首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mg-ATP dependent electrogenic proton transport, monitored with fluorescent acridine orange, 9-aminoacridine, and oxonol V, was investigated in a fraction enriched with potassium transporting goblet cell apical membranes of Manduca sexta larval midgut. Proton transport and the ATPase activity from the goblet cell apical membrane exhibited similar substrate specificity and inhibitor sensitivity. ATP and GTP were far better substrates than UTP, CTP, ADP, and AMP. Azide and vanadate did not inhibit proton transport, whereas 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide were inhibitors. The pH gradient generated by ATP and limiting its hydrolysis was 2-3 pH units. Unlike the ATPase activity, proton transport was not stimulated by KCl. In the presence of 20 mM KCl, a proton gradient could not be developed or was dissipated. Monovalent cations counteracted the proton gradient in an order of efficacy like that for stimulation of the membrane-bound ATPase activity: K+ = Rb+ much greater than Li+ greater than Na+ greater than choline (chloride salts). Like proton transport, the generation of an ATP dependent and azide- and vanadate-insensitive membrane potential (vesicle interior positive) was prevented largely by 100 microM N,N'-dicyclohexylcarbodiimide and 30 microM N-ethylmaleimide. Unlike proton transport, the membrane potential was not affected by 20 mM KCl. In the presence of 150 mM choline chloride, the generation of a membrane potential was suppressed, whereas the pH gradient increased 40%, indicating an anion conductance in the vesicle membrane. Altogether, the results led to the following new hypothesis of electrogenic potassium transport in the lepidopteran midgut. A vacuolar-type electrogenic ATPase pumps protons across the apical membrane of the goblet cell, thus energizing electroneutral proton/potassium antiport. The result is a net active and electrogenic potassium flux.  相似文献   

2.
F R Gorga 《Biochemistry》1985,24(24):6783-6788
N,N'-Dicyclohexylcarbodiimide (DCCD), a reagent that reacts with carboxyl groups under mild conditions, irreversibly inhibits (Na+,K+)-ATPase activity (measured by using 1 mM ATP) with a pseudo-first-order rate constant of 0.084 min-1 (0.25 mM DCCD and 37 degrees C). The partial activities of the enzyme, including (Na+,K+)-ATPase at 1 microM ATP, Na+-ATPase, and the formation of enzyme-acyl phosphate (E-P), decayed at about one-third the rate at which (Na+,K+)-ATPase at 1 mM ATP was lost. The formation of E-P from inorganic phosphate was unaffected by DCCD while K+-phosphatase activity decayed at the same rate as (Na+,K+)-ATPase measured at 1 mM ATP. The enzyme's substrates (i.e., sodium, potassium, magnesium, and ATP) all decreased the rate of DCCD inactivation of (Na+,K+)-ATPase activity measured at either 1 mM or 1 microM ATP. The concentration dependence of the protection afforded by each substrate is consistent with its binding at a catalytically relevant site. DCCD also causes cross-linking of the enzyme into species of very high molecular weight. This process occurs at about one-tenth the rate at which (Na+,K+)-ATPase activity measured at 1 mM ATP is lost, too slowly to be related to the loss of enzymatic activity. Labeling of the enzyme with [14C]DCCD shows the incorporation of approximately 1 mol of DCCD per mole of large subunit; however, the incorporation is independent of the loss of enzymatic activity. The results presented here suggest that (Na+,K+)-ATPase contains two carboxyl groups that are essential for catalytic activity, in addition to the previously known aspartate residue which is involved in formation of E-P.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Bass gill microsomal preparations contain a Mg2+-dependent Na+-stimulated ATPase activity in the absence of K+, whose characteristics are compared with those of the (Na+ + K+)-ATPase of the same preparations. The activity at 30 degrees C is 11.3 mumol Pi X mg-1 protein X hr-1 under optimal conditions (5 mM MgATP, 75 mM Na+, 75 mM HEPES, pH 6.0) and exhibits a lower pH optimum than the (Na+ + K+)-ATPase. The Na+ stimulation of ATPase is only 17% inhibited by 10-3M ouabain and completely abolished by 2.5 mM ethacrinic acid which on the contrary cause, respectively, 100% and 34% inhibition of the (Na+ + K+)-ATPase. Both Na+-and (Na+ + K+)-stimulated activities can hydrolyze nucleotides other than ATP in the efficiency order ATP greater than CTP greater than UTP greater than GTP and ATP greater than CTP greater than GPT greater than UTP, respectively. In the presence of 10(-3)M ouabain millimolar concentrations of K+ ion lower the Na+ activation (90% inhibition at 40 mM K+). The Na+-ATPase is less sensitive than (Na+ + K+)-ATPase to the Ca2+ induced inhibition as the former is only 57.5% inhibited by a concentration of 1 X 10(-2)M which completely suppresses the latter. The thermosensitivity follows the order Mg2+--greater than (Na+ + K+)--greater than Na+-ATPase. A similar break of the Arrhenius plot of the three enzymes is found. Only some of these characteristics do coincide with those of a Na+-ATPase described elsewhere. A presumptive physiological role of Na+-ATPase activity in seawater adapted teleost gills is suggested.  相似文献   

