首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Agonist-induced rigid body motion of transmembrane (TM) helices has been established as a unifying mechanism in the activation of the G protein-coupled receptors. In attempts to measure specific conformational transitions during the activation of the type 1 receptor for angiotensin II (AT(1)), we found a decrease in accessibility of Cys(76) in the second TM helix, suggesting that the orientation of TM2 is altered (Miura, S., and Karnik, S. S. (2002) J. Biol. Chem. 277, 24299-24305). Now we provide evidence that the TM2 helical movement plays a role in regulating the activated state of the AT(1) receptor, and this role may involve an interaction between TM2 and TM7. Alanine substitution of native Cys(296) in TM7 leads to increased accessibility of Cys(289) and diminished response to bound agonist. Both effects of the C296A mutation are suppressed when combined with F77A and N111G mutants. The TM7 conformation and the sensitivity of Cys(289) altered by C296A mutation are suppressed by the F77A mutation in TM2 to salvage function. We show that the F77A mutant alters orientation of both TM2 and TM7 but does not induce constitutive activity in suppressing the C296A mutant effects. Thus, interaction of TM2 and TM7 is important for transmembrane signal transduction in the AT(1) receptor.  相似文献   

2.
Feng YH  Saad Y  Karnik SS 《FEBS letters》2000,484(2):133-138
Dithiothreitol (DTT) treatment of angiotensin II (Ang II) type 2 (AT(2)) receptor potentiates ligand binding, but the underlying mechanism is not known. Two disulfide bonds proposed in the extracellular domain were examined in this report. Based on the analysis of ligand affinity of cysteine (Cys, C) to alanine (Ala, A) substitution mutants, we provide evidence that Cys(35)-Cys(290) and Cys(117)-Cys(195) disulfide bonds are formed in the wild-type AT(2) receptor. Disruption of the highly conserved Cys(117)-Cys(195) disulfide bond linking the second and third extracellular segments leads to inactivation of the receptor. The Cys(35)-Cys(290) bond is highly sensitive to DTT. Its breakage results in an increased binding affinity for both Ang II and the AT(2) receptor-specific antagonist PD123319. Surprisingly, in the single Cys mutants, C35A and C290A, a labile population of receptors is produced which can be re-folded to high-affinity state by DTT treatment. These results suggest that the free -SH group of Cys(35) or Cys(290) competes with the disulfide bond formation between Cys(117) and Cys(195). This Cys-disulfide bond exchange results in production of the inactive population of the mutant receptors through formation of a non-native disulfide bond.  相似文献   

3.
An angiotensin II (AngII) peptidic analogue in which the third residue (valine) was substituted with the photoreactive p-benzoyl-L-phenylalanine (Bpa) was used to identify ligand-binding sites of the human AT(1) receptor. High-affinity binding of the analogue, (125)I-[Bpa(3)]AngII, to the AT(1) receptor heterologously expressed in COS-7 cells enabled us to efficiently photolabel the receptor. Chemical and enzymatic digestions of the (125)I-[Bpa(3)]AngII-AT(1) complex were performed, and receptor fragments were analyzed in order to define the region of the receptor with which the ligand interacts. Results show that CNBr hydrolysis of the photolabeled receptor gave a glycosylated fragment which, after PNGase-F digestion, migrated as a 11.4 kDa fragment, circumscribing the labeled domain between residues 143-243 of the AT(1) receptor. Digestion of the receptor-ligand complex with Endo Lys-C or trypsin followed by PNGase-F treatment yielded fragments of 7 and 4 kDa, defining the labeling site of (125)I-[Bpa(3)]AngII within residues 168-199 of the AT(1) receptor. Photolabeling of three mutant receptors in which selected residues adjacent to residue 168 were replaced by methionine within the 168-199 fragment (I172M, T175M, and I177M) followed by CNBr cleavage revealed that the bound photoligand (125)I-[Bpa(3)]AngII forms a covalent bond with the side chain of Met(172) of the second extracellular loop of the AT(1) receptor. These data coupled with previously obtained results enable us to propose a model whereby AngII adopts an extended beta-strand conformation when bound to the receptor and would orient itself within the binding domain by having its N-terminal portion interacting with the second extracellular loop and its C-terminus interacting with residues of the seventh transmembrane domain.  相似文献   

4.
5.
Using a variety of synthetic analogs of porcine endothelin (pET), we have studied the effects of these analogs on receptor binding activity and cytosolic free Ca2+ concentrations ([Ca2+]i) in cultured rat vascular smooth muscle cells (VSMC). Removal of C-terminal Trp21 residue, truncated derivatives pET(1-15) and (16-21), substitution of disulfide bond, Cys(3-11) or Cys(1-15), by Cys (Acm), all resulted in a complete loss of receptor binding activity and [Ca2+]i response, while N-terminal elongation of Lys-Arg residues, but not oxidation of Met7 residue, decreased receptor binding activity and [Ca2+]i response. [Cys1-15,Cys3-11]pET was far more potent than [Cys1-11,Cys3-15]pET in receptor binding and [Ca2+]i response. These data indicate that the C-terminal Trp21 as well as the proper double cyclic structure formed by the intramolecular disulfide bonds of the pET molecule are essential for receptor binding and subsequent [Ca2+]i increase in rat VSMC.  相似文献   

