首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An essential assumption underlying markerbased prediction of hybrid performance is a strong linear correlation between molecular marker heterozygosity and hybrid performance or heterosis. This study was intended to investigate the extent of the correlations between molecular marker heterozygosity and hybrid performance in crosses involving two sets of rice materials, 9 indica and 11 japonica varieties. These materials represent a broad spectrum of the cultivated rice gene pool including landraces, primitive cultivars, historically important cultivars, modern elite cultivars and parents of superior hybrids. Varieties within each set were intermated in all possible nonreciprocal pairs resulting in 36 crosses in the indica set and 55 in the japonica set. The F1s and their parents, 111 entries in total, were examined for performance of seven traits in a replicated field trial. The parents were surveyed for polymorphisms using 96 RFLP and ten SSR markers selected at regular intervals from a published molecular marker linkage map. Molecular marker genotypes of the F1 hybrids were deduced from the parental genotypes. The analysis showed that, with very few exceptions, correlations in the indica dataset were higher than in that of their japonica counterparts. Among the seven traits analyzed, plant height showed the highest correlation between heterozygosity and hybrid performance and heteorsis in both indica and japonica datasets. Correlations were low to intermediate between hybrid performance and heterozygosity (both general and specific) in yield and yield component traits in both indica and japonica sets, and also low to intermediate between specific heterozygosity and heterosis in the indica set, whereas very little correlation was detected between heterosis and heterozygosity (either general or specific) in the japonica set. In comparison to the results from our previous studies, we concluded that the relationship between molecular marker heterozygosity and heterosis is variable, depending on the genetic materials used in the study, the diversity of rice germplasms and the complexity of the genetic basis of heterosis.  相似文献   

2.
 Complementary recessive genes hwd1 and hwd2 controlling hybrid breakdown (weakness of F2 and later generations) were mapped in rice using RFLP markers. These genes produce a plant that is shorter and has fewer tillers than normal plants when the two loci have only one or no dominant allele at both loci. A cultivar with two dominant alleles at the hwd1 locus and a cultivar with two dominant alleles at the hwd2 locus were crossed with a double recessive tester line. Linkage analysis was carried out for each gene independently in two F2 populations derived from these crosses. hwd1 was mapped on the distal region of rice genetic linkage map for chromosome 10, flanked by RFLP markers C701 and R2309 at a distance of 0.9 centiMorgans (cM) and 0.6 cM, respectively. hwd2 was mapped in the central region of rice genetic linkage map for chromosome 7, tightly linked with 4 RFLP markers without detectable recombination. The usefulness of RFLP mapping and map information for the genes controlling reproductive barriers are discussed in the context of breeding using diverse rice germplasm, especially gene introduction by marker-aided selection.  相似文献   

3.
The indica, japonica and intermediary types of de-differentiated microspores from indica-japonica hybrids were identified with 11 subspecies-differentiating RELP probes in rice (Oryza sativa L.). The results showed that the distribution of indica, japonica and intermediary types of de-differentiated microspores could be easily detected in a simple and quick way using the RFLP method. Moreover, the microspores from the same hybrid but inoculated onto different media, or microspores from different hybrids when inoculated onto the same medium, often displayed distinctive distribution curves of de-differentiated microspores types, indicating that the media employed in this experiment had high selectivity for the de-differentiation of certain types of microspores. The application of the RELP method to de-differentiated microspore identification is of great theoretical and practical significance in rice doubled-haploid breeding. Received: 27 February 1996 / Accepted: 14 June 1996  相似文献   