4.
We have prepared human blood lymphocyte membrane vesicles of high purity in sufficient quantity for detailed enzyme analysis. This was made possible by the use of plateletpheresis residues, which contain human lymphocytes in amounts equivalent to thousands of milliliters of blood. The substrate specificity and the kinetics of the cofactor and substrate requirements of the human lymphocyte membrane Na+, K+-ATPase activity were characterized. The Na+, K+-ATPase did not hydrolyze ADP, AMP, ITP, UTP, GTP or TTP. The mean ATPase stimulated by optimal concentrations of Na+ and K+ (Na+, K+-ATPase) was 1.5 nmol of P(i) hydrolyzed, microgram protein-1, 30 min-1 (range 0.9-2.1). This activity was completely inhibited by the cardiac glycoside, ouabain. The K(m) for K+ was approximately 1.0 mM and the K(m) for Na+ was approximately 15 mM. Active Na+ and K+ transport and ouabain-sensitive ATP production increase when lymphocytes are stimulated by PHA. Na+, K+-ATPase activity must increase also to transduce energy for the transport of Na+ and K+. Some studies have reported that PHA stimulates the lymphocyte membrane ATPase directly. We did not observe stimulation of the membrane Na+, K+-ATPase when either lymphocytes or lymphocyte membranes were treated with mitogenic concentrations of PHA. Moreover, PHA did not enhance the reaction velocity of the Na+, K+-ATPase when studied at the K(m) for ATP, Na+, K+ OR Mg++, indicating that it does not alter the affinity of the enzyme for its substrate or cofactors. Thus, our data indicate that the increase in ATPase activity does not occur as a direct result of PHA action on the cell membrane.  相似文献   

5.
1. Sea bass kidney microsomal preparations contain two Mg2+ dependent ATPase activities: the ouabain-sensitive (Na+ + K+)-ATPase and an ouabain-insensitive Na+-ATPase, requiring different assay conditions. The (Na+ + K+)-ATPase under the optimal conditions of pH 7.0, 100 mM Na+, 25 mM K+, 10 mM Mg2+, 5 mM ATP exhibits an average specific activity (S.A.) of 59 mumol Pi/mg protein per hr whereas the Na+-ATPase under the conditions of pH 6.0, 40 mM Na+, 1.5 mM MgATP, 1 mM ouabain has a maximal S.A. of 13.9 mumol Pi/mg protein per hr. 2. The (Na+ + K+)-ATPase is specifically inhibited by ouabain and vanadate; the Na+-ATPase specifically by ethacrynic acid and preferentially by frusemide; both activities are similarly inhibited by Ca2+. 3. The (Na+ + K+)-ATPase is specific for ATP and Na+, whereas the Na+-ATPase hydrolyzes other substrates in the efficiency order ATP greater than GTP greater than CTP greater than UTP and can be activated also by K+, NH4+ or Li+. 4. Minor differences between the two activities lie in the affinity for Na+, Mg2+, ATP and in the thermosensitivity. 5. The comparison between the two activities and with what has been reported in the literature only partly agree with our findings. It tentatively suggests that on the one hand two separate enzymes exist which are related to Na+ transport and, on the other, a distinct modulation in vivo in different tissues.  相似文献   

