首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
UV treated conidia of a strain of Aspergillus nidulans (meth Gl. biAl) depleted of germination inhibitory substances have been examined for inactivation and mutation induction at groups of suppressor gene loci defining three classes of methionine revertants. An exponential decline in the colony forming ability and quadratic increase in mutation frequency (for each class of revertant) as the incident dose increased were observed. The induced mutation frequency for each class and the loss of colony forming ability of the conidia are greater in the absence than in the presence of these self-inhibitors of germination. However, the relative frequencies of the individual classes of revertants did not differ whether the inhibitory substances were present or not. Liquid holding effects leading to increases in survival and mutation have been observed, but the relative frequencies of the individual revertant classes remain unchanged.  相似文献   

2.
The filamentous fungus Aspergillus nidulans carries a single gene for the S-adenosylmethionine (SAM) synthetase SasA, whereas many other organisms possess multiple SAM synthetases. The conserved enzyme catalyzes the reaction of methionine and ATP to the ubiquitous methyl group donor SAM. SAM is the main methyl group donor for methyltransferases to modify DNA, RNA, protein, metabolites, or phospholipid target substrates. We show here that the single A. nidulans SAM synthetase encoding gene sasA is essential. Overexpression of sasA, encoding a predominantly cytoplasmic protein, led to impaired development including only small sterile fruiting bodies which are surrounded by unusually pigmented auxiliary Hülle cells. Hülle cells are the only fungal cell type which does not contain significant amounts of SasA. Sterigmatocystin production is altered when sasA is overexpressed, suggesting defects in coordination of development and secondary metabolism. SasA interacts with various metabolic proteins including methionine or mitochondrial metabolic enzymes as well as proteins involved in fungal morphogenesis. SasA interaction to histone-2B might reflect a putative epigenetic link to gene expression. Our data suggest a distinct role of SasA in coordinating fungal secondary metabolism and development.  相似文献   

3.
Fungal secondary metabolites are important bioactive compounds but the conditions leading to expression of most of the putative secondary metabolism (SM) genes predicted by fungal genomics are unknown. Here we describe a novel mechanism involved in SM‐gene regulation based on the finding that, in Aspergillus nidulans, mutants lacking components involved in heterochromatin formation show de‐repression of genes involved in biosynthesis of sterigmatocystin (ST), penicillin and terrequinone A. During the active growth phase, the silent ST gene cluster is marked by histone H3 lysine 9 trimethylation and contains high levels of the heterochromatin protein‐1 (HepA). Upon growth arrest and activation of SM, HepA and trimethylated H3K9 levels decrease concomitantly with increasing levels of acetylated histone H3. SM‐specific chromatin modifications are restricted to genes located inside the ST cluster, and constitutive heterochromatic marks persist at loci immediately outside the cluster. LaeA, a global activator of SM clusters in fungi, counteracts the establishment of heterochromatic marks. Thus, one level of regulation of the A. nidulans ST cluster employs epigenetic control by H3K9 methylation and HepA binding to establish a repressive chromatin structure and LaeA is involved in reversal of this heterochromatic signature inside the cluster, but not in that of flanking genes.  相似文献   

4.
5.
E Gómez-Pardo  M A Pe?alva 《Gene》1990,89(1):109-115
We have constructed a translational fusion between the isopenicillin-N-synthetase-encoding gene (IPNS) of Aspergillus nidulans and the lacZ gene of Escherichia coli. Recombinant strains carrying a single copy of the fusion integrated at the IPNS locus produced beta-galactosidase (beta Gal) during secondary metabolism. Integration of the fusion at the argB locus results in a situation in which the only 5'-flanking sequences of the IPNS gene upstream from the chimeric fused gene are those included in the transforming plasmid. Such a strain still expresses beta Gal activity during secondary metabolism, showing that a DNA fragment including sequences of the IPNS gene from nt -2000 to +35 (relative to the translation start codon) still contains sufficient information to drive expression of the fusion gene during secondary metabolism.  相似文献   

