首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detection of expiratory flow limitation during exercise in COPD patients   总被引:7,自引:0,他引:7  
Koulouris, Nickolaos G., Ioanna Dimopoulou, PäiviValta, Richard Finkelstein, Manuel G. Cosio, and J. Milic-Emili.Detection of expiratory flow limitation during exercise in COPDpatients. J. Appl. Physiol. 82(3):723-731, 1997.The negative expiratory pressure (NEP) method wasused to detect expiratory flow limitation at rest and at differentexercise levels in 4 normal subjects and 14 patients with chronicobstructive pulmonary disease (COPD). This method does not requireperformance of forced expirations, nor does it require use of bodyplethysmography. It consists in applying negative pressure (5cmH2O) at the mouth during early expiration and comparing the flow-volume curve of the ensuing expiration with that of the preceding control breath. Subjects in whomapplication of NEP does not elicit an increase in flow during part orall of the tidal expiration are considered flow limited. The fournormal subjects were not flow limited up to 90% of maximal exercisepower output(max).Five COPD patients were flow limited at rest, 9 were flow limited atone-third max, and 12 were flow limited at two-thirdsmax. Whereasin all patients who were flow limited at rest the maximalO2 uptake was below the normallimits, this was not the case in most of the other patients. Inconclusion, NEP provides a rapid and reliable method to detectexpiratory flow limitation at rest and during exercise.

  相似文献   

2.
Activity of respiratory pump and upper airway muscles during sleep onset   总被引:9,自引:0,他引:9  
Ventilationdecreases at sleep onset. This change is initiated abruptly at -electroencephalographic transitions. The aim of this study was todetermine the contributions of reduced activity in respiratory pumpmuscles and upper airway dilator muscles to this change. Surfaceelectromyograms over the diaphragm (Di) and intercostal muscles andfine-wire intramuscular electrodes in genioglossus (GG) and tensorpalatini (TP) muscles were recorded in nine healthy young men. It wasshown that phasic Di and both phasic and tonic TP activities were lowerduring  than during  activity. Breath-by-breath analysis of thechanges at - transitions during the sleep-onset period showed anumber of changes. At - transitions, phasic activity of Di,intercostal, and GG muscles fell and rose again, and phasic and tonicactivities of TP fell and remained at low levels during . With astate transition from  to , the phasic and tonic activities ofthe Di, GG, and TP increased dramatically. It is now clear that thefall in ventilation that occurs with sleep is related to a fall inactivities of both upper airway dilator muscles and respiratory pumpmuscles.

  相似文献   

3.
Yan, Sheng, Pawel Sliwinski, and Peter T. Macklem.Association of chest wall motion and tidal volume responses during CO2 rebreathing.J. Appl. Physiol. 81(4):1528-1534, 1996.The purpose of this study is to investigate theeffect of chest wall configuration at end expiration on tidal volume(VT) response duringCO2 rebreathing. In a group of 11 healthy male subjects, the changes in end-expiratory andend-inspiratory volume of the rib cage (Vrc,E andVrc,I, respectively) and abdomen (Vab,E and Vab,I, respectively) measured by linearizedmagnetometers were expressed as a function of end-tidalPCO2(PETCO2). The changes inend-expiratory and end-inspiratory volumes of the chest wall(Vcw,E and Vcw,I,respectively) were calculated as the sum of the respectiverib cage and abdominal volumes. The magnetometer coils were placed atthe level of the nipples and 1-2 cm above the umbilicus andcalibrated during quiet breathing against theVT measured from apneumotachograph. TheVrc,E/PETCO2 slope was quite variable among subjects. It was significantly positive (P < 0.05) in fivesubjects, significantly negative in four subjects(P < 0.05), and not different fromzero in the remaining two subjects. TheVab,E/PETCO2slope was significantly negative in all subjects(P < 0.05) with a much smallerintersubject variation, probably suggesting a relatively more uniformrecruitment of abdominal expiratory muscles and a variable recruitmentof rib cage muscles during CO2rebreathing in different subjects. As a group, the meanVrc,E/PETCO2,Vab,E/PETCO2, andVcw,E/PETCO2slopes were 0.010 ± 0.034, 0.030 ± 0.007, and0.020 ± 0.032 l / Torr, respectively;only theVab,E/PETCO2 slope was significantly different from zero. More interestingly, theindividualVT/PETCO2slope was negatively associated with theVrc,E/PETCO2(r = 0.68,P = 0.021) and Vcw,E/PETCO2slopes (r = 0.63,P = 0.037) but was not associated withtheVab,E/PETCO2slope (r = 0.40, P = 0.223). There was no correlation oftheVrc,E/PETCO2 andVcw,E/PETCO2slopes with age, body size, forced expiratory volume in 1 s, orexpiratory time. The groupVab,I/PETCO2 slope (0.004 ± 0.014 l / Torr) was not significantlydifferent from zero despite theVT nearly being tripled at theend of CO2 rebreathing. Inconclusion, the individual VTresponse to CO2, althoughindependent of Vab,E, is a function ofVrc,E to the extent that as theVrc,E/PETCO2slope increases (more positive) among subjects, theVT response toCO2 decreases. These results maybe explained on the basis of the respiratory muscle actions andinteractions on the rib cage.

