首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Clostridium perfringens commonly occurs in food and feed, can produce an enterotoxin frequently implicated in food-borne disease, and has a substantial negative impact on the poultry industry. As a step towards new approaches for control of this organism, we investigated the cell wall lysis system of C. perfringens bacteriophage phi3626, whose dual lysis gene cassette consists of a holin gene and an endolysin gene. Hol3626 has two membrane-spanning domains (MSDs) and is a group II holin. A positively charged beta turn between the two MSDs suggests that both the amino terminus and the carboxy terminus of Hol3626 might be located outside the cell membrane, a very unusual holin topology. Holin function was experimentally demonstrated by using the ability of the holin to complement a deletion of the heterologous phage lambda S holin in lambdadeltaSthf. The endolysin gene ply3626 was cloned in Escherichia coli. However, protein synthesis occurred only when bacteria were supplemented with rare tRNA(Arg) and tRNA(Ile) genes. Formation of inclusion bodies could be avoided by drastically lowering the expression level. Amino-terminal modification by a six-histidine tag did not affect enzyme activity and enabled purification by metal chelate affinity chromatography. Ply3626 has an N-terminal amidase domain and a unique C-terminal portion, which might be responsible for the specific lytic range of the enzyme. All 48 tested strains of C. perfringens were sensitive to the murein hydrolase, whereas other clostridia and bacteria belonging to other genera were generally not affected. This highly specific activity towards C. perfringens might be useful for novel biocontrol measures in food, feed, and complex microbial communities.  相似文献   

3.
Abstract: During the lytic cycle of most bacteriophages, a phage-encoded peptidoglycan-degrading activity is elaborated. At least four entirely distinct types of enzymes fulfill this role and are given the generic name 'endolysin'. Endolysins characterized to date are synthesized without a signal sequence and thus accumulate fully folded and active in the cytosol during the vegetative phase. Small membrane proteins are required in order for endolysins to gain access to the peptidoglycan. Because the available data suggest that the membrane lesion formed by these proteins is stable and non-specific, these proteins have been given the designation 'holins' ('hole'-formers). Analysis of the primary sequence suggests a simple membrane topology with two or more membrane-spanning helical domains and a highly charged, hydrophilic C-terminus. Comparison of the sequences of holins from phages of Gram-negative hosts suggests there are at least two major holin groups. Putative holin genes have also been found in bacteriophages of Gram-positive bacteria. Altogether, in phages of Eubacteria, 11 or more unrelated gene families which share the functional and structural characteristics of holins have been identified. Genetic and physiological analysis suggest that holins are primarily regulated at the level of function. Holin function is modulated in some cases by a second protein encoded by the holin gene. The primary regulation of holin function, however, appears to be intrinsic to the holin structure itself, since a missense allele of the S holin gene of phage λ has been found which abolishes the normal delay that allows the vegetative phase to generate a useful number of progeny.  相似文献   

4.
The two lysis genes cph1 and cpl1 of the Streptococcus pneumoniae bacteriophage Cp-1 coding for holin and lysozyme, respectively, have been cloned and expressed in Escherichia coli. Synthesis of the Cph1 holin resulted in bacterial cell death but not lysis. The cph1 gene was able to complement a lambda Sam mutation in the nonsuppressing E. coli HB101 strain to produce phage progeny, suggesting that the holins encoded by both phage genes have analogous functions and that the pneumococcal holin induces a nonspecific lesion in the cytoplasmic membrane. Concomitant expression of both holin and lysin of Cp-1 in E. coli resulted in cell lysis, apparently due to the ability of the Cpl1 lysozyme to hydrolyze the peptidoglycan layer of this bacterium. The functional analysis of the cph1 and cpl1 genes cloned in a pneumococcal mutant with a complete deletion of the lytA gene, which codes for the S. pneumoniae main autolysin, provided the first direct evidence that, in this gram-positive-bacterium system, the Cpl1 endolysin is released to its murein substrate through the activity of the Cph1 holin. Demonstration of holin function was achieved by proving the release of pneumolysin to the periplasmic fraction, which strongly suggested that the holin produces a lesion in the pneumococcal membrane.  相似文献   

