首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mevalonate kinase catalyzes the ATP-dependent phosphorylation of mevalonic acid to form mevalonate 5-phosphate, a key intermediate in the pathways of isoprenoids and sterols. Deficiency in mevalonate kinase activity has been linked to mevalonic aciduria and hyperimmunoglobulinemia D/periodic fever syndrome (HIDS). The crystal structure of rat mevalonate kinase in complex with MgATP has been determined at 2.4-A resolution. Each monomer of this dimeric protein is composed of two domains with its active site located at the domain interface. The enzyme-bound ATP adopts an anti conformation, in contrast to the syn conformation reported for Methanococcus jannaschii homoserine kinase. The Mg(2+) ion is coordinated to both beta- and gamma-phosphates of ATP and side chains of Glu(193) and Ser(146). Asp(204) is making a salt bridge with Lys(13), which in turn interacts with the gamma-phosphate. A model of mevalonic acid can be placed near the gamma-phosphoryl group of ATP; thus, the C5 hydroxyl is located within 4 A from Asp(204), Lys(13), and the gamma-phosphoryl of ATP. This arrangement of residues strongly suggests: 1) Asp(204) abstracts the proton from C5 hydroxyl of mevalonate; 2) the penta-coordinated gamma-phosphoryl group may be stabilized by Mg(2+), Lys(13), and Glu(193); and 3) Lys(13) is likely to influence the pK(a) of the C5 hydroxyl of the substrate. V377I and I268T are the most common mutations found in patients with HIDS. Val(377) is located over 18 A away from the active site and a conservative replacement with Ile is unlikely to yield an inactive or unstable protein. Ile-268 is located at the dimer interface, and its Thr substitution may disrupt dimer formation.  相似文献   

2.
Mevalonic aciduria (MA) and hyper-IgD and periodic fever syndrome (HIDS) are two inherited disorders both caused by depressed mevalonate kinase (MK) activity. MK is the first enzyme to follow the highly regulated 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase (HMGR), which catalyzes the rate-limiting step in the isoprenoid/cholesterol biosynthesis pathway. In fibroblasts of MA patients, but not of HIDS patients, HMGR activity is elevated under normal growth conditions. This activity is down-regulated when cells are supplemented with the isoprenoid precursors geraniol, farnesol, and geranylgeraniol, and a mixture of 25-hydroxycholesterol and cholesterol. This indicates that the regulation of the pathway in these cells is not disturbed. The elevated HMGR activity is probably due to a shortage of non-sterol isoprenoid end products, as indicated by normal HMGR mRNA levels in MA fibroblasts. Furthermore, the HMGR activity in MA cells was more sensitive to geranylgeraniol suppression and less sensitive to sterol suppression than the HMGR activity in low density lipoprotein receptor-deficient cells. HMGR activity in MA cells was down-regulated also by addition of its product mevalonate to the culture medium. Thus, it appears that the elevation of mevalonate levels, which are high in MA patients and moderate in HIDS patients, allows the cells to compensate for the depressed MK activity. Indeed, the isoprenylation of Ras and RhoA protein appeared normal in HIDS and MA fibroblasts under normal conditions but showed increased sensitivity toward inhibition of HMGR by simvastatin. Our results indicate that MK-deficient cells maintain the flux through the isoprenoid/cholesterol biosynthesis pathway by elevating intracellular mevalonate levels.  相似文献   