  相似文献   

4.
We measured theeffects of dissociating inspiratory and expiratory positive pressure(PI andPE, respectively) on theinspiratory flow limitation pattern and on genioglossus (GG) activityin nine sleep apnea patients. Measurements were made at two different levels of PI with stepwiseincreases in PE. Flow-limitedbreaths were observed during each recording session. In six of ninesubjects, maximal inspiratory flow (Imax)was correlated with the difference betweenPI andPE (correlations were negativein 5 subjects, positive in 1 subject). In three other patients,Imaxwas not influenced by the amount of pressure difference. A positiverelationship between tonic and/or phasic GG electromyographicactivities and PI-PEdifference was observed at least at onePI level in all patients. Thiscorrelation was observed independently of the presence or absence ofany relationship betweenImaxand the amount of pressure difference. Our results suggest thatincreasing thePI-PE difference (i.e., decreasingPE) may be associated with asignificant worsening in inspiratory flow limitation and that theImax-pressure difference behavior is not dependent on the GGelectromyographic-pressure response.

  相似文献   

5.
Moon, Jon K., and Nancy F. Butte. Combined heart rateand activity improve estimates of oxygen consumption and carbon dioxideproduction rates. J. Appl. Physiol.81(4): 1754-1761, 1996.Oxygen consumption(O2) andcarbon dioxide production (CO2) rates were measuredby electronically recording heart rate (HR) and physical activity (PA).Mean daily O2 andCO2 measurements by HR andPA were validated in adults (n = 10 women and 10 men) with room calorimeters. Thirteen linear and nonlinear functions of HR alone and HR combined with PA were tested as models of24-h O2 andCO2. Mean sleepO2 andCO2 were similar to basalmetabolic rates and were accurately estimated from HR alone[respective mean errors were 0.2 ± 0.8 (SD) and0.4 ± 0.6%]. The range of prediction errorsfor 24-h O2 andCO2 was smallestfor a model that used PA to assign HR for each minute to separateactive and inactive curves(O2, 3.3 ± 3.5%; CO2, 4.6 ± 3%). There were no significant correlations betweenO2 orCO2 errors and subject age,weight, fat mass, ratio of daily to basal energy expenditure rate, orfitness. O2,CO2, and energy expenditurerecorded for 3 free-living days were 5.6 ± 0.9 ml · min1 · kg1,4.7 ± 0.8 ml · min1 · kg1,and 7.8 ± 1.6 kJ/min, respectively. Combined HR and PA measured 24-h O2 andCO2 with a precisionsimilar to alternative methods.