6.
Using a coupled transport assay which detects only those ATPase molecules functionally inserted into the platelet dense granule membrane, we have characterized the inhibitor sensitivity, substrate specificity, and divalent cation requirements of the granule H+ pump. Under identical assay conditions, the granule ATPase was insensitive to concentrations of NaN3, oligomycin, and efrapeptin which almost completely inhibit ATP hydrolysis by mitochondrial membranes. The granule ATPase was inhibited by dicyclohexylcarbodiimide but only at concentrations much higher than those needed to maximally inhibit mitochondrial ATPase. Vanadate (VO3-) ion and ouabain also failed to inhibit granule ATPase activity at concentrations which maximally inhibited purified Na+,K+-ATPase. Two alkylating agents, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and N-ethylmaleimide both completely inhibited H+ pumping by the granule ATPase under conditions where ATP hydrolysis by mitochondrial membranes or Na+,K+-ATPase was hardly affected. These results suggest that the H+-pumping ATPase of platelet granule membrane may belong to a class of ion-translocating ATPases distinct from both the phosphoenzyme-type ATPases present in plasma membrane and the F1F0-ATPases of energy-transducing membranes.  相似文献   

7.
Electrophorus electroplax microsomes were examined for Ca2+- and Mg2+-dependent ATPase activity. In addition to the previously reported low-affinity ATPase, a high-affinity (Ca2+,Mg2+)-ATPase was found. At low ATP and Mg2+ concentrations (200 microM or less), the high-affinity (Ca2+,Mg2+)-ATPase exhibits an activity of 18 nmol Pi mg-1 min-1 with 0.58 microM Ca2+. At higher ATP concentrations (3 mM), the low-affinity Ca2+-ATPase predominates, with an activity of 28 nmol Pi mg-1 min-1 with 1 mM Ca2+. In addition, Mg2+ can also activate the low-affinity ATPase (18 nmol Pi mg-1 min-1). The high-affinity ATPase hydrolyzes ATP at a greater rate than it does GTP, ITP, or UTP and is insensitive to ouabain, oligomycin, or dicyclohexylcarbodiimide inhibition. The high-affinity enzyme is inhibited by vanadate, trifluoperazine, and N-ethylmaleimide. Added calmodulin does not significantly stimulate enzyme activity; rinsing the microsomes with EGTA does not confer calmodulin sensitivity. Thus the high-affinity ATPase from electroplax microsomes is similar to the (Ca2+,Mg2+)-ATPase reported to be associated with Ca2+ transport, based on its affinity for calcium and its response to inhibitors. The low-affinity enzyme hydrolyzes all tested nucleoside triphosphates, as well as diphosphates, but not AMP. Vanadate and N-ethylmaleimide do not inhibit the low-affinity enzymes. The low-affinity enzyme reflects a nonspecific nucleoside triphosphatase, probably an ectoenzyme.  相似文献   

8.
ATPase activity was localized by means of Wachstein-Meisel's method in rat sciatic nerve fibers. Using controls with ouabain, the presence of alpha + (neuronal) Na+, K+-ATPase was examined. The enzyme occurs in the ATPase reaction of the myelin-forming membranes, axoplasm and Schwann cell cytoplasm. Its presence in the Schwann cell plasma membrane is only admittable. The ATPase activity of the compact myelin and axolemma was exclusively of alpha + type of Na+, K+-ATPase.  相似文献   

9.
Bass gill microsomal preparations contain both a Na+, K+ and Mg2+-dependent ATPase, which is completely inhibited by 10(-3)M ouabain and 10(-2)M Ca2+, and also a ouabain insensitive ATP-ase activity in the presence of both Mg2+ and Na+. Under the optimal conditions of pH 6.5, 100 mM Na+, 20 mM K+, 5 mM ATP and 5 mM Mg2+, (Na+ + K+)-ATPase activity at 30 degrees C is 15.6 mumole Pi hr/mg protein. Bass gill (Na+ + K+)-ATPase is similar to other (Na+ + K+)-ATPases with respect to the sensitivity to ionic strength, Ca2+ and ouabain and to both Na+/K+ and Mg2+/ATP optimal ratios, while pH optimum is lower than poikilotherm data. The enzyme requires Na+, whereas K+ can be replaced efficiently by NH+4 and poorly by Li+. Both Km and Vm values decrease in the series NH+4 greater than K+ greater than Li+. The break of Arrhenius plot at 17.7 degrees C is close to the adaptation temperature. Activation energies are scarcely different from each other and both lower than those generally reported. The Km for Na+ poorly decreases as the assay temperature lowers. The comparison with literature data aims at distinguishing between distinctive and common features of bass gill (Na+ + K+)-ATPase.  相似文献   

