首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Crown gall tumors incited by Agrobacterium tumefaciens strain Bo542 have been reported to synthesize a tumor-specific substance identified as N-(1,3-dicarboxypropyl)-leucine (leucinopine), a compound with two centers of asymmetry. We report here evidence that leucinopine is indeed a crown gall opine, in that it is specifically catabolized by A. tumefaciens strains carrying the tumor-inducing plasmid pTi Bo542, as well as strains carrying closely related plasmids pTi AT1 and pTi AT4. We further report catabolism of leucinopine by the succinamopine-type strains A518, A519 and A532, carrying pTi EU6, pTi AT181 and pTi T10/73, respectively. Strains lacking any virulence plasmid, as well as those carrying octopine or nopaline type Ti plasmids or mannopine type Ri plasmids, did not catabolize leucinopine. On the basis of specificity of catabolism by bacteria carrying pTi Bo542, we conclude that the stereochemistry of natural leucinopine is l-threo, i.e. lglu,lleu. Such stereochemistry is novel in the opines known thus far: octopine, nopaline and succinamopine have d,l-stereochemistry: dala,larg (octopine), dglu,larg (nopaline) and dglu,lasn (succinamopine).  相似文献   

2.
Alfalfa tumour incited by Agrobacterium tumefaciens strain A281, carrying the tumour inducing plasmid pTi Bo542, synthesizes agropine and related mannityl opines. In addition it contains a small amount of leucinopine and large quantities of a new opine here identified as N-[(1S)-1-carboxy 2-carbamoylethyl]-(S)-glutamic acid. This new opine, L,L-succinamopine, is the Lglu epimer of the succinamopine previously isolated from tumours incited by pTi AT181 and related strains. The latter opine should now be designated D,L-succinamopine. This is the first example of the natural occurrence of epimeric opine structures.  相似文献   

3.
Ti (Tumor inducing) plasmids in Agrobacterium tumefaciens can transfer their T-DNA region into dicotyledonous plants, in which the expression of T-DNA genes causes plant tumors and the production of bacterial nutrients, e.g., opines such as nopaline. Naturally occurring Ti plasmids (pTi) are difficult to cure by conventional curing methods because of their high stability. Here, we developed a novel curing method based on plasmid incompatibility. For this, a curing plasmid, pMGTrep1, was newly constructed and subsequently introduced into A. tumefaciens strains harboring pTi by conjugation with Escherichia coli harboring pMGTrep1. The conjugation yielded 32-99% nopaline non-utilizing agrobacterial transconjugants in which pMGTrep1 replaced pTi due to incompatibility. Then, pMGTrep1-less derivatives of the transconjugants are easily selected in the presence of sucrose because pMGTrep1 contains a sucrose-sensitive sacB gene. This efficient method is directly applicable for curing plasmids with the same incompatibility group and shoud also applicable to other types of plasmids in Agrobacterium groups, including A. rhizogenes, by replacing the rep gene region of the curing plasmid with that of the corresponding incompatibility.  相似文献   

4.
Conjugal transfer of Agrobacterium tumefaciens Ti plasmids is controlled by a hierarchical system in which opines, substrates produced by crown gall tumours, induce a quorum-sensing system. The cascade results from the control of expression of traR, the quorum-sensing activator, by a regulator responsive to the opine. In the two cases studied to date, the gene arrangements responsible for the cascade differ remarkably, suggesting that considerable diversity exists among the many Ti-like plasmids in the agrobacteria. In this study, we demonstrated that the novel Ti plasmid pTiChry5 is induced to transfer at high frequency by extracts from tumours initiated by strain Chry5. The purified inducer had the chemical and biological properties of agrocinopines C and D, a set of sugar phosphodiester opines known to induce transfer of another Ti plasmid, pTiBo542. The T-region of pTiChry5 contained a gene whose product, called Acs(Chry5), is virtually identical to the agrocinopine C+D synthase from the T-region of pTiBo542. The two genes are less closely related to acs of pTiC58, which is responsible for the production of agrocinopines A+B, a similar but not identical set of phosphodiester opines by tumours induced by strain C58. Agrocinopines A+B induce transfer of pTiC58 but did not induce transfer of pTi(Chry5). A single copy of traR was identified at the 11 o'clock region of pTi(Chry5), where it is part of a two-gene operon called arc(Chry5). Although altered by deletions, arc(Chry5) is related to the five-gene arc operon that controls the expression of traR on pTiC58. Expression of traR(Chry5) was induced by agrocinopines C+D and the opines isolated from Chry5 tumours but not by agrocinopines A+B. A mutation in traR(Chry5) abolished transfer, and transfer was restored by complementation in trans. We conclude that the agrocinopine opines and the corresponding opine-meditated conjugal regulatory regions of pTiChry5 and pTiC58 share a common origin, but that the opine signals for the two Ti plasmids have evolved divergently through changes in the opine synthase enzymes. The alterations in the opines, in turn, necessitated a co-evolutionary change in the opine recognition systems responsible for controlling expression of the traR genes on these two types of Ti plasmids.  相似文献   

