首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
The influence of salicylic acid (SA) on elicitation of defense mechanisms in Arabidopsis (Arabidopsis thaliana) seeds and seedlings was assessed by physiological measurements combined with global expression profiling (proteomics). Parallel experiments were carried out using the NahG transgenic plants expressing the bacterial gene encoding SA hydroxylase, which cannot accumulate the active form of this plant defense elicitor. SA markedly improved germination under salt stress. Proteomic analyses disclosed a specific accumulation of protein spots regulated by SA as inferred by silver-nitrate staining of two-dimensional gels, detection of carbonylated (oxidized) proteins, and neosynthesized proteins with [35S]-methionine. The combined results revealed several processes potentially affected by SA. This molecule enhanced the reinduction of the late maturation program during early stages of germination, thereby allowing the germinating seeds to reinforce their capacity to mount adaptive responses in environmental water stress. Other processes affected by SA concerned the quality of protein translation, the priming of seed metabolism, the synthesis of antioxidant enzymes, and the mobilization of seed storage proteins. All the observed effects are likely to improve seed vigor. Another aspect revealed by this study concerned the oxidative stress entailed by SA in germinating seeds, as inferred from a characterization of the carbonylated (oxidized) proteome. Finally, the proteomic data revealed a close interplay between abscisic signaling and SA elicitation of seed vigor.  相似文献   

2.
During seed maturation and germination, major changes in physiological status, gene expression, and metabolic events take place. Using chlorophyll sorting, osmopriming, and different drying regimes, Brassica oleracea seed lots of different maturity, stress tolerance, and germination behavior were created. Through careful physiological analysis of these seed lots combined with gene expression analysis using a dedicated cDNA microarray, gene expression could be correlated to physiological processes that occurred within the seeds. In addition, gene expression was studied during early stages of seed germination, prior to radicle emergence, since very little detailed information of gene expression during this process is available. During seed maturation expression of many known seed maturation genes, such as late-embryogenesis abundant or storage-compound genes, was high. Notably, a small but distinct subgroup of the maturation genes was found to correlate to seed stress tolerance in osmoprimed and dried seeds. Expression of these genes rapidly declined during priming and/or germination in water. The majority of the genes on the microarray were up-regulated during osmopriming and during germination on water, confirming the hypothesis that during osmopriming, germination-related processes are initiated. Finally, a large group of genes was up-regulated during germination on water, but not during osmopriming. These represent genes that are specific to germination in water. Germination-related gene expression was found to be partially reversible by physiological treatments such as slow drying of osmoprimed seeds. This correlated to the ability of seeds to withstand stress.  相似文献   

3.
Seed priming is a method by which seeds are subjected to different stress conditions to impart stress adaptation in seedlings germinating and growing under stressful situations. Drought stress is a major reason behind failure of crops. We studied the effects of hydropriming, dehydration priming (induced by PEG), and osmopriming (induced by NaCl and KH2PO4) on subsequent germination, growth and anti-oxidant defense mechanisms of 2-week-old rice seedlings under continuing dehydration stress. Unprimed seeds grown in PEG showed significantly lower germination and growth along with significantly higher reactive oxygen species (ROS) and lipid peroxidation levels. Among the priming methods, 5 % PEG priming was found to be the best in terms of germination and growth rate along with the lowest amount of ROS and lipid peroxidation (malondialdehyde [MDA]) values. MDA levels were reduced significantly by all of the priming methods. Hence, reduction of lipid peroxidation may be a key factor underlying the drought tolerance produced by the priming treatments. Glutathione peroxidase (GPX) activity seemed to bear an excellent correlation with oxidative stress resistance through seed priming. The PEG priming produced minimum peroxidative damage and superior germination and growth rate along with efficient GPX activity, overexpressed MnSOD and maintenance of HSP70 expression in normal as well as in drought condition. Therefore, in PEG-primed seeds the existence of robust protective mechanisms is definitely indicated.  相似文献   