10.
The ATP production of human erythrocytes in the steady state (approximately 2 mmoles . 1 cells-1 . h-1, 37 degrees C, pHi 7.2) is maintained by glycolysis and the ATP consumption is essentially limited to the cell membrane. About 25% of the ATP consumption is used for ion transport ATPases. The bulk of the ATP consuming processes in intact erythrocytes remains poorly understood. "Isotonic" erythrocyte membranes prepared under approximate intracellular conditions after freeze-thaw hemolysis have high (Ca2+, Mg2+)-ATPase activities (80% of the total membrane ATPase activity). There is a great discrepancy between the high capacity of the (Ca2+, Mg2+)-ATPase in isotonic membranes and the actual activity in the intact cell. The (Ca2+, Mg2+)-ATPase of isotonic membranes has a "high" Ca2+-affinity (Ka less than 0.5 microM) and a "low" Mg-ATP affinity (Km approximately 760 microM). This state of (Ca2+, Mg2+)-ATPase is caused by the association of calmodulin and 30000 Dalton polypeptides (ATP affinity modulator protein). Hypotonic washings of isotonic membranes result in a loss of the 30 kD polypeptides. EGTA (0.5 mM) extracts derived from isotonic membranes contain the 30 kD modulator protein and restore the properties of the (Ca2+, Mg2+)-ATPase of hypotonic membrane preparations to the isotonic characteristics. The Mg-ATP affinity modulator protein is assumed to form a complex with calmodulin and (Ca2+, Mg2+)-ATPase.  相似文献   

11.
G E Dean  P J Nelson  G Rudnick 《Biochemistry》1986,25(17):4918-4925
The ATP-dependent H+ pump from adrenal chromaffin granules is, like the platelet-dense granule H+ pump, essentially insensitive to the mitochondrial ATPase inhibitors sodium azide, efrapeptin, and oligomycin and also insensitive to vanadate and ouabain, agents that inhibit the Na+,K+-ATPase. The chromaffin granule H+ pump is, however, sensitive to low concentrations of NEM (N-ethylmaleimide) and Nbd-Cl (7-chloro-4-nitro-2,1,3-benzoxadiazole). These transport ATPases may thus belong to a new class of ATP-dependent ion pumps distinct from F1F0-and phosphoenzyme-type ATPases. Comparisons of ATP hydrolysis with ATP-dependent serotonin transport suggest that approximately 80% of the ATPase activity in purified chromaffin granule membranes is coupled to H+ pumping. Most of the remaining ATPase activity is due to contaminating mitochondrial ATPase and Na+,K+-ATPase. When extracted with cholate and octyl glucoside, the H+ pump is solubilized in a monodisperse form that retains NEM-sensitive ATPase activity. When reconstituted into proteoliposomes with crude brain phospholipid, the extracted enzyme recovers ATP-dependent H+ pumping, which shows the same inhibitor sensitivity and nucleotide dependence as the native pump. These data demonstrate that the predominant ATP hydrolase of chromaffin granule membrane is also responsible for ATP-driven amine transport and granule acidification in both native and reconstituted membranes.  相似文献   