6.
Polyketide synthases (PKSs) and/or nonribosomal peptide synthetases (NRPSs) are central components of secondary metabolism in bacteria, plants, and fungi. In filamentous fungi, diverse PKSs and NRPSs participate in the biosynthesis of secondary metabolites such as pigments, antibiotics, siderophores, and mycotoxins. However, many secondary metabolites as well as the enzymes involved in their production are yet to be discovered. Both PKSs and NRPSs require activation by enzyme members of the 4'-phosphopantetheinyl transferase (PPTase) family. Here, we report the isolation and characterization of Aspergillus nidulans strains carrying conditional (cfwA2) and null (DeltacfwA) mutant alleles of the cfwA gene, encoding an essential PPTase. We identify the polyketides shamixanthone, emericellin, and dehydroaustinol as well as the sterols ergosterol, peroxiergosterol, and cerevisterol in extracts from A. nidulans large-scale cultures. The PPTase CfwA/NpgA was required for the production of these polyketide compounds but dispensable for ergosterol and cerevisterol and for fatty acid biosynthesis. The asexual sporulation defects of cfwA, DeltafluG, and DeltatmpA mutants were not rescued by the cfwA-dependent compounds identified here. However, a cfwA2 mutation enhanced the sporulation defects of both DeltatmpA and DeltafluG single mutants, suggesting that unidentified CfwA-dependent PKSs and/or NRPSs are involved in the production of hitherto-unknown compounds required for sporulation. Our results expand the number of known and predicted secondary metabolites requiring CfwA/NpgA for their biosynthesis and, together with the phylogenetic analysis of fungal PPTases, suggest that a single PPTase is responsible for the activation of all PKSs and NRPSs in A. nidulans.  相似文献   

7.
8.
Zhang YQ  Brock M  Keller NP 《Genetics》2004,168(2):785-794
Propionyl-CoA is an intermediate metabolite produced through a variety of pathways including thioesterification of propionate and catabolism of odd chain fatty acids and select amino acids. Previously, we found that disruption of the methylcitrate synthase gene, mcsA, which blocks propionyl-CoA utilization, as well as growth on propionate impaired production of several polyketides-molecules typically derived from acetyl-CoA and malonyl-CoA-including sterigmatocystin (ST), a potent carcinogen, and the conidiospore pigment. Here we describe three lines of evidence that demonstrate that excessive propionyl-CoA levels in the cell can inhibit polyketide synthesis. First, inactivation of a putative propionyl-CoA synthase, PcsA, which converts propionate to propionyl-CoA, restored polyketide production and reduced cellular propionyl-CoA content in a DeltamcsA background. Second, inactivation of the acetyl-CoA synthase, FacA, which is also involved in propionate utilization, restored polyketide production in the DeltamcsA background. Third, fungal growth on several compounds (e.g., heptadecanoic acid, isoleucine, and methionine) whose catabolism includes the formation of propionyl-CoA, were found to inhibit ST and conidiospore pigment production. These results demonstrate that excessive propionyl-CoA levels in the cell can inhibit polyketide synthesis.  相似文献   

9.
A possible minor route of ornithine catabolism in Aspergillus nidulans might begin with the ornithine decarboxylase reaction and end with the succinic semialdehyde dehydrogenase reaction. It is therefore of interest that the putative structural genes for these two enzymes, puA and ssuA, respectively, are tightly linked group II. However, this linkage is unlikely to have regulatory significance because ileA, the structural gene for threonine dehydratase, separates them. The gene order in this region is ssuA-ileA-puA-mauB-anB. (mauB- mutations result in loss of monoamine oxidase whilst anB- mutations lead to aneurin auxotrophy.) 2. An auxotrophy for ornithine or putrescine in A. nidulans occurs in double mutants lacking arginase and blocked before ornithine in the arginine biosynthetic pathway. Some residual ornithine synthesis in such double mutants can be catalysed by ornithine delta-transaminase, especially if it is synthesised constitutively.  相似文献   

10.
11.
Summary Mutants altered in carbon catabolite regulation have been isolated by selecting for mutants of theareA217 strain capable of using acetamide as the sole nitrogen source in the presence of sucrose. In addition tocreA mutants described previously by Arst and Cove, strains with mutations in two new genes,creB andcreC, have been found. ThecreB andcreC mutants grow poorly on some sole carbon sources and have low levels of some enzymes of carbon catabolism e.g. -galactosidase and D-quinate dehydrogenase. ThecreB andcreC mutants are hypersitive to fluoroacetate, fluoroacetamide and allyl alcohol in the presence of glucose or sucrose but not glycerol; and the enzymes, acetamidase, and alcohol dehydrogenase, are less sensitive to carbon catabolite repression than the wild-type strain. Extracellular protease and -glucosidase enzyme activities are elevated increB andcreC mutants, while L-proline and L-glutamate uptake capacities are lower in both the presence and absence of glucose. Interactions betweencreA, B and C mutations have been investigated in double mutants, and the dominance properties ofcreB andcreC mutants determined. The results indicate that thecreB andcreC genes may have a regulatory role in the control of carbon catabolism.  相似文献   