4.
Proteomics reveals potential biomarkers of seed vigor in sugarbeet   总被引:1,自引:0,他引:1  
To unravel biomarkers of seed vigor, an important trait conditioning crop yield, a comparative proteomic study was conducted with sugarbeet seed samples of varying vigor as generated by an invigoration treatment called hydropriming and an aging treatment called controlled deterioration. Comparative proteomics revealed proteins exhibiting contrasting behavior between seed samples. Thus, 18 proteins were up-regulated during priming and down-regulated during aging and further displayed an up-regulation upon priming of the aged seeds, meaning that down-regulation of these spot volumes during aging was reversible upon subsequent priming. Also, 11 proteins exhibited the converse behavior characterized by a decrease and an increase of the spot volumes during priming and aging of the control seeds, respectively, and a decrease in the spot volumes upon priming of the aged seeds. The results underpinned the role in seed vigor of several metabolic pathways involved in lipid and starch mobilization, protein synthesis or the methyl cycle. They also corroborate previous studies suggesting that the glyoxylate enzyme isocitrate lyase, the capacity of protein synthesis and components of abscisic acid signaling pathways are likely contributors of seed vigor.  相似文献   

5.
Seed germination recovery aptitude is an adaptive trait of overriding significance for the successful establishment and dispersal of extremophile plants in their native ecosystems. Cakile maritima is an annual halophyte frequent on Mediterranean coasts, which produces transiently dormant seeds under high salinity, that germinate fast when soil salinity is lowered by rainfall. Here, we report ecophysiological and proteomic data about (1) the effect of high salt (200 mM NaCl) on the early developmental stages (germination and seedling) and (2) the seed germination recovery capacity of this species. Upon salt exposure, seed germination was severely inhibited and delayed and seedling length was restricted. Interestingly, non‐germinated seeds remained viable, showing high germination percentage and faster germination than the control seeds after their transfer onto distilled water. The plant phenotypic plasticity during germination was better highlighted by the proteomic data. Salt exposure triggered (1) a marked slower degradation of seed storage reserves and (2) a significant lower abundance of proteins involved in several biological processes (primary metabolism, energy, stress‐response, folding and stability). Yet, these proteins showed strong increased abundance early after stress release, thereby sustaining the faster seed storage proteins mobilization under recovery conditions compared to the control. Overall, as part of the plant survival strategy, C. maritima seems to avoid germination and establishment under high salinity. However, this harsh condition may have a priming‐like effect, boosting seed germination and vigor under post‐stress conditions, sustained by active metabolic machinery.  相似文献   

6.
Proteomic analysis of arabidopsis seed germination and priming   总被引:33,自引:0,他引:33       下载免费PDF全文
To better understand seed germination, a complex developmental process, we developed a proteome analysis of the model plant Arabidopsis for which complete genome sequence is now available. Among about 1,300 total seed proteins resolved in two-dimensional gels, changes in the abundance (up- and down-regulation) of 74 proteins were observed during germination sensu stricto (i.e. prior to radicle emergence) and the radicle protrusion step. This approach was also used to analyze protein changes occurring during industrial seed pretreatments such as priming that accelerate seed germination and improve seedling uniformity. Several proteins were identified by matrix-assisted laser-desorption ionization time of flight mass spectrometry. Some of them had previously been shown to play a role during germination and/or priming in several plant species, a finding that underlines the usefulness of using Arabidopsis as a model system for molecular analysis of seed quality. Furthermore, the present study, carried out at the protein level, validates previous results obtained at the level of gene expression (e.g. from quantitation of differentially expressed mRNAs or analyses of promoter/reporter constructs). Finally, this approach revealed new proteins associated with the different phases of seed germination and priming. Some of them are involved either in the imbibition process of the seeds (such as an actin isoform or a WD-40 repeat protein) or in the seed dehydration process (e.g. cytosolic glyceraldehyde-3-phosphate dehydrogenase). These facts highlight the power of proteomics to unravel specific features of complex developmental processes such as germination and to detect protein markers that can be used to characterize seed vigor of commercial seed lots and to develop and monitor priming treatments.  相似文献   