4.
 This study was intended to investigate the extent of genetic differentiation in parental lines of rice hybrids and to analyze the genetic basis underlying the fertility phenomenon in distant crosses. Two subsets of rice material (111 entries in total) were used, including 81 doubled-haploid (DH) lines and 30 Indica and Japonica rice varieties or lines (as a control). The DH lines was derived from a heterotic Indica/Japonica cross (Gui630/02428) by anther culture. The materials in the control represent a broad spectrum of the Asian cultivated rice gene pool including landraces, primitive cultivars, historically important cultivars, modern elite cultivars, super rice and parents of superior hybrids. In accordance with the NC II design, 57 out of the DH lines were test-crossed to two important wide compatibility lines: photoperiod-sensitive genetic male sterile (PGMS) line N422s and thermo-sensitive genetic male sterile (TGMS) line Peiai64s. The F1s and their parents, 182 entries in total, were examined for the performance of seven traits in a replicated field trial. All the rice materials was surveyed for polymorphisms using 92 RFLP markers selected from two published molecular marker linkage maps. Genotypes of the F1 hybrids at the molecular-marker loci were deduced from the parental genotypes. The analysis showed that there were two types of genetic differentiation in the two subsets of rice material; that is, qualitative differentiation in the control and quantitative differentiation in the DH lines. In addition, favorable genic interactions (both intra- or inter-locus) contributed to better increase the fertility in hybrids of distant crosses through incorporation of a wide-compatibility line as the female parent. Favorable genic interactions can be applied in hybrid rice breeding programs by selecting parents with an appropriate extent of genetic differentiation. Received: 5 June 1997 / Accepted: 10 September 1997  相似文献   

5.
 A molecular map of rice consisting of 231 amplified fragment length polymorphisms (AFLPs), 212 restriction fragment length polymorphisms (RFLPs), 86 simple-sequence length polymorphisms (SSLPs), five isozyme loci, and two morphological mutant loci [phenol staining of grain (Ph), semi-dwarf habit (sd-1)] has been constructed using an F11 recombinant inbred (RI) population. The mapping population consisted of 164 RI lines and was developed via single-seed descent from an intercross between the genetically divergent parents Milyang 23 (M) (tongil type) and Gihobyeo (G) ( japonica type). A subset of previously mapped RFLP and SSLP markers were used to construct the map framework. The AFLP markers were derived from ten EcoRI(+2) and MseI(+3) primer combinations. All marker types were well distributed throughout the 12 chromosomes. The integrated map covered 1814 cM, with an average interval size of 3.4 cM. The MG map is a cornerstone of the Korean Rice Genome Research Program (KRGRP) and is being continuously refined through the addition of partially sequenced cDNA markers derived from an immature-seed cDNA library developed in Korea, and microsatellite markers developed at Cornell. The population is also being used for quantitative trait locus (QTL) analysis and as the basis for marker-assisted variety development. Received: 24 June 1997 / Accepted: 25 November 1997  相似文献   

6.
 Low-temperature-sensitive sterility (LTSS) has become one of the major obstacles in indica-japonica hybrid rice breeding. In this study, we determined, using RFLP markers, the genetic basis of LTSS in two populations derived from crosses between indica and japonica parents, the BC1F1 of 3037/02428//3037 and the F2 of 3037/02428. The fertility segregation in the two populations under low-temperature conditions was used as a measurement of the temperature sensitivity of the various genotypes in the populations. A RFLP survey of bulked extremes from the BC1F1 population identified three genomic regions, two on chromosome 1 and one on chromosome 12, that were likely to contain genes for LTSS (or Ste loci). One-way ANOVA and QTL analysis using a total of 19 markers from these three genomic regions resolved three Ste loci in the BC1F1 population and two Ste loci in the F2 population. On the basis of chromosomal location these loci were distinct from those governing wide-compatibility identified in previous studies. Two- and three-way ANOVA showed that these loci acted essentially independent of each other in conditioning LTSS. The main mode of gene action was an interaction between the indica and the japonica alleles within each locus. For each respective locus this resulted in a drastic fertility reduction in the heterozygote state relative to the homozygote state. The results have significant implications in indica-japonica hybrid rice breeding programs. Received : 10 April 1996 / Accepted: 2 June 1997  相似文献   