5.
Most bacteriophages abruptly terminate their vegetative cycle by causing lysis of the host cell. The ssDNA phage phi X174 uses a single lysis gene, E, encoding a 91-amino-acid membrane protein that causes lysis of Escherichia coli by inhibiting MraY, a conserved enzyme of murein biosynthesis. Recessive mutations in the host gene slyD (sensitivity to lysis) absolutely block E-mediated lysis and phi X174 plaque formation. The slyD gene encodes a FKBP-type peptidyl-prolyl cis-trans isomerase (PPIase). To investigate the molecular basis of this unique FKBP-dependence, spontaneous plaque-forming mutants of phi X174 were isolated on a slyD lawn. All of these Epos ('plates on slyD') suppressors encode proteins with either a R3H or L19F change. The double mutant was also isolated and generated the largest plaques on the slyD lawn. A c-myc epitope tag sequence was incorporated into the parental E and Epos genes without effect on lytic function. Western blots and pulse-chase labelling experiments showed that both Epos and E are highly unstable in a slyD background; however, Epos is synthesized at a higher rate, allowing a lysis-sufficient level of Epos to accumulate. Our results indicate that SlyD is required for stabilizing the E protein and allowing it to accumulate to the levels required to exert its lytic effect. These data are discussed in terms of a model for the specific role of the SlyD PPIase in E folding, and of the use of the very strict SlyD- dependence phenotype for identifying elements of PPIase selectivity.  相似文献   

6.
Are the molecular strategies that control apoptosis conserved in bacteria?   总被引:11,自引:0,他引:11  
The Staphylococcus aureus cid and lrg operons have been shown to encode putative membrane proteins that are involved in the regulation of murein hydrolase activity and penicillin tolerance. Cid proteins enhance murein hydrolase activity and penicillin sensitivity, whereas Lrg proteins have an inhibitory effect on these processes. It has been proposed that the Cid and Lrg proteins function in a way analogous to bacteriophage-encoded holins and antiholins, respectively, which control the timing of bacteriophage-induced lysis. This article explores the possibility that the Cid-Lrg regulatory system controls bacterial programmed cell death using a molecular strategy that it is functionally analogous to that mediated by the eukaryotic Bcl-2 family of apoptosis regulatory proteins.  相似文献   

7.
Phage lambda lyses the host Escherichia coli at a precisely scheduled time after induction. Lysis timing is determined by the action of phage holins, which are small proteins that induce hole formation in the bacterium's cytoplasmic membrane. We present a two-stage nucleation model of lysis timing, with the nucleation of condensed holin rafts on the inner membrane followed by the nucleation of a hole within those rafts. The nucleation of holin rafts accounts for most of the delay of lysis after induction. Our simulations of this model recover the accurate lysis timing seen experimentally and show that the timing accuracy is optimal. An enhanced holin-holin interaction is needed in our model to recover experimental lysis delays after the application of membrane poison, and such early triggering of lysis is possible only after the inner membrane is supersaturated with holin. Antiholin reduces the delay between membrane depolarization and lysis and leads to an earlier time after which triggered lysis is possible.  相似文献   

8.
The holin function Ejh of the pneumococcal bacteriophage EJ-1 has been characterized. It shows structural features similar to, and functionally complemented, the prototype member of the holin family. In Escherichia coli and Pseudomonas putida the Ejh product caused cellular death, and changes in cell morphology could be accounted for by lesions in the cytoplasmic membrane. Expression of ejh resulted in the inhibition of growth in a variety of phylogenetically distant bacterial genera, suggesting a broad spectrum of action. Concomitant expression of the ejh and ejl (encodes a lysin) genes led to lysis of E. coli and P. putida cells. Remarkably, the Ejl lysin was able to attack murein from bacteria lacking choline in their sacculi, which suggests that pneumococcal lysins have a broader substrate specificity than previously assumed. Furthermore, the Ejh holin was able to trigger activity of the major pneumococcal autolysin cloned and expressed in E. coli , and this raised new questions about the regulation of this model autolysin. A new function for holins in systems where the phage lysin is supposed to be associated with the membrane is proposed.  相似文献   

9.
Y is the putative holin gene of the paradigm coliphage P2 and encodes a 93-amino-acid protein. Y is predicted to be an integral membrane protein that adopts an N-out C-in membrane topology with 3 transmembrane domains (TMDs) and a highly charged C-terminal cytoplasmic tail. The same features are observed in the canonical class I lambda holin, the S105 protein of phage lambda, which controls lysis by forming holes in the plasma membrane at a programmed time. S105 has been the subject of intensive genetic, cellular, and biochemical analyses. Although Y is not related to S105 in its primary structure, its characterization might prove useful in discerning the essential traits for holin function. Here, we used physiological and genetic approaches to show that Y exhibits the essential holin functional criteria, namely, allele-specific delayed-onset lethality and sensitivity to the energization of the membrane. Taken together, these results suggest that class I holins share a set of unusual features that are needed for their remarkable ability to program the end of the phage infection cycle with precise timing. However, Y holin function requires the integrity of its short cytoplasmic C-terminal domain, unlike for S105. Finally, instead of encoding a second translational product of Y as an antiholin, as shown for lambda S107, the P2 lysis cassette encodes another predicted membrane protein, LysA, which is shown here to have a Y-specific antiholin character.  相似文献   