7.
Successful revegetation necessarily requires the establishment of a vegetation cover and one of the challenges for this is the scarce knowledge about germination and seedling establishment of wild tree species. Priming treatments (seed hydration during a specific time followed by seed dehydration) could be an alternative germination pre-treatment to improve plant establishment. Natural priming (via seed burial) promotes rapid and synchronous germination as well as the mobilisation of storage reserves; consequently, it increases seedling vigour. These metabolic and physiological responses are similar to those occurring as a result of the laboratory seed priming treatments (osmopriming and matrix priming) applied successfully to agricultural species. In order to know if natural priming had a positive effect on germination of tropical species we tested the effects of natural priming on imbibition kinetics, germination parameters (mean germination time, lag time and germination rate and percentage) and reserve mobilisation in the seeds of two tree species from a tropical deciduous forest in south-eastern México: Tecoma stans (L Juss. Ex Kunth) and Cordia megalantha (S.F Blake). The wood of both trees are useful for furniture and T. stans is a pioneer tree that promotes soil retention in disturbed areas. We also compared the effect of natural priming with that of laboratory matrix priming (both in soil). Matrix priming improved germination of both studied species. Natural priming promoted the mobilisation of proteins and increased the amount of free amino acids and of lipid degradation in T. stans but not in C. megalantha. Our results suggest that the application of priming via the burial of seeds is an easy and inexpensive technique that can improve seed germination and seedling establishment of tropical trees with potential use in reforestation and restoration practices.  相似文献   

8.
9.
Seed germination is a critical phase in the plant life cycle, but the specific events associated with seed germination are still not fully understood. In this study, we used two‐dimensional gel electrophoresis followed by mass spectrometry to investigate the changes in the proteome during imbibition of Oryza sativa seeds at optimal temperature with or without abscisic acid (ABA) and high temperature (germination thermoinhibition) to further identify and quantify key proteins required for seed germination. A total of 121 protein spots showed a significant change in abundance (1.5‐fold increase/decrease) during germination under all conditions. Among these proteins, we found seven proteins specifically associated with seed germination including glycosyl hydrolases family 38 protein, granule‐bound starch synthase 1, Os03g0842900 (putative steroleosin‐B), N‐carbamoylputrescine amidase, spermidine synthase 1, tubulin α‐1 chain and glutelin type‐A; and a total of 20 imbibition response proteins involved in energy metabolism, cell growth, cell defense and storage proteins. High temperature inhibited seed germination by decreasing the abundance of proteins involved in methionine metabolism, amino acid biosynthesis, energy metabolism, reserve degradation, protein folding and stress responses. ABA treatment inhibited germination and decreased the abundance of proteins associated with methionine metabolism, energy production and cell division. Our results show that changes in many biological processes including energy metabolism, protein synthesis and cell defense and rescue occurred as a result of all treatments, while enzymes involved in methionine metabolism and weakening of cell wall specifically accumulated when the seeds germinated at the optimal temperature.  相似文献   

10.
11.
A variety of mechanisms have been proposed to account for the extension of life span in seeds (seed longevity). In this work, we used Arabidopsis (Arabidopsis thaliana) seeds as a model and carried out differential proteomics to investigate this trait, which is of both ecological and agricultural importance. In our system based on a controlled deterioration treatment (CDT), we compared seed samples treated for different periods of time up to 7 d. Germination tests showed a progressive decrease of germination vigor depending on the duration of CDT. Proteomic analyses revealed that this loss in seed vigor can be accounted for by protein changes in the dry seeds and by an inability of the low-vigor seeds to display a normal proteome during germination. Furthermore, CDT strongly increased the extent of protein oxidation (carbonylation), which might induce a loss of functional properties of seed proteins and enzymes and/or enhance their susceptibility toward proteolysis. These results revealed essential mechanisms for seed vigor, such as translational capacity, mobilization of seed storage reserves, and detoxification efficiency. Finally, this work shows that similar molecular events accompany artificial and natural seed aging.  相似文献   

12.
Osmopriming with PEG has potential to improve seed germination, seedling emergence, and establishment, especially under stress conditions. This research investigated germination performance, seedling establishment, and effects of osmopriming with PEG on physiology in sorghum seedlings and their association with post-priming stress tolerance under various soil moisture stress conditions. Results showed that seed priming increased the environmental range suitable for sorghum germination and has potential to provide more uniform and synchronous emergence. Physiologically, seed priming strengthened the antioxidant activities of APX, CAT, POD, and SOD, as well as compatible solutes including free amino acid, reducing sugar, proline, soluble sugar, and soluble protein contents. As a result, seed priming reduced lipid peroxidation and stabilized the cell membrane, resulting in increased stress tolerance under drought or excessive soil moisture environments. Overall, results suggested that seed priming with PEG was effective in improving seed germination and seedling establishment of sorghum under adverse soil moisture conditions. Osmopriming effectively strengthened the antioxidant system and increased osmotic adjustment, likely resulting in increased stress tolerance.  相似文献   