3.
Mevalonate kinase catalyzes the phosphorylation of mevalonic acid to form mevalonate 5-phosphate, which plays a key role in regulating cholesterol biosynthesis in animal cells. Deficiency of mevalonate kinase activity in the human body has been linked to mevalonic aciduria and hyperimmunoglobulinemia D/periodic fever syndrome (HIDS). We cloned the gene of rat mevalonate kinase into a bacterial expression vector pLM1 with six continuous histidine codons attached to the 5(') of the gene. The cloned gene was overexpressed in Escherichia coli and the soluble protein was purified with a nickel HiTrap chelating metal affinity column in 90% yield to apparent homogeneity. The purified rat mevalonate kinase had a dimeric structure composed of identical subunits. Based on SDS-PAGE, the subunit was 42 kDa. The specific activity of the purified His-tagged rat mevalonate kinase was 32.7 micromol/min/mg and the optimal pH was found to be 7.0-8.0 in phosphate buffer. The Michaelis constant K(M) was 35 microM for (RS)-mevalonate and 953 microM for ATP, respectively. The V(max) was determined to be 38.7 micromol/min/mg. The overexpression of rat mevalonate kinase in E. coli and one-step purification of the highly active rat mevalonate kinase will facilitate further our investigation of this enzyme through site-directed mutagenesis and enzyme-catalyzed reactions with substrate analogs.  相似文献   

4.
It has been proposed that isoprenoid biosynthesis in several gram-positive cocci depends on the mevalonate pathway for conversion of acetyl coenzyme A to isopentenyl diphosphate. Mevalonate kinase catalyzes a key reaction in this pathway. In this study the enzyme from Staphylococcus aureus was expressed in Escherichia coli, isolated in a highly purified form, and characterized. The overall amino acid sequence of this enzyme was very heterologous compared with the sequences of eukaryotic mevalonate kinases. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and analytical gel filtration chromatography suggested that the native enzyme is a monomer with a molecular mass of approximately 33 kDa. The specific activity was 12 U/mg, and the pH optimum was 7.0 to 8.5. The apparent K(m) values for R,S-mevalonate and ATP were 41 and 339 micro M, respectively. There was substantial substrate inhibition at millimolar levels of mevalonate. The sensitivity to feedback inhibition by farnesyl diphosphate and its sulfur-containing analog, farnesyl thiodiphosphate, was characterized. These compounds were competitive inhibitors with respect to ATP; the K(i) values were 46 and 45 micro M for farnesyl diphosphate and its thio analog, respectively. Parallel measurements with heterologous eukaryotic mevalonate kinases indicated that S. aureus mevalonate kinase is much less sensitive to feedback inhibition (K(i) difference, 3 orders of magnitude) than the human enzyme. In contrast, both enzymes tightly bound trinitrophenyl-ATP, a fluorescent substrate analog, suggesting that there are similarities in structural features that are important for catalytic function.  相似文献   

5.
Mevalonate kinase serine/threonine residues have been implicated in substrate binding and inherited metabolic disease. Alignment of >20 mevalonate kinase sequences indicates that Ser-145, Ser-146, Ser-201, and Thr-243 are the only invariant residues with alcohol side chains. These residues have been individually mutated to alanine. Structural integrity of the mutants has been demonstrated by binding studies using fluorescent and spin-labeled ATP analogs. Kinetic characterization of the mutants indicates only modest changes in K(m)((ATP)). K(m) for mevalonate increases by approximately 20-fold for S146A, approximately 40-fold for T243A, and 100-fold for S201A. V(max) changes for S145A, S201A, and T243A are < or =3-fold. Thus, the 65-fold activity decrease associated with the inherited human T243I mutation seems attributable to the nonconservative substitution rather than any critical catalytic function. V(max) for S146A is diminished by 4000-fold. In terms of V/K(MVA), this substitution produces a 10(5)-fold effect, suggesting an active site location and catalytic role for Ser-146. The large k(cat) effect suggests that Ser-146 productively orients ATP during catalysis. K(D(Mg-ATP)) increases by almost 40-fold for S146A, indicating a specific role for Ser-146 in liganding Mg(2+)-ATP. Instead of mapping within a proposed C-terminal ATP binding motif, Ser-146 is situated in a centrally located motif, which characterizes the galactokinase/homoserine kinase/ mevalonate kinase/phosphomevalonate kinase protein family. These observations represent the first functional demonstration that this region is part of the active site in these related phosphotransferases.  相似文献   

