their acquisition by other species and so has been influenced by a variety of selective conditions. The characteristic diversity of secondary metabolites and their functions can be accounted for by the random manner in which the pathways initially evolved and have subsequently been exploited.  相似文献   

7.
Metabolic profiling and biochemical phenotyping of plant systems   总被引:1,自引:0,他引:1  
Over the last two decades incredible progress has been made in the development of technologies to both create and characterise genetic diversity. In plant systems, the development of knockout populations, transposon insertions and chemical mutagenesis programs has facilitated the generation of an enormous base of diversity. During this period, the elucidation of complete genomes and the rapid development of tools to describe the expression of genes and the protein complement have also been achieved. To complement such studies, methods allowing non-biased, simultaneous and rapid determination of metabolites important in both primary and secondary metabolism have been developed. Our intention here is to review current methodologies for metabolic profiling in plants, highlighting the strategies for biochemical phenotyping of plants by determining the steady-state concentrations of a broad spectrum of metabolites. Emphasis will be placed on cells cultured in vitro, and the future prospects of this rapidly expanding research field will be discussed  相似文献   

8.
Saponins are a diverse family of secondary metabolites that are produced by many plant species, particularly dicots. These molecules commonly have potent antifungal activity and their natural role in plants is likely to be in protection against attack by pathogenic microbes. They also have a variety of commercial applications including use as drugs and medicines. The enzymes, genes and biochemical pathways involved in the synthesis of these complex molecules are largely uncharacterized for any plant species. Cereals and grasses appear to be generally deficient in saponins with the exception of oats, which produce both steroidal and triterpenoid saponins. The isolation of genes for saponin biosynthesis from oats is now providing tools for the analysis of the evolution and regulation of saponin biosynthesis in monocots. These genes may also have potential for the development of improved disease resistance in cultivated cereals.  相似文献   

9.
10.
11.
The treatment of Arabidopsis thaliana with methyl jasmonate was used to investigate the reaction of 2467 selected genes of primary and secondary metabolism by macroarray hybridization. Hierarchical cluster analysis allowed distinctions to be made between diurnally and methyl jasmonate regulated genes in a time course from 30 min to 24 h. 97 and 64 genes were identified that were up- or down-regulated more than 2–fold by methyl jasmonate, respectively. These genes belong to 18 functional categories of which sulfur-related genes were by far strongest affected. Gene expression and metabolite patterns of sulfur metabolism were analysed in detail, since numerous defense compounds contain oxidized or reduced sulfur. Genes encoding key reactions of sulfate reduction as well as of cysteine, methionine and glutathione synthesis were rapidly up-regulated, but none of the known sulfur-deficiency induced sulfate transporter genes. In addition, increased expression of genes of sulfur-rich defense proteins and of enzymes involved in glucosinolate metabolism was observed. In contrast, profiling of primary and secondary sulfur metabolites revealed only an increase in the indole glucosinolate glucobrassicin upon methyl jasmonate treatment. The observed rapid mRNA changes were thus regulated by a signal independent of the known sulfur deficiency response. These results document for the first time how comprehensively the regulation of sulfur-related genes and plant defense are connected. This interaction is discussed as a new approach to differentiate between supply- and demand-driven regulation of the sulfate assimilation pathway.  相似文献   

12.
MetaCyc (http://metacyc.org) contains experimentally determined biochemical pathways to be used as a reference database for metabolism. In conjunction with the Pathway Tools software, MetaCyc can be used to computationally predict the metabolic pathway complement of an annotated genome. To increase the breadth of pathways and enzymes, more than 60 plant-specific pathways have been added or updated in MetaCyc recently. In contrast to MetaCyc, which contains metabolic data for a wide range of organisms, AraCyc is a species-specific database containing only enzymes and pathways found in the model plant Arabidopsis (Arabidopsis thaliana). AraCyc (http://arabidopsis.org/tools/aracyc/) was the first computationally predicted plant metabolism database derived from MetaCyc. Since its initial computational build, AraCyc has been under continued curation to enhance data quality and to increase breadth of pathway coverage. Twenty-eight pathways have been manually curated from the literature recently. Pathway predictions in AraCyc have also been recently updated with the latest functional annotations of Arabidopsis genes that use controlled vocabulary and literature evidence. AraCyc currently features 1,418 unique genes mapped onto 204 pathways with 1,156 literature citations. The Omics Viewer, a user data visualization and analysis tool, allows a list of genes, enzymes, or metabolites with experimental values to be painted on a diagram of the full pathway map of AraCyc. Other recent enhancements to both MetaCyc and AraCyc include implementation of an evidence ontology, which has been used to provide information on data quality, expansion of the secondary metabolism node of the pathway ontology to accommodate curation of secondary metabolic pathways, and enhancement of the cellular component ontology for storing and displaying enzyme and pathway locations within subcellular compartments.  相似文献   