  相似文献   

6.
Rudolph, Alan S., Anthony Sulpizio, Paul Hieble, VictorMacdonald, Mark Chavez, and Giora Feuerstein. Liposomeencapsulation attenuates hemoglobin-induced vasoconstriction in rabbitarterial segments. J. Appl. Physiol.82(6): 1826-1835, 1997.Free hemoglobin (Hb) induces a potentvasoconstrictor response that may limit its therapeutic application asa red blood cell replacement. We have investigated whetherencapsulation of stroma-free Hb (SFHb) or cross-linked Hb (-Hb)in liposomes modulates Hb vasoactivity in isolated blood vessels.Relaxation of rabbit thoracic vessels was measured before and afterexposure to acellular SFHb, -Hb, and liposome-encapsulated SFHbor -Hb. SFHb and -Hb caused significant inhibition ofcarbachol-induced relaxation at 0.5 mg/dl, whereas encapsulationinhibited vessel relaxation at 30- to 60-fold higher Hb concentrations.The contractile response of rabbit ear arterial segments to electricalstimulation in the presence of acellular -Hb resulted in a 150%increase (EC150) in contractileamplitude at 0.23 mg/dl, whereas theEC150 for encapsulated -Hbwas 13.7 mg/dl. Mechanistic studies of the vasoconstrictor activity ofHb demonstrated that acellular -Hb had no effect onnorepinephrine release in the rabbit ear artery. In addition, neitheracellular nor encapsulated -Hb preparations inhibited endothelialnitric oxide (NO) synthase activity isolated from bovine pulmonaryartery. However, inhibition of vessel relaxation by acellular orencapsulated -Hb was reversed by the NO donor S-nitrosylpenacillamine, implicatingHb-NO binding as a possible mechanism for the vasoconstrictor response.In vitro stopped-flow kinetic studies of Hb-NO binding showed similarrates of reaction for conversion of oxyhemoglobin to methemoglobin(metHb; <2 ms), followed by rapid conversion of metHb to NO-Hb (300 ms) for both acellular and encapsulated -Hb, demonstrating thatliposome encapsulation does not retard NO-Hb binding. The attenuatedvasoactivity of encapsulated Hb may, therefore, result from the limitedaccess of encapsulated Hb to NO imposed by the physical size of theliposome and reduced penetration of Hb across the vascular endothelium.

  相似文献   

7.
Fee, Lawrence L., Richard M. Smith, and Michael B. English.Enhanced ventilatory and exercise performance in athletes withslight expiratory resistive loading. J. Appl.Physiol. 83(2): 503-510, 1997.We determined thecardiorespiratory and performance effects of slight (1.5-3.0cmH2O) expiratory resistiveloading (ERL). Twenty-eight highly fit [peakO2 uptake(O2 peak) = 63.6 ± 1.3 ml · kg1 · min1]athletes (age = 33.5 ± 1.3 yr) performed pairedO2 peak cycle ergometer tests (control vs. ERL). End-expiratory lung volume wasseparately determined in a subset of subjects(n = 12) at steady-state 75% maximumpower output (POmax) and wasfound to increase (0.67 ± 0.29 liter) with ERL. In theO2 peaktests, peak expiratory pressure at the mouth, mean inspiratory flow, minute ventilation, and O2 pulsewere greater with ERL at every intensity level (i.e., 75, 80, 85, and90% POmax). Increased minute ventilation was largely due to a trend toward increased tidal volume(P < 0.05 at 80%POmax).O2 uptake was greater at 90%POmax with ERL. IncreasedO2 pulse with ERL at comparativeworkloads suggests that stroke volume was augmented with ERL. Also,with ERL, athletes attained higherO2 peak (63.0 ± 1.4 vs. 60.1 ± 1.3 ml · kg1 · min1)and greater POmax (352.0 ± 9.9 vs. 345.7 ± 9.5 W). We conclude that elevated end-expiratory lungvolume in response to slight ERL during strenuous exercise served toattenuate both airflow and blood flow limitations, which enhancedexercise capacity.