10.
Streptococcus pneumoniae bacteriophages (phages) rely on a holin–lysin system to accomplish host lysis. Due to the lack of lysin export signals, it is assumed that holin disruption of the cytoplasmic membrane allows endolysin access to the peptidoglycan. We investigated the lysis mechanism of pneumococcal phage SV1, by using lysogens without holin activity. Upon phage induction in a holin deficient background, phage lysin was gradually targeted to the cell wall, in spite of lacking any obvious signal sequence. Our data indicate that export of the phage lysin requires the presence of choline in the teichoic acids, an unusual characteristic of pneumococci. At the bacterial surface, the exolysin remains bound to choline residues without inducing lysis, but is readily activated by the collapse of the membrane potential. Additionally, the activation of the major autolysin LytA, which also participates in phage‐mediated lysis, is equally related to perturbations of the membrane proton motive force. These results indicate that collapse of the membrane potential by holins is sufficient to trigger bacterial lysis. We found that the lysin of phage SV1 reaches the peptidoglycan through a novel holin‐independent pathway and propose that the same mechanism could be used by other pneumococcal phages.  相似文献   

11.
Clostridium perfringens commonly occurs in food and feed, can produce an enterotoxin frequently implicated in food-borne disease, and has a substantial negative impact on the poultry industry. As a step towards new approaches for control of this organism, we investigated the cell wall lysis system of C. perfringens bacteriophage 3626, whose dual lysis gene cassette consists of a holin gene and an endolysin gene. Hol3626 has two membrane-spanning domains (MSDs) and is a group II holin. A positively charged beta turn between the two MSDs suggests that both the amino terminus and the carboxy terminus of Hol3626 might be located outside the cell membrane, a very unusual holin topology. Holin function was experimentally demonstrated by using the ability of the holin to complement a deletion of the heterologous phage λ S holin in λΔSthf. The endolysin gene ply3626 was cloned in Escherichia coli. However, protein synthesis occurred only when bacteria were supplemented with rare tRNAArg and tRNAIle genes. Formation of inclusion bodies could be avoided by drastically lowering the expression level. Amino-terminal modification by a six-histidine tag did not affect enzyme activity and enabled purification by metal chelate affinity chromatography. Ply3626 has an N-terminal amidase domain and a unique C-terminal portion, which might be responsible for the specific lytic range of the enzyme. All 48 tested strains of C. perfringens were sensitive to the murein hydrolase, whereas other clostridia and bacteria belonging to other genera were generally not affected. This highly specific activity towards C. perfringens might be useful for novel biocontrol measures in food, feed, and complex microbial communities.  相似文献   

12.
Phage lambda hybrids were constructed by inserting the t gene of phage T4 in place of the lambda holin gene, S. Induction of the hybrid phage resulted in lysis that was just as abrupt as, but occurred much earlier in the vegetative cycle than, that obtained with lambda, indicating that t is indeed a holin gene. Moreover, it was possible to impose lysis inhibition (LIN) on induction of the hybrid phage, but not of the parental lambda phage, by superinfection with LIN-competent T4. The imposition of the LIN state was found to depend on the allelic state of the rI and t genes of the superinfecting T4 phage, indicating that the LIN-sensitive state of the T holin is transient. Finally, induction of lysogens carrying both holin genes was shown to result in earlier triggering of lysis than with either holin gene alone. This result suggests that the two very dissimilar holins contribute additively to the physiology of the timing mechanism, or, less likely, that they interact to form one mass-action pool. In either case, these results imply a common pathway for holin timing and function.  相似文献   

13.
14.
t is the holin gene for coliphage T4, encoding a 218-amino-acid (aa) protein essential for the inner membrane hole formation that initiates lysis and terminates the phage infection cycle. T is predicted to be an integral membrane protein that adopts an Nin-Cout topology with a single transmembrane domain (TMD). This holin topology is different from those of the well-studied holins S105 (3 TMDs; Nout-Cin) of the coliphage lambda and S68 (2 TMDs; Nin-Cin) of the lambdoid phage 21. Here, we used random mutagenesis to construct a library of lysis-defective alleles of t to discern residues and domains important for holin function and for the inhibition of lysis by the T4 antiholin, RI. The results show that mutations in all 3 topological domains (N-terminal cytoplasmic, TMD, and C-terminal periplasmic) can abrogate holin function. Additionally, several lysis-defective alleles in the C-terminal domain are no longer competent in binding RI. Taken together, these results shed light on the roles of the previously uncharacterized N-terminal and C-terminal domains in lysis and its real-time regulation.  相似文献   