12.
Two ATPase activities, a Na+-ATPase and a (Na+ + K+)-ATPase, have been found associated with sheets of basolateral plasma membranes from guinea-pig small intestinal epithelial cells. The specific activity of the former is 10-15% of the latter. The two ATPase activities differ in their affinity for Na+, their optimal pH, their K+ requirement and particularly in their behaviour in the presence of some inhibitors and of Ca2+. Thus the Na+-ATPase is refractory to ouabain but it is strongly inhibited by ethacrynic acid and furosemide, whilst the (Na+ + K+)-ATPase is totally suppressed by ouabain, partially by ethacrynic acid and refractory to furosemide. In addition, the Na+-ATPase is activated by micromolar concentrations of calcium and by resuspension of the membrane preparation at pH 7.8. The Na+-ATPase is only stimulated by sodium and to a lesser extent by lithium; however, this stimulation is independent of the anion accompanying Na+. The latter rules out the participation of an anionic ATPase. The relation between the characteristics of the sodium transport mechanism in basolateral membrane vesicles (Del Castillo, J.R. and Robinson, J.W.L. (1983) Experientia 39,631) and those of the two ATPase activities present in the same membranes, allow us to postulate the existence of two separate sodium pumps in this membranes. Each pump would derive the necessary energy for active ion transport from the hydrolysis of ATP, catalyzed by different ATPase systems.  相似文献   

13.
We characterized Mg(2+)-dependent ATPase activity in membranes from the renal cortex, the outer and inner stripes of the outer medulla, and papillary vesicles. In all regions, there was Mg(2+)-dependent ATPase activity that was resistant to oligomycin and vanadate and sensitive to N,N'-dicyclohexylcarbodiimide (DCCD), N-ethylmaleimide, and filipin. DCCD-Sensitive Mg(2+)-ATPase activity was highest in the inner stripe of the outer medulla and lowest in the cortex, with intermediate values in the outer stripe of the outer medulla and papilla. The Km for ATP, however, was similar among the different regions of the kidney. DCCD-Sensitive Mg(2+)-ATPase activity was critically dependent upon chloride with Km for Cl- in the range of 2-5 mM. In the presence of ATP, this ATPase was capable of H+ translocation, as assessed by acridine orange quenching. Inhibitors of ATPase activity prevented H+ translocation, which suggests that the Mg(2+)-ATPase represents, at least in part, an H(+)-ATPase. H+ transport was likewise critically dependent upon chloride, with similar Km. The effect of chloride on H+ translocation was blocked by the chloride channel inhibitor, diphenylamine-2 carboxylic acid. In the absence of chloride, H+ transport was abolished, but it could be partially restored by the creation of a favorable electric gradient by K+ and valinomycin. These studies demonstrate that the renal H(+)-ATPase exhibits different activities in various regions of the kidney. The ATPase activity and H+ translocation are critically dependent upon the presence of chloride, which suggests that chloride influences H+ translocation by dissipating the H+ gradient and acting at the catalytic site of the ATPase.  相似文献   

14.
The aim of this work was to develop a method for renal H+,K+-ATPase measurement based on the previously used Na+,K+-ATPase assay (Beltowski et al.: J Physiol Pharmacol.; 1998, 49: 625-37). ATPase activity was assessed by measuring the amount of inorganic phosphate liberated from ATP by isolated microsomal fraction. Both ouabain-sensitive and ouabain-resistant K+-stimulated and Na+-independent ATPase activity was detected in the renal cortex and medulla. These activities were blocked by 0.2 mM imidazolpyridine derivative, Sch 28080. The method for ouabain-sensitive H+,K+-ATPase assay is characterized by good reproducibility, linearity and recovery. In contrast, the assay for ouabain-resistant H+,K+-ATPase was unsatisfactory, probably due to low activity of this enzyme. Ouabain-sensitive H+,K+-ATPase was stimulated by K+ with Km of 0.26 +/- 0.04 mM and 0.69 +/- 0.11 mM in cortex and medulla, respectively, and was inhibited by ouabain (Ki of 2.9 +/- 0.3 microM in the renal cortex and 1.9 +/- 0.4 microM in the renal medulla) and by Sch 28080 (Ki of 1.8 +/- 0.5 microM and 2.5 +/- 0.9 microM in cortex and medulla, respectively). We found that ouabain-sensitive H+,K+-ATPase accounted for about 12% of total ouabain-sensitive activity in the Na+,K+-ATPase assay. Therefore, we suggest to use Sch 28080 during Na+,K+-ATPase measurement to block H+,K+-ATPase and improve the assay specificity. Leptin administered intraperitoneally (1 mg/kg) decreased renal medullary Na+,K+-ATPase activity by 32.1% at 1 h after injection but had no effect on H+,K+-ATPase activity suggesting that the two renal ouabain-sensitive ATPases are separately regulated.  相似文献   