  相似文献   

8.
Hyde, Richard W., Edgar J. Geigel, Albert J. Olszowka, JohnA. Krasney, Robert E. Forster II, Mark J. Utell, and Mark W. Frampton.Determination of production of nitric oxide by the lower airwaysof humanstheory. J. Appl. Physiol.82(4): 1290-1296, 1997.Exercise and inflammatory lung disorderssuch as asthma and acute lung injury increase exhaled nitric oxide(NO). This finding is interpreted as a rise in production of NO by thelungs (NO)but fails to take into account the diffusing capacity for NO(DNO) that carries NO into thepulmonary capillary blood. We have derived equations to measureNO from thefollowing rates, which determine NO tension in the lungs(PL) at any moment from 1) production(NO);2) diffusion, whereDNO(PL) = rate of removal by lung capillary blood; and3) ventilation, whereA(PL)/(PB  47) = the rate of NO removal by alveolar ventilation(A) and PB is barometric pressure. During open-circuit breathingwhen PL is not in equilibrium,d/dtPL[VL/(PB  47)] (where VL is volumeof NO in the lower airways) = NO  DNO(PL)  A(PL)/(PB  47). When PL reaches asteady state so that d/dt = 0 andA iseliminated by rebreathing or breath holding, then PL = NO/DNO.PL can be interpreted as NOproduction per unit of DNO. Thisequation predicts that diseases that diminishDNO but do not alterNO willincrease expired NO levels. These equations permit precise measurementsof NO thatcan be applied to determining factors controlling NO production by thelungs.

  相似文献   

9.
Dysoxia canbe defined as ATP flux decreasing in proportion toO2 availability with preserved ATPdemand. Hepatic venous -hydroxybutyrate-to-acetoacetate ratio(-OHB/AcAc) estimates liver mitochondrial NADH/NAD and may detectthe onset of dysoxia. During partial dysoxia (as opposed to anoxia),however, flow may be adequate in some liver regions, diluting effluentfrom dysoxic regions, thereby rendering venous -OHB/AcAc unreliable.To address this concern, we estimated tissue ATP whilegradually reducing liver blood flow of swine to zero in a nuclearmagnetic resonance spectrometer. ATP flux decreasing withO2 availability was taken asO2 uptake(O2) decreasing inproportion to O2 delivery(O2);and preserved ATP demand was taken as increasingPi/ATP.O2, tissuePi/ATP, and venous -OHB/AcAcwere plotted againstO2to identify critical inflection points. Tissue dysoxia required meanO2for the group to be critical for bothO2 and forPi/ATP. CriticalO2values for O2 andPi/ATP of 4.07 ± 1.07 and 2.39 ± 1.18 (SE) ml · 100 g1 · min1,respectively, were not statistically significantly different but notclearly the same, suggesting the possibility that dysoxia might havecommenced after O2 begandecreasing, i.e., that there could have been"O2 conformity." CriticalO2for venous -OHB/AcAc was 2.44 ± 0.46 ml · 100 g1 · min1(P = NS), nearly the same as that forPi/ATP, supporting venous -OHB/AcAc as a detector of dysoxia. All issues considered, tissue mitochondrial redox state seems to be an appropriate detector ofdysoxia in liver.

  相似文献   

10.
Smaller lungs in women affect exercise hyperpnea   总被引:2,自引:0,他引:2  
We subjected 29 healthy young women (age: 27 ± 1 yr) with a wide range of fitness levels [maximal oxygenuptake (O2 max): 57 ± 6 ml · kg1 · min1;35-70ml · kg1 · min1]to a progressive treadmill running test. Our subjects had significantly smaller lung volumes and lower maximal expiratory flow rates, irrespective of fitness level, compared with predicted values for age-and height-matched men. The higher maximal workload in highly fit(O2 max > 57 ml · kg1 · min1,n = 14) vs. less-fit(O2 max < 56 ml · kg1 · min1,n = 15) women caused a higher maximalventilation (E) with increased tidal volume (VT)and breathing frequency (fb) atcomparable maximal VT/vitalcapacity (VC). More expiratory flow limitation (EFL; 22 ± 4% ofVT) was also observed duringheavy exercise in highly fit vs. less-fit women, causing higherend-expiratory and end-inspiratory lung volumes and greater usage oftheir maximum available ventilatory reserves.HeO2 (79% He-21%O2) vs. room air exercise trialswere compared (with screens added to equalize external apparatusresistance). HeO2 increasedmaximal expiratory flow rates (20-38%) throughout the range ofVC, which significantly reduced EFL during heavy exercise. When EFL wasreduced with HeO2, VT,fb, andE (+16 ± 2 l/min) weresignificantly increased during maximal exercise. However, in theabsence of EFL (during room air exercise),HeO2 had no effect onE. We conclude that smaller lungvolumes and maximal flow rates for women in general, and especiallyhighly fit women, caused increased prevalence of EFL during heavyexercise, a relative hyperinflation, an increased reliance onfb, and a greater encroachment onthe ventilatory "reserve." Consequently,VT andE are mechanically constrained duringmaximal exercise in many fit women because the demand for highexpiratory flow rates encroaches on the airways' maximum flow-volumeenvelope.