12.
Several mutants Aspergillus nidulans defective in carbohydrate metabolism were tested for growth on different carbon sources. d-Galacturonate was found to be a substrate, useful to discriminate between mutants in pyruvate kinase, pyruvate dehydrogenase complex or pyruvate carboxylase. The results of these tests indicate how particular classes of mutants can be obtained and which substrates can be used preferentially for a rapid phenotypical screening of unknown mutants.  相似文献   

13.
14.
15.
16.
Summary Mutants of Aspergillus nidulans with lesions in gene amdT are pleiotropically affected in their ability to utilize a wide variety of nitrogen sources in the presence of glucose. Ability to utilize a number of these compounds as sole sources of carbon and nitrogen is not altered. One of these mutants, amdT102, has properties consistent with it being derepressed for glucose repression of the utilization of most (but not all) nitrogen sources. The amdT102 mutant can grow strongly on histidine, lysine and cystine as sole nitrogen sources while the wild type strain grows extremely poorly on these amino acids. Similar but less extreme effects apply to many other nitrogen sources. The amdT19 mutant is unable to utilize most nitrogen sources in the presence of glucose, suggesting that it is subject to greatly increased repression of nitrogen source utilization. The amdT mutants are not affected in their ability to use many compounds as sole carbon sources. Carbon sources other than glucose also affect utilization of nitrogen sources in the amdT mutants.  相似文献   

17.
Growth tests and enzyme determinations strongly suggest that the acetamidase of Aspergillus nidulans is induced by a product of acetate metabolism rather than the substrate, acetamide. The cis-dominant mutation, amdI9, which is closely linked to amdS, the structural gene for the acetamidase, results in greatly increased sensitivity to induction by acetate metabolism. Propionate, L-threonine, and ethanol also result in acetamidase induction. Mutations in the facA, facB, and facC genes, which lead to low levels of acetyl-coenzyme A synthase, are epistatic to the amdI9 mutation for strong growth on acetamide medium and abolish acetamide and propionamide induction of the acetamidase and isocitrate lyase enzymes. Acetate, L-threonine, and ethanol, however, can induce these enzymes in strains containing facA and facC lesions but not in strains containing a facB lesion. The evidence suggests that acetamidase and isocitrate lyase may be induced by a similar mechanism.  相似文献   

18.
19.
20.
Endo-exonuclease of Aspergillus nidulans   总被引:1,自引:0,他引:1  
Endo-exonuclease (EE) has been found in both active and inactive, but trypsin-activatable, forms in Aspergillus nidulans. Active EE was present mainly in nuclei, mitochondria, and vacuoles, while trypsin-activatable EE was mainly in the cytosol. The active form accounts for over 90% of the neutral deoxyribonuclease activity extracted from mycelia. A single strand (ss) DNA-binding EE associated with a 28 kilodalton (kDa) polypeptide was partially purified and characterized. It was found to closely resemble, in size and enzymological properties, the ss-DNA-binding EE previously purified from Neurospora crassa. Aspergillus nidulans EE was also found to be immunochemically related to the N. crassa EE and, like that enzyme, was probably derived from a polypeptide of 90 kDa or larger through proteolysis during extraction and purification. It had divalent metal ion-dependent (Mg2+, Mn2+, or Zn2+) activity on both DNA and RNA, which ultimately produced small 5'-P-terminated oligonucleotides. The nuclease activity was mixed endo- and exo-nucleolytic with ss-DNA as substrate, but largely exonucleolytic with double strand (ds) DNA. Superhelical phi X-174 DNA was nicked by EE to form relaxed circular and then linear ds-DNA, which was rapidly degraded to shorter fragments. Linearized pBR322 DNA was extensively nicked internally under conditions where there was relatively low exonuclease activity, but this nicking required that 5'-P-termini be present on the linear ds-DNA. The levels of active EE found in extracts of two recombination-deficient mutants of A. nidulans, uvsC and uvsE, dit not differ significantly from those in extracts of the wild type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号