15.
Urinary acidification by the turtle bladder is mediated by a proton ATPase located in the apical membrane. The present study describes a proton ATPase in the plasma membrane of a cell line of turtle bladder epithelial cells. In the presence of ouabain to inhibit Na+,K+-ATPase and in the absence of Ca2+ to inhibit Ca2+-ATPase, we measured ATPase activity of the plasma membranes of the cultured cells. This ATPase was resistant to oligomycin but sensitive to dicyclohexylcarbodiimide, N-ethylmaleimide, and vanadate. In the presence of ATP, the ATPase was capable of acidification as assessed by quenching of acridine orange. Acidification could not be elicited by other nucleotides (GTP, UTP). Acidification was inhibited by dicyclohexylcarbodiimide, N-ethylmaleimide, and vanadate but was not affected by replacement of Na+ by K+. The acidification response was dependent on the presence of chloride, abolished in the presence of gluconate, and inhibited partially by nitrate. Experiments utilizing the voltage-sensitive dye 3,3'-dipropylthiodicarbocyanine iodide showed that the proton ATPase was electrogenic and capable of responding to a favorable electric gradient. In summary, the turtle bladder epithelial cell line has a plasma membrane proton ATPase which is similar to the proton ATPase of turtle bladder epithelium and thus should allow purification and characterization of this enzyme.  相似文献   

16.
1. Branchial Na+K+-ATPase specific activity is some 20% greater in hyposaline adapted Opsanus beta than in SW specimens. 2. Ouabain insensitive ATPase (Mg2+-ATPase) specific activities were similar, while whole body activity differences in low salinity and SW adapted fish could be accounted for by the 30% difference in extractable gill protein. 3. NH+4 ion was 15% more effective at dephosphorylation of the microsomal Na-dependent phosphoenzyme than either Rb+ or K+, and revealed a maximal ATPase affinity (Km = 0.2 mM) within the physiological range of blood [K+]. 4. Similar properties as pH optima, ATP and Mg2+ Km's, ouabain sensitivity, percent recoveries and subcell distribution indicated that the NH+4-stimulation acts through the Na+ K+-ATPase carrier enzyme and may be responsible for the Na+/NH+4 exchange in Opsanus beta.  相似文献   

17.
An ATP-driven Cl- pump in the brain   总被引:2,自引:0,他引:2  
EDTA-treated microsomes prepared from rat brain mainly consisted of sealed membrane vesicles 200-500 nm in diameter and were rich in both Cl- -ATPase and Na+,K+-ATPase activities. Such Cl- -ATPase-rich membrane vesicles accumulated Cl- in an ATP-dependent and osmotically reactive manner in the presence of 1 nM ouabain. The Cl- uptake was maximally stimulated by ATP with a Km value of 1.5 mM; GTP, ITP, and UTP partially stimulated Cl- uptake, but CTP, beta, gamma-methylene ATP, ADP, and AMP did not. The ATP-dependent Cl- uptake was accelerated by an increase in the medium Cl- concentration with a Km value of 7.4 mM. Such stimulation of Cl- uptake by ATP was dependent on the pH of the medium, with an optimal pH of 7.4, and also on the temperature of the medium, with an optimal range of 37-42 degrees C. Ethacrynic acid dose dependently inhibited the ATP-dependent Cl- uptake with a concentration for half-maximal inhibition at 57 microM. N-ethylmaleimide (0.1 mM) completely inhibited and sodium vanadate (1 mM) partially inhibited the ATP-dependent Cl- uptake. The membrane vesicles did not accumulate H+ in the Cl- uptake assay medium. The ATP-dependent Cl- uptake profile agreed with that of Cl- -ATPase activity reported previously (Inagaki, C., Tanaka, T., Hara, M., and Ishiko, J. (1985) Biochem. Pharmacol. 34, 1705-1712), and this strongly supports the idea that Cl- -ATPase in the brain actively transports Cl-.  相似文献   