  相似文献   

11.
Van der Touw, T., A. B. H. Crawford, and J. R. Wheatley.Effects of a synthetic lung surfactant on pharyngeal patency inawake human subjects. J. Appl.Physiol. 82(1): 78-85, 1997.We examined theeffects of separate applications of saline and a synthetic lungsurfactant preparation (Surf; Exosurf Neonatal) into the supraglotticairway (SA) on the anteroposterior pharyngeal diameter(Dap) and theairway pressures required to close (Pcl) and reopen (Pop) theSA in five awake normal supine subjects. Dap, Pcl, and Popwere determined during lateral X-ray fluoroscopy and voluntary glotticclosure when pressure applied to the SA lumen was decreasedfrom 0 to 20 cmH2O and thenincreased to +20 cmH2O. After Surfapplication and relative to control,Dap was largerfor most of the applied pressures, Pcl decreased (12.3 ± 1.9 to 18.7 ± 0.9 cmH2O;P < 0.01), Pop decreased (13.4 ± 1.9 to 6.0 ± 3.4 cmH2O;P < 0.01), and genioglossus electromyographic activity did not change (P > 0.05).Saline had no effect. These observations suggest that pharyngealintraluminal surface properties are important in maintaining pharyngealpatency. We propose that surfactants enhance pharyngeal patency byreducing surface tension and adhesive forces acting on intraluminal SAsurfaces.

  相似文献   

12.
The energy cost of physical activity (EEA) has been estimated toaccount for 5-17% of total energy expenditure (TEE) in neonates. To directly measure EEA, a force plate was developed and validated tomeasure work outputs ranging from 0.3 to 40 kcal · kg1 · day1.By use of this force plate plus indirect calorimetry, TEE and EEA weremeasured and correlated with five activity states in 24 infants withgestational age of 31.6 ± 0.5 (SE) wk and postnatal age of 24.8 ± 3.7 days. TEE and EEA were 69.2 ± 1.5 and 2.4 ± 0.2 kcal · kg1 · day1,respectively. EEA per state was 0.5 ± 0.0 (quiet sleep), 2.4 ± 0.2 (active sleep), 2.8 ± 0.4 (quiet awake), 7.5 ± 0.8 (active awake), and 15.1 ± 2.3 (crying)kcal · kg1 · day1.This provides the first direct measurement of the contribution ofphysical activity to TEE in preterm infants and will enable measurementof caloric expenditure from muscle activity in various diseaseconditions and development of nursing strategies to minimize unnecessary energy losses.

  相似文献   

13.
Chilibeck, P. D., D. H. Paterson, D. A. Cunningham, A. W. Taylor, and E. G. Noble. Muscle capillarization,O2 diffusion distance, andO2 kinetics in old andyoung individuals. J. Appl. Physiol.82(1): 63-69, 1997.The relationships between muscle capillarization, estimated O2diffusion distance from capillary to mitochondria, andO2 uptake(O2) kineticswere studied in 11 young (mean age, 25.9 yr) and 9 old (mean age, 66.0 yr) adults. O2kinetics were determined by calculating the time constants () forthe phase 2 O2 adjustment to andrecovery from the average of 12 repeats of a 6-min, moderate-intensityplantar flexion exercise. Muscle capillarization was determined fromcross sections of biopsy material taken from lateral gastrocnemius.Young and old groups had similarO2 kinetics(O2-on = 44 vs. 48 s;O2-off = 33 vs. 44 s, for young and old, respectively), muscle capillarization, andestimated O2 diffusion distances.Muscle capillarization, expressed as capillary density or averagenumber of capillary contacts per fiber/average fiber area, and theestimates of diffusion distance were significantly correlated toO2-off kinetics in theyoung (r = 0.68 to 0.83;P < 0.05). We conclude that1) capillarization andO2 kinetics during exerciseof a muscle group accustomed to everyday activity (e.g., walking) arewell maintained in old individuals, and2) in the young, recovery of O2 after exercise isfaster, with a greater capillary supply over a given muscle fiber areaor shorter O2 diffusion distances.