6.
Two forms of protein kinase activity were isolated from crude extracts of Streptococcus pyogenes and partially purified by ion exchange chromatography and affinity chromatography. The phosphorylation activities were shown to be insensitive to cAMP, required the presence of divalent cations, and eluted from a Sephadex G-200 column with approximate molecular masses of 60 and 45 kDa, respectively. Both enzymes were capable of phosphorylating eukaryotic proteins and synthetic polypeptides in addition to endogenous and heterologous prokaryotic proteins at serine and tyrosine residues. Firm evidence for tyrosine kinase activity was obtained by the use of a tyrosine kinase-specific substrate, a 4:1 glutamate:tyrosine copolymer. Both protein kinases phosphorylated HPr, a phosphocarrier protein of the phosphotransferase system isolated from S. pyogenes and Bacillus stearothermophilus, but failed to phosphorylate HPr isolated from Escherichia coli. Both also phosphorylated a native polypeptide fragment (pep M24) as well as synthetic peptide copies of M protein, the major virulence determinant of group A streptococci. These results indicate that prokaryotic protein kinases are capable of phosphorylating eukaryotic proteins and suggest that the protein kinases of streptococci may play an important role not only in the phosphotransferase system but also in the virulence properties of these organisms.  相似文献   

7.
The P68 protein (referred to as P68 on the basis of its molecular weight of 68,000 in human cells) is a serine/threonine kinase induced by interferon treatment and activated by double-stranded (ds) RNAs. Although extensively studied, little is currently known about the regulation of kinase function at the molecular level. What is known is that activation of this enzyme triggers a series of events which lead to an inhibition of protein synthesis initiation and may, in turn, play an integral role in the antiviral response to interferon. To begin to understand P68 and its biological functions in the eukaryotic cell, we have expressed the protein kinase in Escherichia coli under control of the bacteriophage T7 promoter. In rifampicin-treated cells, metabolically labeled with [35S]methionine and induced by IPTG, the P68 kinase was the predominant labeled product. Further, P68 was recovered from extracts as a fully functional enzyme, shown by its ability to become activated and phosphorylate its natural substrate, the alpha subunit of eukaryotic protein synthesis initiation factor 2 (eIF-2). Moreover, P68 was phosphorylated in vivo in E. coli, providing conclusive evidence that the kinase has the capacity to phosphorylate and activate itself in the absence of other eukaryotic proteins. In contrast, a mutant P68 protein, containing a single amino acid substitution in the invariant lysine in catalytic domain II, was completely inactive. Interestingly, both the mutant and wild-type protein kinases efficiently bound activator dsRNAs despite the fact that only the latter was activated by these RNAs. Finally, the expressed kinase could be isolated from contaminating E. coli proteins in an active form by immunoaffinity chromatography with a monoclonal antibody specific for P68.  相似文献   

8.
The isocitrate dehydrogenase kinase/phosphatase (IDHK/P) of E. coli is a bifunctional enzyme responsible for the reversible phosphorylation of isocitrate dehydrogenase (IDH) on a seryl residue. As such, it belongs to the serine/threonine protein kinase family. However, only a very limited homology with the well-characterized eukaryotic members of that family was identified so far in its primary structure. In this report, a new region of amino acids including three putative residues involved in the kinase activity of IDHK/P was identified by sequence comparison with eukaryotic protein kinases. In IDHK/P, these residues are Asp-371, Asn-377, and Asp-403. Their counterpart eukaryotic residues have been shown to be involved in either catalysis (former residue) or magnesium binding (the two latter residues). Site-directed mutagenesis was performed on these three IDHK/P residues, and also on the Glu-439 residue equivalent to that of the Ala-Pro-Glu motif found in the eukaryotic protein kinases. Mutations of Asp-371 into either Ala, Glu, or Gln residues drastically lowered the yield and the quality of the purification. Nevertheless, the recovered mutant enzymes were barely able to phosphorylate IDH either in vitro or after expression in an aceK (-) mutant strain. In contrast, mutation of either Asn-377, Asp-403, or Glu-439 into an Ala residue altered neither the yield of purification nor the maximal phosphorylating capacity of the enzyme. However, when IDH was phosphorylated in the presence of increasing concentrations of magnesium ions, the two former mutants displayed a much lower affinity for this cation, with a K(m) value of 0.6 or 0.8 mM, respectively, as compared to 0.1 mM for the wild-type enzyme. On the other hand, the Glu439Ala mutant has an affinity for magnesium essentially unaffected. Therefore, and in contrast to the current opinion, our results suggest that the catalytic mechanism of IDHK/P exhibits some similarities with that found in the eukaryotic members of the protein kinase family.  相似文献   