7.
Molecular divergence and hybrid performance in rice   总被引:42,自引:0,他引:42  
This study was undertaken to determine the relationship between genetic distance of the parents based on molecular markers and F1 performance in a set of diallel crosses involving eight commonly used parental lines in hybrid rice production. The F1s and their parents were measured for five traits including heading date, plant height, straw weight, grain yield and biomass. The parental lines were assayed for DNA polymorphisms using two classes of markers: 140 probes for restriction fragment length polymorphisms (RFLPs) and 12 simple sequence repeats (SSRs), resulting in a total of 105 polymorphic markers well spaced along the 12 rice chromosomes. SSRs detected more polymorphism than RFLPs among the eight lines. A cluster analysis based on marker genotypes separated these eight lines into three groups which agree essentially with the available pedigree information. Correlations were mostly low between general heterozygosity based on all the markers and F1 performance and heterosis. In contrast, very high correlations were detected between midparent heterosis and specific heterozygosity based on the markers that detected significant effects for all the five traits; these correlations may have practical utility in predicting heterosis. The analyses also suggest the existence of two likely heterotic groups in the rice germplasm represented by these eight lines.  相似文献   

8.
 Ninety-four newly developed microsatellite markers were integrated into existing RFLP framework maps of four rice populations, including two doubled haploid, a recombinant inbred, and an interspecific backcross population. These simple sequence repeats (SSR) were predominantly poly(GA) motifs, targetted because of their abundance in rice. They were isolated from a previously described sheared library and a newly constructed enzyme-digested library. Differences in the average length of poly(GA) tracts were observed for clones isolated from the two libraries. The length of GA motifs averaged 21 repeat units for clones isolated from the Tsp-509-digested library, while motifs averaged 17 units for clones from the sheared library. There was no evidence of clustering of microsatellite markers near centromeres or telomeres. Mapping of the 94 newly developed markers as well as of 27 previously reported microsatellites provided genome-wide coverage of the 12 chromosomes, with an average distance of 1 SSLP (simple sequence repeat polymorphism) per 16–20 cM. Received: 13 February 1997/Accepted: 28 February 1997  相似文献   

9.
Forty fourth single-copy RFLP markers were used to evaluate the genetic diversity of 122 accessions of common wild rice (CWR, Oryza rufipogon Griff.) and 75 entries of cultivated rice (Oryza sativa L. ) from more than ten Asian countries. A comparison of the parameters showing genetic diversity, including the percentage of polymorphic loci (P), the average number of alleles per locus (A), the number of genotypes (Ng), the average heterozygosity (Ho) and the average genetic multiplicity (Hs) of CWR and indica and japonica subspecies of cultivated rice from different countries and regions, indicated that CWR from China possesses the highest genetic diversity, followed by CWR from South Asia and Southeast Asia. The genetic diversity of CWR from India is the second highest. Although the average gene diversity (Hs)of the South Asian CWR is higher than that of the Southeast Asian CWR, its percentage of polymorphic loci (P), number of alleles (Na) and number of genotypes (Ng) are all smaller. It was also found that the genetic diversity of cultivated rice is obviously lower than that of CWR. At the 44 loci investigated, the number of polymorphic loci of cultivated rice is only 3/4 that of CWR, while the number of alleles, 60%, and the number of genotypes is about 1/2 that of CWR. Of the two subspecies studied, the genetic diversity of indica is higher than that of japonica. The average heterozygosity of the Chinese CWR is the highest among all the entries studied. The average heterozygosity of CWR is about two-times that of cultivated rice. It is suggested that during the course of evolution from wild rice to cultivated rice, many alleles were lost through natural and human selection, leading to the lower heterozygosity and genetic diversity of the cultivated rice. Received: 19 May 1999 / Accepted: 26 April 2000  相似文献   

10.
The rice cultivar Chubu 32 possesses a high level of partial resistance to leaf blast. The number and chromosomal location of genes conferring this resistance were detected by restriction fragment length polymorphism (RFLP) linkage mapping and quantitative trait locus (QTL) analysis. For the mapping, 149 F3 lines derived from the cross between rice cultivar Norin 29, with a low level of partial resistance, and Chubu 32 were used, and their partial resistance to leaf blast was assessed in upland nurseries. A linkage map covering six chromosomes and consisting of 36 RFLP markers was constructed. In the map, only one significant QTL (LOD>2.0) for partial resistance was detected on chromosome 11. This QTL explained 45.6% of the phenotypic variation. The segregation ratio of the F3 lines was 3:1 for partial resistance to susceptibility. These results suggest that the partial resistance in Chubu 32 is controlled by a major gene. Received: 15 March 2001 / Accepted: 13 August 2001  相似文献   