  相似文献   

14.
Treppo, Steven, Srboljub M. Mijailovich, and José G. Venegas. Contributions of pulmonary perfusion and ventilation toheterogeneity in A/measured by PET. J. Appl. Physiol. 82(4): 1163-1176, 1997. To estimate the contributions of the heterogeneity in regionalperfusion () and alveolar ventilation(A) to that of ventilation-perfusionratio (A/), we haverefined positron emission tomography (PET) techniques to image localdistributions of andA per unit of gas volume content(s and sA,respectively) and VA/ indogs. sA was assessed in two ways:1) the washout of 13NN tracer after equilibrationby rebreathing (sAi), and2) the ratio of an apneic image after a bolus intravenousinfusion of 13NN-saline solution to an image collectedduring a steady-state intravenous infusion of the same solution(sAp).sAp was systematically higher than sAi in allanimals, and there was a high spatial correlation betweens andsAp in both body positions(mean correlation was 0.69 prone and 0.81 supine) suggesting thatventilation to well-perfused units was higher than to those poorlyperfused. In the prone position, the spatial distributions ofs, sAp, and A/ were fairlyuniform with no significant gravitational gradients; however, in thesupine position, these variables were significantly more heterogeneous,mostly because of significant gravitational gradients (15, 5.5, and10%/cm, respectively) accounting for 73, 33, and 66% of thecorresponding coefficient of variation (CV)2 values. Weconclude that, in the prone position, gravitational forces in blood andlung tissues are largely balanced out by dorsoventral differences inlung structure. In the supine position, effects of gravity andstructure become additive, resulting in substantial gravitationalgradients in s andsAp, with the higherheterogeneity inA/ caused by agravitational gradient in s, only partially compensated by that in sA.

  相似文献   

15.
Beaumont, Maurice, Damien Lejeune, Henri Marotte, AlainHarf, and Frédéric Lofaso. Effects of chest wallcounterpressures on lung mechanics under high levels of CPAP in humans.J. Appl. Physiol. 83(2): 591-598, 1997.We assessed the respective effects of thoracic (TCP) andabdominal/lower limb (ACP) counterpressures on end-expiratory volume(EEV) and respiratory muscle activity in humans breathing at 40 cmH2O of continuous positiveairway pressure (CPAP). Expiratory activity was evaluated on the basis of the inspiratory drop in gastric pressure (Pga) from its maximal end-expiratory level, whereas inspiratory activity was evaluated on thebasis of the transdiaphragmatic pressure-time product (PTPdi). CPAPinduced hyperventilation (+320%) and only a 28% increase in EEVbecause of a high level of expiratory activity (Pga = 24 ± 5 cmH2O), contrasting with areduction in PTPdi from 17 ± 2 to 9 ± 7 cmH2O · s1 · cycle1during 0 and 40 cmH2O of CPAP,respectively. When ACP, TCP, or both were added, hyperventilationdecreased and PTPdi increased (19 ± 5, 21 ± 5, and 35 ± 7 cmH2O · s1 · cycle1,respectively), whereas Pga decreased (19 ± 6, 9 ± 4, and 2 ± 2 cmH2O, respectively). Weconcluded that during high-level CPAP, TCP and ACP limit lunghyperinflation and expiratory muscle activity and restore diaphragmaticactivity.