15.
Identification of LytSR-regulated genes from Staphylococcus aureus.   总被引:11,自引:1,他引:10       下载免费PDF全文
In this report, the characterization of a Staphylococcus aureus operon containing two LytSR-regulated genes, lrgA and lrgB, is described. Sequence and mutagenesis studies of these genes suggest that lrgA encodes a murein hydrolase exporter similar to bacteriophage holin proteins while lrgB may encode a protein having murein hydrolase activity.  相似文献   

16.
The intracellular presence of a recombinant plasmid containing the intercistronic region between the genes H and A of bacteriophage phi X174 strongly inhibits the conversion of infecting single-stranded phi X DNA to parental replicative-form DNA. Also, transfection with single-stranded or double-stranded phi X174 DNA of spheroplasts from a strain containing such a "reduction" plasmid shows a strong decrease in phage yield. This phenomenon, the phi X reduction effect, was studied in more detail by using the phi X174 packaging system, by which plasmid DNA strands that contain the phi X(+) origin of replication were packaged as single-stranded DNA into phi X phage coats. These "plasmid particles" can transduce phi X-sensitive host cells to the antibiotic resistance coded for by the vector part of the plasmid. The phi X reduction sequence in the resident plasmid strongly affected the efficiency of the transduction process, but only when the transducing plasmid depended on primosome-mediated initiation of DNA synthesis for its conversion to double-stranded DNA. The combination of these results led to a model for the reduction effect in which the phi X reduction sequence interacted with an intracellular component that was present in limiting amounts and that specified the site at which phi X174 replicative-form DNA replication takes place. The phi X reduction sequence functioned as a viral incompatibility element in a way similar to the membrane attachment site model for plasmid incompatibility. In the DNA of bacteriophage G4, a sequence with a similar biological effect on infecting phages was identified. This reduction sequence not only inhibited phage G4 propagation, but also phi X174 infection.  相似文献   

17.
M Steiner  W Lubitz    U Blsi 《Journal of bacteriology》1993,175(4):1038-1042
In most bacteriophages of gram-negative bacteria, the phage endolysin is released to its murein substrate through a lesion in the inner membrane. The lesion is brought about by a second phage-encoded lysis function. For the first time, we present evidence that the same strategy is elaborated by a phage of a gram-positive bacterium. Thus, there appears to be an evolutionarily conserved lysis pathway for most phages whether their host bacterium is gram negative or gram positive. Phage phi 29 gene 14, the product of which is required for efficient lysis of Bacillus subtilis, was cloned in Escherichia coli. Production of protein 14 in E. coli resulted in cell death, whereas production of protein 14 concomitantly with the phi 29 lysozyme or unrelated murein-degrading enzymes led to lysis, suggesting that membrane-bound protein 14 induces a nonspecific lesion in the cytoplasmic membrane.  相似文献   

18.
Escherichia coli VC30 is a temperature-sensitive mutant which is defective in autolysis. Strain VC30 lyses at 30 degrees C when treated with beta-lactam antibiotics or D-cycloserine or when deprived of diaminiopimelic acid. The same treatments inhibit growth of the mutant at 42 degrees C but do not cause lysis. Strain VC30 was used here to investigate the mechanism of host cell lysis induced by bacteriophage phi X 174. Strain VC30 was transformed with plasmid pUH12, which carries the cloned lysis gene (gene E) of phage phi X174 under the control of the lac operator-promoter, and with plasmid pMC7, which encodes the lac repressor to keep the E gene silent. Infection of strain VC30(pUH12)(pMC7) with phage phi X174 culminated in lysis at 30 degrees C. At 42 degrees C, intracellular phage development was normal, but lysis did not occur unless a temperature downshift to 30 degrees C was imposed. Similarly, induction of the cloned phi X174 gene E with isopropyl-beta-D-thiogalactoside resulted in lysis at 30 degrees C but not at 42 degrees C. Temperature downshift of the induced culture to 30 degrees C resulted in lysis even in the presence of chloramphenicol. These results indicate that host cell lysis by phage phi X174 is dependent on a functional cellular autolytic enzyme system.  相似文献   

19.
20.
U Blsi  R Young    W Lubitz 《Journal of virology》1988,62(11):4362-4364
Gene K of bacteriophage phi X174 was cloned, and its gene product was localized in the cell envelope of Escherichia coli. Compared with the sole expression of the phi X174 lysis gene E, the simultaneous expression of the K and E genes had no effect on scheduling of cell lysis. Therefore, a direct interaction of proteins E and K could be excluded. In contrast, phi X174 infection of a host carrying a plasmid expressing gene K resulted in a delayed lysis and an apparent increase in phage titer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号