11.
The growing number of rice microsatellite markers warrants a comprehensive comparison of allelic variability between the markers developed using different methods, with various sequence repeat motifs, and from coding and non-coding portions of the genome. We have performed such a comparison over a set of 323 microsatellite markers; 194 were derived from genomic library screening and 129 were derived from the analysis of rice-expressed sequence tags (ESTs) available in public DNA databases. We have evaluated the frequency of polymorphism between parental pairs of six inter- subspecific crosses and one inter-specific cross widely used for mapping in rice. Microsatellites derived from genomic libraries detected a higher level of polymorphism than those derived from ESTs contained in the GenBank database (83.8% versus 54.0%). Similarly, the other measures of genetic variability [the number of alleles per locus, polymorphism information content (PIC), and allele size ranges] were all higher in genomic library-derived microsatellites than in their EST-database counterparts. The highest overall degree of genetic diversity was seen in GA-containing microsatellites of genomic library origin, while the most conserved markers contained CCG- or CAG-trinucleotide motifs and were developed from GenBank sequences. Preferential location of specific motifs in coding versus non-coding regions of known genes was related to observed levels of microsatellite diversity. A strong positive correlation was observed between the maximum length of a microsatellite motif and the standard deviation of the molecular-weight of amplified fragments. The reliability of molecular weight standard deviation (SDmw) as an indicator of genetic variability of microsatellite loci is discussed. Received: 5 May 1999 / Accepted: 16 August 1999  相似文献   

12.
We have constructed a molecular linkage map of pepper (Capsicum spp.) in an interspecific F2 population of 107 plants with 150 RFLP and 430 AFLP markers. The resulting linkage map consists of 11 large (206–60.3 cM) and 5 small (32.6–10.3 cM) linkage groups covering 1,320 cM with an average map distance between framework markers of 7.5 cM. Most (80%) of the RFLP markers were pepper-derived clones, and these markers were evenly distributed across the genome. By using 30 primer combinations, we were able to generate 444 AFLP markers in the F2 population. The majority of the AFLP markers clustered in each linkage group, although PstI/MseI markers were more evenly distributed than EcoRI/MseI markers within the linkage groups. Genes for the biosynthesis of carotenoids and capsaicinoids were mapped on our linkage map. This map will provide the basis of studying secondary metabolites in pepper. Received: 20 October 1999 / Accepted: 3 July 2000  相似文献   

13.
Significant segregation of spikelet fertility occurred in an F2 population derived from a spikelet fertility-normal F1 hybrid produced by a cross between Palawan, a japonica variety, and IR42, an indica variety. To identify factors controlling the fertility segregation, we used 104 RFLP markers covering all 12 rice chromosomes to investigate the association of spikelet fertility and marker segregation. We found that the segregation of two sets of gene pairs was significantly (P < 0.001) associated with fertility segregation. The first pair of genes was linked to RFLP marker RG778 on chromosome 12 and RFLP markers RG690/RG369 on chromosome 1. A significant reduction in fertility was observed when the plants were homozygote at RG778 with the indica allele as well as homozygote at RG690/RG369 with the japonica allele. The second pair of genes was linked to RG218 on chromosome 12 and RG650 on chromosome 7, respectively. The recombinant homozygote at these two loci showed a significant reduction on spikelet fertility. The non-allelic interaction effect was further modified by a gene linked to RG778, resulting in even lower fertility. The results of this study provides the first evidence of chromosomal localization of sporophytic sterility genes whose interaction can result in a reduction of spikelet fertility in the F2 derived from fertility-normal F1.  相似文献   