  相似文献   

16.
Zhang, Rong, Julie H. Zuckerman, James A. Pawelczyk, andBenjamin D. Levine. Effects of head-down-tilt bed rest on cerebralhemodynamics during orthostatic stress. J. Appl.Physiol. 83(6): 2139-2145, 1997.Our aim was todetermine whether the adaptation to simulated microgravity (µG)impairs regulation of cerebral blood flow (CBF) during orthostaticstress and contributes to orthostatic intolerance. Twelvehealthy subjects (aged 24 ± 5 yr) underwent 2 wk of 6°head-down-tilt (HDT) bed rest to simulate hemodynamic changes thatoccur when humans are exposed to µG. CBF velocity in the middlecerebral artery (transcranial Doppler), blood pressure, cardiac output(acetylene rebreathing), and forearm blood flow were measured at eachlevel of a ramped protocol of lower body negative pressure (LBNP;15, 30, and 40 mmHg × 5 min, 50 mmHg × 3 min, then 10 mmHg every 3 min to presyncope) beforeand after bed rest. Orthostatic tolerance was assessed by using thecumulative stress index (CSI; mmHg × minutes) for the LBNPprotocol. After bed rest, each individual's orthostatic tolerance wasreduced, with the group CSI decreased by 24% associated with greaterdecreases in cardiac output and greater increases in systemic vascularresistance at each level of LBNP. Before bed rest, mean CBF velocitydecreased by 14, 10, and 45% at 40 mmHg, 50 mmHg, andmaximal LBNP, respectively. After bed rest, mean velocity decreased by16% at 30 mmHg and by 21, 35, and 39% at 40 mmHg,50 mmHg, and maximal LBNP, respectively. Compared with pre-bedrest, post-bed-rest mean velocity was less by 11, 10, and 21% at30, 40, and 50 mmHg, respectively. However, therewas no significant difference at maximal LBNP. We conclude thatcerebral autoregulation during orthostatic stress is impaired byadaptation to simulated µG as evidenced by an earlier and greater fall in CBF velocity during LBNP. We speculate that impairment ofcerebral autoregulation may contribute to the reduced orthostatic tolerance after bed rest.

  相似文献   

17.
Kinetics of oxygen uptake at the onset of exercise in boys and men   总被引:3,自引:0,他引:3  
The objective of this study was to compare theO2 uptake(O2) kinetics at the onsetof heavy exercise in boys and men. Nine boys, aged 9-12 yr, and 8 men, aged 19-27 yr, performed a continuous incremental cyclingtask to determine peak O2(O2 peak).On 2 other days, subjects performed each day four cycling tasks at 80 rpm, each consisting of 2 min of unloaded cycling followed twice bycycling at 50%O2 peak for 3.5 min,once by cycling at 100%O2 peak for 2 min,and once by cycling at 130%O2 peak for 75 s.O2 deficit was not significantlydifferent between boys and men (respectively, 50%O2 peak task: 6.6 ± 11.1 vs. 5.5 ± 7.3 ml · min1 · kg1;100% O2 peak task:28.5 ± 8.1 vs. 31.8 ± 6.3 ml · min1 · kg1;and 130%O2 peaktask: 30.1 ± 5.7 vs. 35.8 ± 5.3 ml · min1 · kg1).To assess the kinetics, phase I was excluded from analysis. Phase IIO2 kinetics could bedescribed in all cases by a monoexponential function. ANOVA revealed nodifferences in time constants between boys and men (respectively, 50%O2 peaktask: 22.8 ± 5.1 vs. 26.4 ± 4.1 s; 100%O2 peak task: 28.0 ± 6.0 vs. 28.1 ± 4.4 s; and 130%O2 peak task: 19.8 ± 4.1 vs. 20.7 ± 5.7 s). In conclusion, O2 deficit and fast-componentO2 on-transientsare similar in boys and men, even at high exercise intensities, whichis in contrast to the findings of other studies employing simplermethods of analysis. The previous interpretation that children relyless on nonoxidative energy pathways at the onset of heavy exercise isnot supported by our findings.