5.
Biotype 1 and 2 strains of Agrobacterium tumefaciens were isolated from crown gall tumors of Lippia canescens plants growing as ground cover in Arizona. The isolates were agrocin 84 sensitive, did not catabolize octopine, nopaline, agropine, or mannopine, and were limited in their tumorigenic host range. One biotype 2 strain, AB2/73, showed the most limited host range; it incited tumors only on Lippia strains, the cucurbit family of plants, and Nicotiana glauca. Megaplasmids were detected in the isolates by vertical agarose gel electrophoresis. The unusual host range, as well as sensitivity to agrocin 84, were plasmid specified since they were conjugally cotransferred with plasmids from donor strain AB2/73. Correlation of deletions with concomitant loss of virulence and agrocin 84 sensitivity identified the megaplasmid pAtAB2/73d as the virulence element in strain AB2/73. The estimated size of this tumor-inducing plasmid was 500 kilobases. Axenic growth of tumor tissue incited by strains carrying pAtAB2/73d was phytohormone independent. Although the limited-host-range megaplasmid pAtAB2/73d lacked any detectable homology to the phytohormone-biosynthetic genes in wide-host-range transferred DNA (tms-1, tms-2, tmr), it showed homology to the wide-host-range virB, virC, virD, and virG loci. Therefore, pAtAB2/73d represents a new class of tumor-inducing plasmids distinguished by its large size, the absence of determinants for the catabolism of several known opines, the presence of agrocin 84 sensitivity, and its lack of homology to wide-host-range transferred DNA contrasted with its conservation of sequences from the wise-host-range vir region.  相似文献   

6.
Octopine induced the synthesis of 83, 76, 62, 58, 44, 42, 31, and 22 kDa proteins in Agrobacterium tumefaciens strains harboring the tumor-inducing (Ti) plasmids pTiA6 and pTiAch5. Nopaline induced the synthesis of 83, 76, 62, 58, 56, 44, 42, 31, and 22 kDa proteins in A. tumefaciens strains harboring the Ti plasmids pTiC58 and pTiT37. The molecular masses of proteins induced by octopine and nopaline were very similar. In accordance with the ‘opine concept’, octopine and nopaline were found to induce protein synthesis only in strains harboring the respective Ti plasmids. Arginine, a common catabolic product of octopine and nopaline, induced the synthesis of most of the proteins induced by the two opines. Our results show that only the initial step(s) of octopine and nopaline catabolism are induced by specific opines in the respective strains. The subsequent steps are likely to be regulated by arginine in both strains. Received: 5 January 1996 / Accepted: 21 February 1996  相似文献   