9.
Mevalonic aciduria (MVA) and hyperimmunoglobulinemia D syndrome (HIDS) represent the two ends of a clinical spectrum of disease caused by deficiency of mevalonate kinase (MVK), the first committed enzyme of cholesterol biosynthesis. At least 30 patients with MVA and 180 patients with HIDS have been reported worldwide. MVA is characterized by psychomotor retardation, failure to thrive, progressive cerebellar ataxia, dysmorphic features, progressive visual impairment and recurrent febrile crises. The febrile episodes are commonly accompanied by hepatosplenomegaly, lymphadenopathy, abdominal symptoms, arthralgia and skin rashes. Life expectancy is often compromised. In HIDS, only febrile attacks are present, but a subgroup of patients may also develop neurological abnormalities of varying degree such as mental retardation, ataxia, ocular symptoms and epilepsy. A reduced activity of MVK and pathogenic mutations in the MVK gene have been demonstrated as the common genetic basis in both disorders. In MVA, the diagnosis is established by detection of highly elevated levels of mevalonic acid excreted in urine. Increased levels of immunoglobulin D (IgD) and, in most patients of immunoglobulin A (IgA), in combination with enhanced excretion of mevalonic acid provide strong evidence for HIDS. The diagnosis is confirmed by low activity of mevalonate kinase or by demonstration of disease-causing mutations. Genetic counseling should be offered to families at risk. There is no established successful treatment for MVA. Simvastatin, an inhibitor of HMG-CoA reductase, and anakinra have been shown to have beneficial effect in HIDS.  相似文献   

10.
Herdendorf TJ  Miziorko HM 《Biochemistry》2006,45(10):3235-3242
Phosphomevalonate kinase (PMK) catalyzes a key step in isoprenoid/sterol biosynthesis, converting mevalonate 5-phosphate and ATP to mevalonate 5-diphosphate and ADP. To expedite functional and structural study of this enzyme, an expression plasmid encoding His-tagged human PMK has been constructed and recombinant enzyme isolated in an active, stable form. PMK catalyzes a reversible reaction; kinetic constants of human PMK have been determined for both forward (formation of mevalonate 5-diphosphate) and reverse (formation of mevalonate 5-phosphate) reactions. Animal and invertebrate PMKs are not orthologous to plant, fungal, or bacterial PMKs, limiting the information available from sequence alignment analysis. A homology model for the structure of human PMK has been generated. The model conforms to a nucleoside monophosphate kinase family fold. This result, together with sequence comparisons of animal and invertebrate PMKs, suggests an N-terminal basic residue rich sequence as a possible "Walker A" ATP binding motif. The functions of four basic (K17, R18, K19, K22) residues and one acidic (D23) residue in the conserved sequence have been tested by mutagenesis and characterization of isolated mutant proteins. Substrate K(m) values for K17M, R18Q, K19M, and D23N have been measured for forward and reverse reactions; in comparison with wild-type PMK values, only modest (<12-fold) changes are observed. In contrast, R18Q exhibits a V(max) decrease of 100/300-fold (forward/reverse reaction). K22M activity is too low for measurement at nonsaturating substrate concentration; specific activity is decreased by >10000-fold in both forward/reverse reactions, suggesting an active site location and an important role in phosphoryl transfer.  相似文献   