13.
14.
Biochemical Changes During Osmopriming of Leek Seeds   总被引:3,自引:0,他引:3  
Osmotic priming treatments reduced both the mean time to germinationand the spread of germination for two leek seed-lots of highviability but differing vigour. In addition the differencesin germination performance between these two seed-lots was abolishedby the priming treatments. In the unprimed seed-lots, differencesin germination performance were reflected in differences inrates of protein biosynthesis in leek embryo tissue during germination.Osmopriming treatments abolished these differences upon subsequentgermination of osmotically primed seed and furthermore inducedhigh levels of protein biosynthesis in embryo tissue. DNA synthesiswas detectable in leek embryos during the priming period inthe absence of any cell division and was followed by a five-foldincrease in the rate of DNA synthesis in embryo tissue upongermination following priming at which time the rates of DNAsynthesis in these leek embryos was significantly greater thanthat found at any time over the first 4 d of germination inembryos of unprimed leek seeds. The increases in rates of bothprotein and DNA synthesis observed upon germination of primedseed occurred only after a 6–12 h lag period during whichtime there is little increase in these rates above those foundat the end of priming Analysis of nucleotide and nucleotide sugar levels in leek embryosboth during and after priming showed that only traces of GTPand CTP and low levels of ATP and UTP were present in embryosduring priming. After a 6 h lag period following the end ofpriming these levels increased sharply, probably via de novosynthesis. A similar pattern was found for UDP glucose levelsduring priming and subsequent germination. These results indicatethat there is considerable biochemical activity during primingand that the significant benefits in germination performanceof primed leek seeds is accompanied by marked increases in protein,DNA and nucleotide biosynthesis after a lag period of 6–12h following the end of the priming period Allium porrum, leek, seed, osmopriming, germination, protein synthesis, nucleic acids, nucleotides, nucleotide sugars  相似文献   

15.
Stevia (Stevia rebaudiana Bertoni) is an alternative sugar crop currently gaining importance in several geographic regions of the world. Generally, crop is propagated by seeds; however, low seed germination hinders the adaptability of the crop in different cropping systems. Seed priming with different compounds improves germination of several arable crops under stressful and benign environmental conditions. This study evaluated the role of different seed priming agents and priming durations on stand establishment, allometric and yield-related traits, and steviol glycosides contents of Stevia in two different experiments. The first experiment consisted of five different seed priming agents (i.e., hydropriming with distilled water, ascorbic acid, potassium chloride, benzyl amine purine and unprimed seeds) and five priming durations (0, 8, 16, 24 and 32 h). Seed priming with potassium chloride (KCl) and benzyl amine purine (BAP) for 32 h improved stand establishment and biochemical attributes of Stevia seeds. Therefore, these two seed priming agents along with unprimed seeds were included in the second experiment to quantify their impact on allometric and yield-related traits and steviol glycosides contents. Seed priming with both KCl and BAP resulted in better allometric traits (plant height, number of leaves per plant, leaf area and chlorophyll index) compared with unprimed seeds. Similarly, seed priming with KCl resulted in higher fresh and dry biomass production of stem and leaves. Nonetheless, higher stevioside and rebaudioside A contents were recorded for the seeds primed with KCl, whereas unprimed seeds resulted in the lowest values. It is concluded that Stevia seeds must be primed with KCl for 32 h before sowing to get higher seed germination, leaf yield and steviol glycosides contents. Nonetheless, the role of KCl priming in improving abiotic stress tolerance of Stevia must be explored in the future studies.  相似文献   

16.
Zhu Yun Deng  Chun Yan Gong  Tai Wang 《Proteomics》2013,13(12-13):1784-1800
Rice is an important cereal crop and has become a model monocot for research into crop biology. Rice seeds currently feed more than half of the world's population and the demand for rice seeds is rapidly increasing because of the fast‐growing world population. However, the molecular mechanisms underlying rice seed development is incompletely understood. Genetic and molecular studies have developed our understanding of substantial proteins related to rice seed development. Recent advancements in proteomics have revolutionized the research on seed development at the single gene or protein level. Proteomic studies in rice seeds have provided the molecular explanation for cellular and metabolic events as well as environmental stress responses that occur during embryo and endosperm development. They have also led to the new identification of a large number of proteins associated with regulating seed development such as those involved in stress tolerance and RNA metabolism. In the future, proteomics, combined with genetic, cytological, and molecular tools, will help to elucidate the molecular pathways underlying seed development control and help in the development of valuable and potential strategies for improving yield, quality, and stress tolerance in rice and other cereals. Here, we reviewed recent progress in understanding the mechanisms of seed development in rice with the use of proteomics.  相似文献   