7.
8.
Summary The oncogenic plasmids of Agrobacterium, the Ti-plasmids, carry genes that enable their bacterial host to catabolize opines. Opines are unusual amino acid derivatives that are only produced in crown gall tumours incited by oncogenic strains of Agrobacterium. The 2 opines, octopine and nopaline, are degraded by Agrobacterium strains carrying the octopine or the nopoline Ti-plasmid, respectively, to arginine and pyruvic acid, and to arginine and -ketoglutaric acid. In this paper it is shown that the Ti-plasmids carry gene(s) involved in the utilisation of arginine as a carbon source. Strains harbouring wild type octopine or nopaline Ti-plasmids in the chromosomal context of strain C58C1 do not grow on arginine as a carbon source. However, they are able to grow on arginine provided that they are induced, or constitutive for opine catabolism. The features of ornithine utilisation are identical. The gene(s) involved in arginine and ornithine utilization in C58C1 (pTi-oct) or C58C1 (pTi-nop) are under the control of the regulator gene that controls octopine or nopaline catabolism. A tentative pathway of octopine utilization is proposed, in which at least two steps are Ti-plasmid coded, and probably belong to the same operon: 1-scission of octopine into arginine and pyruvic acid 2-transformation of an arginine derivative (GSA?) to glutamic acid.Arginine utilization as a carbon source is therefore a new function of the Ti-plasmid. As this function is not inducible by arginine but by opines, it provides a method for selecting regulatory mutants of opine catabolism in the genetic background of strain C58.  相似文献   

9.
Twenty-six plasmids from grapevine isolates of Agrobacterium tumefaciens were analyzed by SmaI fingerprinting and by hybridization of nick-translated DNA to DNA of another plasmid. These experiments established that octopine Ti plasmids are not highly conserved, although octopine Ti plasmids from biotype 1 A. tumefaciens strains appeared to be very similar. Octopine Ti plasmids from biotype 3 strains are more variable in terms of host range and SmaI fingerprints, but share extensive DNA homology. Fingerprints of nopaline Ti plasmids from strains of a given biotype resemble each other but not fingerprints of Ti plasmids from strains of the other two biotypes. The wide host range octopine Ti plasmid from the biotype 3 strain Ag86 shares more DNA homology with narrow host range Ti plasmids, nopaline Ti plasmids, and octopine catabolism plasmids than with the wide host range octopine Ti plasmid from biotype 1 strain 20/1. pTiAg86 does share homology with the portion of pTi20/1 integrated and expressed in plant tumor cells. Since all wide host range Ti plasmids studied contain these sequences, we suggest that natural selection for a wide host range resulted in the presence of the common sequences in distantly related plasmids. The lack of homology between this "common DNA" and limited host range Ti plasmids shows that the DNA sequences per se are not required for tumorigenesis.  相似文献   

10.
Upon incubation of Agrobacterium tumefaciens A348 with acetosyringone, the vir genes encoded by the Ti (tumor-inducing) plasmid are induced. The addition of certain opines, including octopine, nopaline, leucinopine, and succinamopine, enhanced this induction 2- to 10-fold. The compounds mannopine, acetopine, arginine, pyruvate, and leucine did not stimulate the induction of the vir genes to such an extent. The enhancement of vir gene induction by opines depended on acetosyringone and the genes virA and virG. Opines stimulated the activity of the vir genes, the double-stranded cleavage of the T (transferred)-DNA at the border repeat sequences, and the production of T-strands by the bacterium. The transformation efficiency of cotton shoot tips was markedly increased by the addition of acetosyringone and nopaline at the time of infection.  相似文献   

11.
Transport of nonmetabolizable opines by Agrobacterium tumefaciens.   总被引:5,自引:4,他引:1       下载免费PDF全文
We have examined the uptake of [14C]octopine and [14C]nopaline by Agrobacterium tumefaciens strains containing the C58 chromosomal background in medium suitable for the induction of vir genes. All strains tested could transport both of these opines, regardless of the presence or type of Ti plasmid (octopine or nopaline) present in the bacterium. The transport of these opines required active cellular metabolism. Nonradioactive octopine, nopaline, and arginine competed effectively with [14C]octopine and [14C]nopaline for transport into A. tumefaciens A136, suggesting that the transport of these opines occurs via an arginine transport pathway not encoded by the Ti plasmid.  相似文献   