14.
Primer pairs flanking ten chloroplast microsatellite loci, originally identified in Oryza sativa cv Nipponbare, were evaluated for amplification and allelic diversity using a panel of 13 diverse cultivars of rice (O. sativa), 19 accessions of wild rice (three O. officinalis, five O. latifolia, five O. minuta, four O. australiensis, one O. brachyantha and one O. ridleyi) and eight other Gramineae species (maize, teosinte, wheat, oat, barley, pearl millet, sorghum and sugarcane). Amplified products were obtained for all samples at nine out of ten loci. Among the rice cultivars, the number of alleles per locus ranged from one to four, with monomorphic patterns observed at five loci. The average polymorphism information content (PIC) value at the other five (polymorphic) loci was 0.54 among the 13 cultivars. When wild rice and the other Gramineae species were compared based on the proportion of shared alleles, their phylogenetic relationships were in agreement with previous studies using different types of markers; however, the magnitude of the differences based on chloroplast microsatellites underestimated the genetic distance separating these divergent species and genera. A sequence-based comparison of homologous regions of the rice and maize chloroplast genomes revealed that, while a high level of microsynteny is evident, the occurrence of actively evolving microsatellite motifs in specific regions of the rice chloroplast genome appears to be mainly a species or genome-specific phenomenon. Thus the chloroplast primer pairs used in this study bracketed mutationally active microsatellite motifs in rice but degenerate, interrupted motifs or highly conserved, mutationally inert motifs in distantly related genera. Received: 17 March 1999 / Accepted: 11 November 1999  相似文献   

15.
Crop productivity on acid soil is restricted by multiple abiotic stress factors. Aluminum (Al) tolerance seems to be a key to productivity on soil with a pH below 5.0, but other factors such as Mn toxicity and the deficiency of P, Ca and Mg also play a role. The development of Al-tolerant genotypes of rice is an urgent necessity for improving crop productivity in developing countries. Inhibition of root growth is a primary and early symptom of Al toxicity. The present study was conducted to identify genetic factors controlling the aluminum tolerance of rice. Several parameters related to Al tolerance, most importantly the relative root growth under Al stress versus non-stress conditions, were scored in 188 F3 selfed families from a cross between an Al-tolerant Vietnamese local variety, Chiembau, and an Al-susceptible improved variety, Omon269–65. The two varieties are both Oryza sativa ssp. indica, but showed a relatively high level of DNA polymorphism, permitting the assembly of an RFLP map consisting of 164 loci spanning 1,715.8 cM, and covering most of the rice genome. A total of nine different genomic regions on eight chromosomes have been implicated in the genetic control of root and shoot growth under aluminum stress. By far the greatest effects on aluminum tolerance were associated with the region near WG110 on chromosome 1. This region does not seem to correspond to most of the genes that have been mapped for aluminum tolerance in other species, nor do they correspond closely to one another. Most results, both from physiological studies and from molecular mapping studies, tend to suggest that aluminum tolerance is a complex multi-genic trait. The identification of DNA markers (such as WG110) that are diagnostic for aluminum tolerance in particular gene pools provides an important starting point for transferring and pyramiding genes that may contribute to the sustainable improvement of crop productivity in aluminum-rich soils. The isolation of genes responsible for aluminum tolerance is likely to be necessary to gain a comprehensive understanding of this complex trait. Received: 29 March 2000 / Accepted: 16 August 2000  相似文献   

16.
 A sesquidiploid hybrid (PPS, 2n=32) between Nicotiana plumbaginifolia (PP, 2n=20) and N. sylvestris (SS, 2n=24) was backcrossed to N. plumbaginifolia to produce monosomic alien addition lines. A total of 89 2n=21 plants, each containing two sets of N. plumbaginifolia chromosomes and a single N. sylvestris chromosome, were obtained in the BC1 and BC2 generations. These plants were classified into 12 groups based on morphological characteristics. The N. sylvestris chromosomes in these plants were identified by RFLP and karyotype analyses. Among the 84 probes tested, 20 could not detect N. sylvestris-specific DNA bands, and the remaining 64 were assigned to 9 normal and 6 aberrant synteny groups. The 9 normal synteny groups corresponded to chromosomes 2, 4, 5, 6, 7, 8, 9, 10 and 12, respectively. Four aberrant synteny groups were the result of chromosome translocations, and 2 were deletions. Received: 10 April 1996 / Accepted: 5 July 1996  相似文献   