11.
Kazi JU  Kabir NN  Soh JW 《Gene》2008,410(1):147-153
Eukaryotic protein kinases, containing a conserved catalytic domain, represent one of the largest superfamilies of the eukaryotic proteins and play distinct roles in cell signaling and diseases. Near completion of rat genome sequencing project enables the evaluation of a near complete set of rat protein kinases. Publicly accessible genetic sequence databases were searched for rat protein kinases, and 515 eukaryotic protein kinases, 40 atypical protein kinases and 45 kinase pseudogenes were identified. The rat has 509 putative protein kinases orthologous to human kinases. Unlike microtubule affinity-regulating kinases, the rat has a few more kinases, in addition to the orthologous pairs of mouse kinases. The comparison of 11 different eukaryotic species revealed the evolutionary conservation of this diverse family of proteins. The evolutionary rate studies of human disease and non-disease associated kinases suggested that relatively uniform selective pressures have been applied to these kinase classes. This bioinformatic study of the rat protein kinases provides a suitable framework for further characterization of the functional and structural properties of these protein kinases.  相似文献   

12.
Protein phosphokinase activity from a 0.5 M NaCl extract of purified porcine ovary nuclei has been resolved by Sephadex G-200 gel filtration into three forms of kinase, protein kinase I and III, both independent of adenosine 3':5'-monophosphate (cyclic AMP), and cyclic-AMP-dependent protein kinase II. Cyclic AMP-binding activity was associated with protein kinase II but not with protein kinases I and III. Protein kinases I, II, and III exhibited different cyclic nucleotide dependency and substrate specificity. Protein kinase II was inhibited by a heat-stable protein from rabbit skeletal muscle, whereas protein kinases I and III were not inhibited. According to previously established criteria [Traugh, J.A., Ashby, C.D. and Walsh, D.A. (1974) nuclear protein kinase II can be classified as cyclic-AMP-dependent protein kinase consisting of regulatory and catalytic subunits. Nuclear protein kinases I and III are cyclic-AMP-independent enzymes. Evidence for the identity of nuclear cyclic-AMP-dependent protein kinase II with cytosol (105 000 X g supernatant fraction) cyclic-AMP-dependent protein kinase was obtained in several ways. Nuclear and cytosol cyclic-AMP-dependent protein kinases exhibited identical elution characteristics on DEAE-cellulose and Sephadex G-200 indicating that both kinases are of similar molecular size and possess similar ionic charge. Both kinases exhibited an identical Km for ATP of 8 muM, showed similar substrate specificity, and revealed similar antigenic properties. Cyclic-AMP-dependent protein kinase II was also identified in nuclei isolated in nonaqueous media, eliminating the possibility that the cyclic-AMP-dependent protein kinase activity identified in nuclei isolated in aqueous media may have arisen as the result of cytoplasmic contamination. After incubation of neonatal porcine ovaries which lack nuclear cyclic-AMP-dependent protein kinase with 0.1 muM 8-p-chlorophenylthio cyclic AMP, considerable cyclic-AMP-dependent protein kinase II activity was identified in nuclei isolated in nonaqueous media. From these data it is concluded that the nuclear cyclic-AMP-dependent protein kinase II is related to or identical with the ovary cytoplasmic cyclic-AMP-dependent protein kinase, supporting the concept that nuclear cyclic-AMP-dependent protein kinase is of cytoplasmic origin.  相似文献   