12.
We characterized five isolates of Agrobacterium tumefaciens from naturally occurring galls on Chrysanthemum morifolium. The isolates are similar, possibly identical, members of a single strain of A. tumefaciens that we designate Chry5. The strain is a biotype I, as indicated by its response to both newly described and traditional biotype tests. Chry5 produces tumors on at least 10 plant species. It is unusual in its ability to form efficiently large tumors on soybean (Glycine max), a species normally refractory to transformation. Chry5 is unable to utilize octopine or mannopine as a carbon source. Although Chry5 can catabolize a single isomer each of nopaline and succinamopine, it differs from other known nopaline and succinamopine strains in its insensitivity to agrocin 84. This pattern of opine catabolism is unique among Agrobacterium strains examined to date. All five isolates of Chry5 contain at least two plasmids, one of which shares homology with pTiB6.  相似文献   

13.
Microorganisms utilizing an opine as the sole carbon source were recovered from crown gall tumors, soil, and surface-disinfected potato tubers. The effect of the opines octopine, nopaline, succinamopine, and mannopine as selective substrates was compared with that of the auxin indoleacetic acid. Selection on octopine and indoleacetic acid favored the fluorescent pseudomonads, whereas mannopine allowed the frequent recovery of agrobacteria. Coryneforms which utilized succinamopine or mannopine were detected in soil, but not in tumors. Fungi growing on succinamopine or mannopine and a mannopine-utilizing Pseudomonas putida were isolated from tumor and soil, respectively.  相似文献   

14.
The diversity of opines from 43 naturally occurring crown gall tumors on several plant species was analyzed for the presence of agropine, chrysopine, iminodiacid, an unidentified leucinopine-like iminodiacid (IDA-B), mannopine, octopine, nopaline, DL- and LL-succinamopine, leucinopine and heliopine. Opine utilization patterns of agrobacteria and fluorescent pseudomonads resident in a tumor were then analyzed and compared for agreement with the opine isolated from that tumor. Nopaline was the most common opine found and was detected in tumors from cherry, blackberry, grape, and plum. Octopine was not found, although octopine-catabolizing bacteria were isolated from several tumors. A new, previously undescribed iminodiacid of the succinamopine-leucinopine type (provisionally designated IDA-B) was isolated from tumors of wild blackberry. Field tumors from apple, blueberry and grape yielded no detectable opines, even though opine-utilizing bacteria were present. Bacterial isolates from plum and cherry showed the best correspondence between the opine in tumors (nopaline) and the presence of bacteria that catabolized that opine. However, several unusual opine catabolic combinations were identified, including isolates that catabolized a variety of opines but were nonpathogenic. More variability was observed among isolates from field tumors on the remaining plant species. We isolated novel mannopine-nopaline type agrobacteria from field tumors of cherry, plum and blackberry that induced tumors containing either mannopine (plus agropine) or nopaline, but not both. Epidemiologically, the galled plants from an area were not of clonal origin (same Ti plasmid), indicating that the field tumors from a small area were incited by more than one type of Ti plasmid.  相似文献   

15.
The mechanisms that ensure that Ti plasmid T-DNA genes encoding proteins involved in the biosynthesis of opines in crown gall tumors are always matched by Ti plasmid genes conferring the ability to catabolize that set of opines on the inducing Agrobacterium strains are unknown. The pathway for the biosynthesis of the opine agropine is thought to require an enzyme, mannopine cyclase, coded for by the ags gene located in the T(R) region of octopine-type Ti plasmids. Extracts prepared from agropine-type tumors contained an activity that cyclized mannopine to agropine. Tumor cells containing a T region in which ags was mutated lacked this activity and did not contain agropine. Expression of ags from the lac promoter conferred mannopine-lactonizing activity on Escherichia coli. Agrobacterium tumefaciens strains harboring an octopine-type Ti plasmid exhibit a similar activity which is not coded for by ags. Analysis of the DNA sequence of the gene encoding this activity, called agcA, showed it to be about 60% identical to T-DNA ags genes. Relatedness decreased abruptly in the 5' and 3' untranslated regions of the genes. ags is preceded by a promoter that functions only in the plant. Expression analysis showed that agcA also is preceded by its own promoter, which is active in the bacterium. Translation of agcA yielded a protein of about 45 kDa, consistent with the size predicted from the DNA sequence. Antibodies raised against the agcA product cross-reacted with the anabolic enzyme. These results indicate that the agropine system arose by a duplication of a progenitor gene, one copy of which became associated with the T-DNA and the other copy of which remained associated with the bacterium.  相似文献   