17.
18.
Quantitative real-time RT-PCR (qPCR) has been widely used to investigate gene expression during seed germination, a process involving seed transition from dry/physiologically inactive to hydrated/active state. This transition may result in altered expression of many housekeeping genes (HKGs), conventionally used as internal controls, thereby posing a challenge about selection of HKGs in such scenarios. The objectives of this study included identifying valid reference genes for seed priming and germination studies, both of which involve the transition of seed hydration status, and assessing whether or not findings derived from the “seed model” used in this study would also be applicable to other plant species. Eight commonly used HKGs were evaluated in maize seeds during hydropriming and germination. Using Bestkeeper, geNorm, and NormFinder, we provided a rank of stability for these HKGs. Actdf, UBQ, βtub, 18S, Act, and GAPDH were adjudged as valid internal controls by geNorm and NormFinder. Under the second objective, we conducted a case study with spinach seeds collected during osmopriming and germination. Our results indicate that the conclusions derived from maize were applicable to spinach as well, in that 18S exhibited greater expression stability than GAPDH in osmoprimed and germinated seeds; this held true even under stress conditions. While both of these genes were rejected by BestKeeper, we found that 18S exhibited stable expression when “dry” and “hydrated” seeds were analyzed as separate data sets. Although this approach precludes the comparison between “hydrated” and “dry” seeds, it still provides effective comparison among samples of same hydration status.  相似文献   

19.
Terminal drought and seed priming improves drought tolerance in wheat   总被引:1,自引:0,他引:1  
Plants retain the preceding abiotic stress memory that may aid in attainment of tolerance to subsequent stresses. This study was conducted to evaluate the influence of terminal drought memory (drought priming) and seed priming in improving drought tolerance in wheat (Triticum aestivum L.). During first growing season, wheat was planted in field under optimal (well-watered) and drought stress imposed at reproductive stage (BBCH growth stage 49) until maturity (BBCH growth stage 83). Seeds collected from both sources were subjected to hydropriming or osmopriming (with 1.5% CaCl2 solution); while, dry seed was taken as control. Treated and control seeds, from both sources, were sown in soil filled pots. After the completion of seedling emergence, pots were maintained at 50% water holding capacity (drought) or 100% water holding capacity (well-watered). Drought stress suppressed the plant growth (2–44%), perturbed water relations (1–18%) and reduced yield (192%); however, osmolytes accumulation (3–14%) and malondialdehyde contents (26–29%) were increased under drought. The crop raised from the seeds collected from terminal drought stressed plants had better growth (5–63%), improved osmolyte accumulation (13–45%), and lower lipid peroxidation (3%) than the progeny of well-watered crop. Seed priming significantly improved the crop performance under drought stress as compared to control. However, osmopriming was more effective than hydropriming in this regard as it improved leaf area (9–43%), tissue water status (2–47%), osmolytes accumulation (6–48%) and grain yield (14–79%). In conclusion, terminal drought induced modifications in seed composition and seed priming improved transgenerational drought tolerance through improvement in tissue water status and osmolytes accumulation, and decrease in lipid peroxidation.  相似文献   

20.
Dormancy release, ABA and pre-harvest sprouting   总被引:15,自引:0,他引:15  
Seed dormancy is an adaptive trait that enables the seeds of many species to remain quiescent until conditions become favorable for germination. Dormancy is normally initiated during seed maturation and maintained to seed maturity. In mature seeds, the loss of dormancy may be gradual (after-ripening) or can be terminated by chilling and other environmental triggers. Dormancy is an important trait for many important crop species: it inhibits pre-harvest spouting or vivipary, a widespread problem in many regions of the world. Too much dormancy, however, can lead to non-uniform germination in the field. Recent progress has been made in understanding the role of abscisic acid metabolism and dormancy release in both model plants and crop species. Advances in our understanding of the molecular mechanisms that are involved in dormancy, along with approaches using quantitative genetics, will provide new strategies through which the desired level of dormancy can be introduced into crop species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号