  相似文献   

18.
We have recently demonstrated that changes inthe work of breathing during maximal exercise affect leg blood flow andleg vascular conductance (C. A. Harms, M. A. Babcock, S. R. McClaran, D. F. Pegelow, G. A. Nickele, W. B. Nelson, and J. A. Dempsey. J. Appl. Physiol. 82: 1573-1583,1997). Our present study examined the effects of changesin the work of breathing on cardiac output (CO) during maximalexercise. Eight male cyclists [maximalO2 consumption(O2 max):62 ± 5 ml · kg1 · min1]performed repeated 2.5-min bouts of cycle exercise atO2 max. Inspiratorymuscle work was either 1) at controllevels [inspiratory esophageal pressure (Pes): 27.8 ± 0.6 cmH2O],2) reduced via a proportional-assistventilator (Pes: 16.3 ± 0.5 cmH2O), or 3) increased via resistive loads(Pes: 35.6 ± 0.8 cmH2O).O2 contents measured in arterialand mixed venous blood were used to calculate CO via the direct Fickmethod. Stroke volume, CO, and pulmonaryO2 consumption(O2) were not different(P > 0.05) between control andloaded trials atO2 max but were lower(8, 9, and 7%, respectively) than control withinspiratory muscle unloading atO2 max. Thearterial-mixed venous O2difference was unchanged with unloading or loading. We combined thesefindings with our recent study to show that the respiratory muscle work normally expended during maximal exercise has two significant effectson the cardiovascular system: 1) upto 14-16% of the CO is directed to the respiratory muscles; and2) local reflex vasoconstriction significantly compromises blood flow to leg locomotor muscles.

  相似文献   

19.
Bothend-inspiratory (EIO) and end-expiratory (EEO) airway occlusions areused to calculate the strength of the Hering-Breuer inflation reflex(HBIR) in infants. However, the influence of the timing of suchocclusions is unknown, as is the extent to which changes in volumewithin and above the tidal range affect this reflex. The purpose ofthis study was to compare both techniques and to evaluate the volumedependency of the HBIR in healthy, sleeping infants up to 1 yr of age.The strength of the HBIR was expressed as the ratio of expiratory orinspiratory time during EIO or EEO, respectively, to that recordedduring spontaneous breathing, i.e., as the "inhibitory ratio"(IR). Paired measurements of the EIO and EEO in 26 naturally sleepingnewborn and 15 lightly sedated infants at ~1 yr showed nostatistically significant differences in the IR according to technique:mean (95% CI) of the difference (EIO  EEO) being0.02 (0.17, 0.13) during the first week of life and 0.04 (0.14, 0.22) at 1 yr. During tidalbreathing, a volume threshold of ~4 ml/kg was required to evoke theHBIR. Marked volume and age dependency were observed. In newborninfants, occlusions at ~10 ml/kg during sighs always resulted in anIR > 4, whereas a similar response was only evoked at 25 ml/kg inolder infants. Age-related changes in the volume threshold may reflectmaturational changes in the control of breathing and respiratorymechanics throughout the first year of life.

  相似文献   

20.
To analyze the effect of hyperthermia on thevascular response, the isometric response of isolated rabbit femoralartery segments was recorded at 37°C and hyperthermia (41 and44°C). Contraction to potassium (5 × 103-5 × 102 M) was significantlygreater at 41 and 44 than at 37°C and increased by inhibition ofnitric oxide (NO) synthesis withN-nitro-L-arginine(L-NNA;104 M) or endotheliumremoval at 37°C but not at 41 or 44°C. Norepinephrine (109-104M) produced a concentration-dependent contraction greater at 41 or 44 than at 37°C and not modified by endothelium removal orL-NNA at either temperature.Phenylephrine(109-104M) produced a contraction increased by warming to 44°C but not to41°C. The specific2-adrenoceptor agonist BHT-920produced a weak contraction, reduced by the1-adrenoceptor antagonist prazosin (106 M) andincreased at 44°C but not at 41°C. The concentration-dependent contraction to endothelin-1 (ET-1;1011-107M) was increased by warming to 41 and 44°C and by endothelium removal or L-NNA at 37°C butnot at 41 or 44°C. Response to ET-1 was reduced by endothelinETA-receptor antagonist BQ-123(105 M) andETB-receptor antagonist BQ-788(105 M). In arteriesprecontracted with ET-1(108-3 × 108 M), relaxation tosodium nitroprusside(108-104M) was increased at 41 and 44°C vs. at 37°C, but that of ACh (108-104M) or adenosine(108-104M) was not different at all temperatures studied. Relaxation to ACh,but not adenosine, was reduced similarly byL-NNA at all temperaturesstudied. These results suggest hyperthermia in muscular arteries mayinhibit production of, and increase dilatation to, NO, resulting inunchanged relaxation to ACh and increased constriction to KCl and ET-1,and may increase constriction to stimulation of1-adrenoceptors byNO-independent mechanisms.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号