13.
The phosphorylation activity associated with a neurofilament-enriched cytoskeletal preparation isolated from the squid giant axon has been studied and compared to the phosphorylation activities in intact squid axoplasm. The high molecular weight (greater than 300 kDa) and 220-kDa neurofilament proteins are the major endogenous substrates for the kinases in the axoplasm and the neurofilament preparation, whereas 95- and less than 60-kDa proteins are the major phosphoproteins in the ganglion cell preparation. The squid axon neurofilament (SANF) protein kinase activity appeared to be both cAMP and Ca2+ independent and could phosphorylate both casein (Km = 40 microM) and histone (Km = 180 microM). The SANF protein kinase could utilize either ATP or GTP in the phosphotransferase reaction, with a Km for ATP of 58 microM and 129.4 microM for GTP when casein was used as the exogenous substrate; and 25 and 98.1 microM for ATP and GTP, respectively, when the endogenous neurofilament proteins were used as substrates. The SANF protein kinase activity was only slightly inhibited by 2,3-diphosphoglycerate and various polyamines at high concentrations and was poorly inhibited by heparin (34% inhibition at 100 micrograms/ml). The failures of heparin to significantly inhibit and the polyamines to stimulate the SANF protein kinase indicate that it is not a casein type II kinase. The relative efficacy of GTP as a phosphate donor indicates that SANF protein kinase differs from known casein type I kinases. Phosphorylated (32P-labeled) neurofilament proteins were only slightly dephosphorylated in the presence of axoplasm or stellate ganglion cell supernatants, and the neurofilament-enriched preparation did not dephosphorylate 32P-labeled neurofilament proteins. The axoplasm and neurofilament preparations had no detectable protein kinase inhibitor activity, but a strong inhibitor activity, which was not dialyzable but was heat inactivatable, was found in ganglion cells. This inhibitor activity may account for the low phosphorylation activity found in the stellate ganglion cells and may indicate inhibitory regulation of SANF protein kinase activity in the ganglion cell bodies.  相似文献   

14.
In Saccharomyces cerevisiae, the highly conserved Rho-type GTPase Cdc42 is essential for cell division and controls cellular development during mating and invasive growth. The role of Cdc42 in mating has been controversial, but a number of previous studies suggest that the GTPase controls the mitogen-activated protein (MAP) kinase cascade by activating the p21-activated protein kinase (PAK) Ste20. To further explore the role of Cdc42 in pheromone-stimulated signaling, we isolated novel alleles of CDC42 that confer resistance to pheromone. We find that in CDC42(V36A) and CDC42(V36A, I182T) mutant strains, the inability to undergo pheromone-induced cell cycle arrest correlates with reduced phosphorylation of the mating MAP kinases Fus3 and Kss1 and with a decrease in mating efficiency. Furthermore, Cdc42(V36A) and Cdc42(V36A, I182T) proteins show reduced interaction with the PAK Cla4 but not with Ste20. We also show that deletion of CLA4 in a CDC42(V36A, I182T) mutant strain suppresses pheromone resistance and that overexpression of CLA4 interferes with pheromone-induced cell cycle arrest and MAP kinase phosphorylation in CDC42 wild-type strains. Our data indicate that Cla4 has the potential to act as a negative regulator of the mating pathway and that this function of the PAK might be under control of Cdc42. In conclusion, our study suggests that control of pheromone signaling by Cdc42 not only depends on Ste20 but also involves interaction of the GTPase with Cla4.  相似文献   

15.
The phosphorylation of proteins within the eukaryotic photosynthetic membrane is thought to regulate a number of photosynthetic processes in land plants and algae. Both light quality and intensity influence protein kinase activity via the levels of reductants produced by the thylakoid electron transport chain. We have isolated a family of proteins called TAKs, Arabidopsis thylakoid membrane threonine kinases that phosphorylate the light harvesting complex proteins. TAK activity is enhanced by reductant and is associated with the photosynthetic reaction center II and the cytochrome b6f complex. TAKs are encoded by a gene family that has striking similarity to transforming growth factor beta receptors of metazoans. Thus thylakoid protein phosphorylation may be regulated by a cascade of reductant-controlled membrane-bound protein kinases.  相似文献   

16.
Mevalonate kinase plays a key role in regulating the biosynthesis of cholesterol in animal cells. Human mevalonate kinase His20Pro has been reported as one of the three common mutations in the mevalonate kinase gene in mevalonic aciduria and hyperimmunoglobulinemia D/periodic fever syndrome patients. His20 is also a highly conserved residue among all aligned mevalonate kinase sequences. To study the role of His20 of mevalonate kinase, a variety of mutant expression plasmids of rat mevalonate kinase including pRMK(H20L), pRMK(H20Y), and pRMK(H20K) were constructed using site-directed mutagenesis, and mutant proteins were overexpressed and purified. CD spectroscopy of wild-type protein and mutants indicated that mutations H20L and H20Y did not induce significant secondary structural changes. The results from kinetic studies showed that this highly conserved histidine is an important residue for the function of the enzyme.  相似文献   