18.
Recent studies have suggested that the colonic H+,K+-ATPase (HKalpha2) can secrete either Na+ or H+ in exchange for K+. If correct, this view would indicate that the transporter could function as either a Na+ or a H+ pump. To investigate this possibility a series of experiments was performed using apical membranes from rat colon which were enriched in colonic H+,K+-ATPase protein. An antibody specific for HKalpha2 was employed to determine whether HKalpha2 functions under physiological conditions as a Na+-dependent or Na+-independent K+-ATPase in this same membrane fraction. K+-ATPase activity was measured as [gamma-32P]ATP hydrolysis. The Na+-dependent K+-ATPase accounted for approximately 80% of overall K+-ATPase activity and was characterized by insensitivity to Sch-28080 but partial sensitivity to ouabain. The Na+-independent K+-ATPase activity was insensitive to both Sch-28080 and ouabain. Both types of K+-ATPase activity substituted NH4+ for K+ in a similar manner. Furthermore, our results demonstrate that when incubated with native distal colon membranes, the blocking antibody inhibited dramatically Na+-dependent K+-ATPase activity. Therefore, these data demonstrate that HKalpha2 can function in native distal colon apical membranes as a Na+-dependent K+-ATPase. Elucidation of the role of the pump as a transporter of Na+ versus H+ or NH4+ versus K+ in vivo will require additional studies.  相似文献   

19.
A classical method of indirect immunofluorescence was applied on various kinds of lightly fixed and permeabilized cells to analyze the formation of the complexes between a nuclear antigen and its antibody (AAC). The amount of AAC decreased dramatically when the incubation with the first antibody was realized in the presence of ATP in a sodium-rich medium with 0.5 mM KCl. Addition of sodium vanadate, a general inhibitor of ATPases, ouabain or tetrabutylammonium ion, specific inhibitors of the Na+,K+-ATPase, prevented this effect. The established role of this enzyme is to increase free-K+ concentration and decrease free Na+ concentration in the cell. It is not surprising to find an ATPase still active since light fixation and permeabilization do not destroy phosphatases. But it is rather surprising to find something looking like Na+,K+-ATPase activity in permeabilized cells. The importance of potassium in this puzzling result is suggested by the fact that appearance of ACC was equally suppressed if the incubation was made in the absence of ATP in a potassium-rich medium without sodium. Results are discussed, taking into account the properties of cell-associated water and recently found interrelation between Na+,K+-ATPase and tubulin. In any case, the results seem interesting in the field of immunocytochemistry.  相似文献   

20.
The addition of nanomolar concentrations of free Fe2+, Mn2+, or Co2+ to rat liver plasma membranes resulted in an activation of ATP hydrolysis by these membranes which was not additive with the Ca2+-stimulated ATPase activity coupled to the Ca2+ pump. Detailed analysis showed that, if fact, (i) as for the stimulation of (Ca2+-Mg2+)-ATPase by Ca2+, activation of ATP hydrolysis by Fe2+, Mn3+, or Co2+ followed a cooperative mechanism involving two ions; (ii) two interacting sites for ATP were involved in the activation of both Fe2+- and Ca2+-stimulated ATPase activities; (iii) micromolar concentrations of magnesium caused the same dramatic inhibition of both activities; and (iv) the subcellular distribution of Fe2+-activated ATP hydrolysis activity corresponded to that of plasma membrane markers. This suggests that the (Ca2+-Mg2+)-ATPase might be stimulated not only by Ca2+, but also by Fe2+, Mn2+, or Co2+. However, interaction of (Ca2+-Mg2+)-ATPase with Fe2+, Mn2+, or Co2+ inhibited the Ca2+ pump activity. Furthermore, neither the formation of the phosphorylated intermediate of (Ca2+-Mg2+)-ATPase, nor ATP-dependent (59Fe) uptake could be detected in the presence of Fe2+ concentrations which stimulated ATP hydrolysis. We conclude that: (i) under the influence of certain metal ions, the Ca2+ pump in the liver plasma membrane may be switched to an uncoupled state which displays ATP hydrolysis activity, but does not insure ion transport; (ii) therefore the Ca2+ pump in liver plasma membranes specifically insures Ca2+ transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号