16.
The crown gall opines heliopine from tumors induced by octopine type Agrobacterium tumefaciens strains A6, A136(pTiB6-806), E9, A652 and 1590-1 and vitopine from tumor induced by grapevine strains S4 and T2 are identical to synthetic N2-(1'R-carboxyethyl)-L-glutamine. Tumors produced by strains S4 and T2 do not contain octopine or lysopine, but they do contain heliopine and the new opine ridéopine identified as N-(4'-aminobutyl)-D-glutamic acid. Grapevine strains S4 and T2 grow normally on tumor heliopine or synthetic heliopine and on tumor and synthetic ridéopine as well as on ridéopine lactam as sole carbon source. While octopine strains A6 and A136(pTiB6-806) do not grow on heliopine, mutant colonies do appear after a few weeks. Heliopine catabolism by octopine strains is not induced by octopine.  相似文献   

17.
The chloramphenicol resistance gene from pSa was introduced into T-DNA of pTi T37 of Agrobacterium tumefaciens by cointegration with intermediary plasmid based on pBR322. The resulting intermediary vector was mobilized to A. tumefaciens T37 by conjugative plasmid pRK2. The RK2 plasmid also forms contegrates with pTi due to the Tn3 transposon which was used for the mobilization of modified pTi into plasmid-less A. tumefaciens strain. Transconjugants were selected on the basis of their antibiotic resistance markers and tested for agrocin sensitivity as proof of Ti plasmid transfer. Agrocin sensitivity of tranconjugants together with chloramphenicol resistance was shown to be a sufficient and simple criterion of transfer of modified Ti plasmids. Agrobacterium strains with modified Ti plasmids showed decreased virulence in consequence of the presence of additional borderline sequence inside their T-DNA.  相似文献   

18.
Fungal Catabolism of Crown Gall Opines   总被引:3,自引:1,他引:2       下载免费PDF全文
This study was conducted to determine the capacities of 37 fungi to utilize various crown gall opines as their sole carbon and nitrogen source. One strain of Fusarium solani, two of Cylindrocarpon destructans, and six of Cylindrocarpon heteronema catabolized octopine, mannopine, octopinic acid, succinamopine, or a combination of these opines. One C. heteronema and one Fusarium dimerum strain grew only on succinamopine. None of the fungal isolates had the ability to grow on nopaline. The catabolism of opines by fungi was confirmed by the disappearance of the opine from the growth medium and by an increase in final mycelial dry weight with rising initial concentration of test substrate. This study thus shows that the catabolism of opines is not restricted to bacteria.  相似文献   

19.
Plant tumors induced by Agrobacterium tumefaciens synthesize a group of substances (opines) which can serve as sole source of carbon and nitrogen for the bacteria. We investigate Ti-plasmid-coded genes and enzymes involved in catabolism of the opine N2-(1,3-dicarboxypropyl)-L-arginine (nopaline) with a novel approach: expression and mapping of protein-coding regions in Escherichia coli minicells, followed by identification of enzyme functions in the heterologous E. coli background. The results show that a specific part of the nopaline catabolism (Noc) region of Ti plasmid C58 is packed with closely spaced protein-coding regions which can be expressed into polypeptides of distinct sizes in E. coli. We identify and map three enzyme activities: nopaline oxidase, arginase and ornithine cyclodeaminase, an unusual protein converting ornithine directly into proline. Nopaline oxidase requires two different Noc-gene-encoded proteins for function and the latter two enzymes are new discoveries in the Noc region. These three enzyme activities together constitute a catabolic pathway leading from nopaline through arginine and ornithine to proline.  相似文献   

20.
Octopine or nopaline Ti plasmids, or clones encoding their occ or noc loci, allowed proline auxotrophs of Agrobacterium tumefaciens to utilize the appropriate arginyl opine as a proline substitute. Arginine and ornithine substituted for proline only if the occ or noc loci were induced or made constitutive by mutation. These results support a report demonstrating a Ti plasmid-encoded activity in A. tumefaciens which cyclizes ornithine to proline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号