17.
By means of profile-matching procedures, conservation of functionally important residues, and fold-recognition techniques, we show that two distinct families of lipopolysaccharide kinases encoded in the genomes of Gram-negative bacteria are related to each other and to two distinct classes of proteins, namely eukaryotic protein kinases and right open reading frame (RIO1). Members of one of the lipopolysaccharide kinase families are identified only in pathogenic bacteria. Phosphorylation by these enzymes is relevant in the construction of outer membrane, immune response, and pathogenic virulence. The class of proteins called RIO1, also related to eukaryotic protein kinases and previously known to occur only in archaea and eukaryotes, are now identified in eubacteria as well. It has been suggested here that RIO1 proteins are intermediately related to lipopolysaccharide kinases and eukaryotic protein kinases implying an evolutionary relationship between the three classes of proteins.  相似文献   

18.
Transient receptor potential (TRP) channels modulate calcium levels in eukaryotic cells in response to external signals. A novel transient receptor potential channel has the ability to phosphorylate itself and other proteins on serine and threonine residues. The catalytic domain of this channel kinase has no detectable sequence similarity to classical eukaryotic protein kinases and is essential for channel function. The structure of the kinase domain, reported here, reveals unexpected similarity to eukaryotic protein kinases in the catalytic core as well as to metabolic enzymes with ATP-grasp domains. The inclusion of the channel kinase catalytic domain within the eukaryotic protein kinase superfamily indicates a significantly wider distribution for this group of signaling proteins than suggested previously by sequence comparisons alone.  相似文献   

19.
Bacterial CMP kinases are specific for CMP and dCMP, whereas the related eukaryotic NMP kinase phosphorylates CMP and UMP with similar efficiency. To explain these differences in structural terms, we investigated the contribution of four key amino acids interacting with the pyrimidine ring of CMP (Ser36, Asp132, Arg110 and Arg188) to the stability, catalysis and substrate specificity of Escherichia coli CMP kinase. In contrast to eukaryotic UMP/CMP kinases, which interact with the nucleobase via one or two water molecules, bacterial CMP kinase has a narrower NMP-binding pocket and a hydrogen-bonding network involving the pyrimidine moiety specific for the cytosine nucleobase. The side chains of Arg110 and Ser36 cannot establish hydrogen bonds with UMP, and their substitution by hydrophobic amino acids simultaneously affects the K(m) of CMP/dCMP and the k(cat) value. Substitution of Ser for Asp132 results in a moderate decrease in stability without significant changes in K(m) value for CMP and dCMP. Replacement of Arg188 with Met does not affect enzyme stability but dramatically decreases the k(cat)/K(m) ratio compared with wild-type enzyme. This effect might be explained by opening of the enzyme/nucleotide complex, so that the sugar no longer interacts with Asp185. The reaction rate for different modified CMP kinases with ATP as a variable substrate indicated that none of changes induced by these amino acid substitutions was 'propagated' to the ATP subsite. This 'modular' behavior of E. coli CMP kinase is unique in comparison with other NMP kinases.  相似文献   

20.
The crude protein kinase modulator preparations obtained from several rat tissues (aorta, brain, heart, liver, lung, skeletal muscle, small intestine and testis) were separated into their stimulatory and inhibitory modulator components by Sephadex G-100 gel filtration. The isolated stimulatory modulator augmented the activity of guanosine 3′:5′-monophosphate-dependent protein kinase of both mammalian and arthropod origins; it had no effect, however, on the activity of adenosine 3′:5′-monophosphate-dependent protein kinase. The isolated inhibitory modulator, on the other hand, depressed the activity of cyclic AMP-dependent protein kinase; it was without effect on the activity of cyclic GMP-dependent protein kinase. The present findings indicate that in the mammal, apparently in contrast to the arthropoda, separate proteins are responsible for the stimulatory and the inhibitory activities of protein kinase modulator, and that the two classes of cyclic nucleotide-dependent protein kinases are regulated in an opposing manner by these two types of modulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号