13.
陈澄宇  康志娇  史雪岩  高希武 《昆虫学报》2015,58(10):1126-1130
植物次生物质(plant secondary metabolites)对昆虫的取食行为、生长发育及繁殖可以产生不利影响,甚至对昆虫可以产生毒杀作用。为了应对植物次生物质的不利影响,昆虫通过对植物次生物质忌避取食、解毒代谢等多种机制,而对寄主植物产生适应性。其中,昆虫的解毒代谢酶包括昆虫细胞色素P450酶系(P450s)及谷胱甘肽硫转移酶(GSTs)等,在昆虫对植物次生物质的解毒代谢及对寄主植物的适应性中发挥了重要作用。昆虫的解毒酶系统不仅可以代谢植物次生物质,还可能代谢化学杀虫剂,因而昆虫对寄主植物的适应性与其对杀虫剂的耐药性甚至抗药性密切相关。昆虫细胞色素P450s和GSTs等代谢解毒酶活性及相关基因的表达可以被植物次生物质影响,这不仅使昆虫对寄主植物的防御产生了适应性,还影响了昆虫对杀虫剂的解毒代谢,因而改变昆虫的耐药性或抗药性。掌握昆虫对植物次生物质的代谢适应机制及其在昆虫抗药性中的作用,对于明确昆虫的抗药性机制具有重要的参考意义。本文综述了植物次生物质对昆虫的影响、昆虫对寄主植物次生物质的代谢机制、昆虫对植物次生物质的代谢适应性对昆虫耐药性及抗药性的影响等方面的研究进展。  相似文献   

14.
Engineering secondary metabolite production in plants   总被引:16,自引:0,他引:16  
Recent achievements have been made in the metabolic engineering of plant secondary metabolism. Various pathways have been altered using genes encoding biosynthetic enzymes or genes encoding regulatory proteins. In addition, antisense genes have been used to block competitive pathways, thereby increasing the flux towards the desired secondary metabolites.  相似文献   

15.
16.
Metabolic regulation underlying tomato fruit development   总被引:5,自引:0,他引:5  
  相似文献   

17.
Hybridization between plant species can have a number of biological consequences; interspecific hybridization has been tied to speciation events, biological invasions, and diversification at the level of genes, metabolites, and phenotypes. This study aims to provide evidence of transgressive segregation in the expression of primary and secondary metabolites in hybrids between Jacobaea vulgaris and J. aquaticus using an NMR-based metabolomic profiling approach. A number of F2 hybrid genotypes exhibited metabolomic profiles that were outside the range encompassed by parental species. Expression of a number of primary and secondary metabolites, including jacaronone analogues, chlorogenic acid, sucrose, glucose, malic acid, and two amino acids was extreme in some F2 hybrid genotypes compared to parental genotypes, and citric acid was expressed in highest concentrations in J. vulgaris. Metabolomic profiling based on NMR is a useful tool for quantifying genetically controlled differences between major primary and secondary metabolites among plant genotypes. Interspecific plant hybrids in general, and specifically hybrids between J. vulgaris and J. aquatica, will be useful for disentangling the ecological role of suites of primary and secondary metabolites in plants, because interspecific hybridization generates extreme metabolomic diversity compared to that normally observed between parental genotypes.  相似文献   

18.
植物次生代谢物途径及其研究进展   总被引:8,自引:0,他引:8  
植物次生代谢是植物在长期进化过程中与环境相互作用的结果,由初生代谢派生。萜类、生物碱类、苯丙烷类为植物次生代谢物的主要类型,其代谢途径多以代谢频道形式存在,具有种属、生长发育期等特异性。从植物次生代谢物的分类、代谢途径及代谢调控基因工程等方面展开论述,重点介绍了次生代谢物的生物合成途径,以及利用基因工程等技术对植物次生代谢途径进行遗传改良等方面的研究进展,为全面认识植物代谢网络、合理定位次生代谢及其关键酶、促进野生植物资源可持续利用等提供理论依据。  相似文献   

19.
20.
Using gene knockouts to investigate plant metabolism   总被引:5,自引:0,他引:5  
Arabidopsis functional genomics resources now make the isolation of knockout mutants in any gene of choice both realistic and increasingly straightforward. Coupled with the completion of the genome sequence, this reverse genetics approach provides a platform facilitating dramatic progress in our understanding of fundamental aspects of plant metabolism. Recent experience shows that knockouts of genes encoding enzymes of primary metabolism can produce mutants with clear and sometimes unexpected phenotypes. They can provide new information about old pathways. Specific functions for individual members of multigene families can be revealed. Knockouts of enzymes of undefined function can lead to the discovery of those functions, and the analysis of enzymes which have previously never been studied at the biochemical level offers the potential to reveal new pathways of plant metabolism. Furthermore, the mutants isolated provide the starting point for genetic modification experiments to determine exactly how metabolism fuels growth and development, so providing a rational basis for the future modification of plant productivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号