17.
18.
Nearly 900 SSRs (simple sequence repeats) were identified among 15,000 ESTs (expressed sequence tags) belonging to bread wheat ( Triticum aestivum L.). The SSRs were defined by their minimum length, which ranged from 14 to 21 bp. The maximum length ranged from 24 to 87 bp depending upon the length of the repeat unit itself (1–7 bp). The average density of SSRs was one SSR per 9.2 kb of EST sequence screened. The trinucleotide repeats were the most abundant SSRs detected. As a representative sample, 78 primer pairs were designed, which were also used to screen the dbEST entries for Hordeum vulgare and Triticum tauschii (donor of the D-genome of cultivated wheat) using a cut-off E (expectation) value of 0.01. On the basis of in silico analysis, up to 55.12% of the primer pairs exhibited transferability from Triticum to Hordeum, indicating that the sequences flanking the SSRs are not only conserved within a single genus but also between related genera in Poaceae. Primer pairs for the 78 SSRs were synthesized and used successfully for the study of (1) their transferability to 18 related wild species and five cereal species (barley, oat, rye, rice and maize); and (2) polymorphism between the parents of four mapping populations available with us. A subset of 20 EST-SSR primers was also used to assess genetic diversity in a collection of 52 elite exotic wheat genotypes. This was done with a view to compare their utility relative to other molecular markers (gSSRs, AFLPs, and SAMPL) previously used by us for the same purpose with the same set of 52 bread wheat genotypes. Although only a low level of polymorphism was detected, relative to that observed with genomic SSRs, the study suggested that EST-SSRs can be successfully used for a variety of purposes, and may actually prove superior to SSR markers extracted from genomic libraries for diversity estimation and transferability.Communicated by R. Hagemann  相似文献   

19.
Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.).   总被引:87,自引:0,他引:87  
A total of 2414 new di-, tri- and tetra-nucleotide non-redundant SSR primer pairs, representing 2240 unique marker loci, have been developed and experimentally validated for rice (Oryza sativa L.). Duplicate primer pairs are reported for 7% (174) of the loci. The majority (92%) of primer pairs were developed in regions flanking perfect repeats > or = 24 bp in length. Using electronic PCR (e-PCR) to align primer pairs against 3284 publicly sequenced rice BAC and PAC clones (representing about 83% of the total rice genome), 65% of the SSR markers hit a BAC or PAC clone containing at least one genetically mapped marker and could be mapped by proxy. Additional information based on genetic mapping and "nearest marker" information provided the basis for locating a total of 1825 (81%) of the newly designed markers along rice chromosomes. Fifty-six SSR markers (2.8%) hit BAC clones on two or more different chromosomes and appeared to be multiple copy. The largest proportion of SSRs in this data set correspond to poly(GA) motifs (36%), followed by poly(AT) (15%) and poly(CCG) (8%) motifs. AT-rich microsatellites had the longest average repeat tracts, while GC-rich motifs were the shortest. In combination with the pool of 500 previously mapped SSR markers, this release makes available a total of 2740 experimentally confirmed SSR markers for rice, or approximately one SSR every 157 kb.  相似文献   

20.
通过交配型和甲霜灵抗性以及线粒体DNA单倍型、SSR和AFLP基因型分析对40个超级生理小种菌株进行了遗传多样性分析。在被测菌株中发现了A1、A2和自育3种不同类型的交配型。其中,A1和自育型菌株数量多,分别为21株和14株,而A2交配型仅5株。甲霜灵抗性测定检测出高抗菌株26株,敏感菌株14株。线粒体DNA单倍型测定出Ia型和IIa型两种,比例接近1:1。基于5个基因座被测40个超级生理小种菌株共鉴定出了7种SSR基因型。利用6对荧光引物共检测到258条AFLP谱带,其中多态性谱带204条,多态性为79.1%。将供试的40个菌株划分为38个基因型,几乎每个菌株都为1个特有基因型。而且,我国南方和北方超级生理小种群体存在着明显的遗传差异。结果表明我国致病疫霉超级生理小种具有丰富的遗传多样性,可以推断致病疫霉中的任何小种都可在多个抗病基因的强大选择压力下,在短时间内通过与之对应的无毒基因快速突变而成为超级生理小种。当前对致病疫霉生理小种的鉴定及监测对生产上利用抗病品种防控晚疫病的指导意义不大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号