6.
We investigated mechanisms by which epidermal growth factor (EGF) reduces angiotensin II (AngII) surface receptor density and stimulated actions in vascular smooth muscle cells (VSMC). EGF downregulated specific AngII radioligand binding in intact cultured rat aortic smooth muscle cells but not in cell membranes and also inhibited AngII-stimulated contractions of aortic segments. Inhibitors of cAMP-dependent kinases, PI-3 kinase, MAP kinase, cyclooxygenase, and calmodulin did not prevent EGF-mediated downregulation of AngII receptor binding, whereas the EGF receptor kinase inhibitor AG1478 did. Total cell AngII AT1a receptor protein content of EGF-treated and untreated cells, measured by immunoblotting, did not differ. Actinomycin D or cytochalasin D, which interacts with the cytoskeleton, but not the protein synthesis inhibitor cycloheximide, prevented EGF from downregulating AngII receptor binding. Consistently, EGF inhibited AngII-stimulated formation of inositol phosphates in the presence of cycloheximide but not in the presence of actinomycin D or cytochalasin D. In conclusion, EGF needs an intact signal transduction pathway to downregulate AngII surface receptor binding, possibly by altering cellular location of the receptors.  相似文献   

7.
Although the intrareceptor mechanisms whereby the angiotensin II (AngII) type 1 receptor activates phospholipase C (PLC) have been extensively investigated, analogous studies of signaling through mitogen-activated protein kinases (MAPK) have been lacking. We investigated MAPK activation and traditional G(q)/PLC signaling in transfected cells using AngII and the signaling selective agonist [Sar(1),Ile(4),Ile(8)] AngII (SII). SII stimulated MAPK without inositol trisphosphate (IP(3)) production and thereby stabilizes an activated receptor state linked to G protein-independent MAPK signaling. Using receptor mutagenesis, we focused on the seventh transmembrane domain and identified three key residues-Tyr(292), Phe(293), and Thr(287). At least three distinct activated states were revealed: 1) an AngII-stabilized state linked to G(q)/PLC signaling, 2) an AngII-stabilized state connected to G protein-independent MAPK activation, and 3) a SII-stabilized state associated with G protein-independent MAPK signaling. The mutant Y292F failed to exhibit AngII-induced IP(3) turnover yet remained capable of AngII-induced MAPK activation. SII failed to stimulate MAPK in Y292F-transfected cells. Thus, Tyr(292) is a key epitope for activated states 1 and 3 but not required for activated state 2. Although the F293L mutant retained normal AngII responses, it also showed an IP(3) response to SII, indicating that Phe(293) may be involved in constraining the receptor to its inactive state. Mutations of Thr(287) abolished all SII-induced signaling without affecting any AngII responses. Thr(287) therefore represents a key residue for a SII-stabilized activated state. Taken together, the data identified a novel structural requirement (Thr(287)) for the SII-stabilized activated state and redefined the mechanistic roles for Tyr(292) and Phe(293).  相似文献   

8.

Biological effects of angiotensin II (AngII) such as regulation of AngII target genes may be triggered by interaction of AngII with intracellular AngII receptor types 1 and 2 (AT1 and AT2), defined as intracrine response. The aim of this study was to examine the presence of AT1 and AT2 receptors in nuclear membrane of human mesangial cells (HMCs) and evaluate the possible biological effects mediated by intracellular AT1 through an intracrine mechanism. Subcellular distribution of AT1 and AT2 was evaluated by immunofluorescence and by western blot in isolated nuclear extract. Endogenous intracellular synthesis of AngII was stimulated by high glucose (HG). Effects of HG were analyzed in the presence of candesartan, which prevents AngII internalization. Both receptors were found in nuclear membrane. Fluorescein isothiocyanate (FITC)-labeled AngII added to isolated nuclei produced a fluorescence that was reduced in the presence of losartan or PD-123319 and quenched in the presence of both inhibitors simultaneously. HG induced overexpression of fibronectin and increased cell proliferation in the presence of candesartan, indicating an intracrine action of AngII induced by HG. Results showed the presence of nuclear receptors in HMCs that can be activated by AngII through an intracrine response independent of cytoplasmic membrane AngII receptors.

  相似文献   

9.
The mutant h-lysozyme, W64CC65A, with Trp64 and Cys65 replaced by Cys and Ala, respectively, was secreted by yeast and purified. Peptide mapping confirmed that W64CC65A contained a nonnative Cys64-Cys81 bond and three native disulfide bonds. The mutant had 2% of the lytic activity of the wild-type lysozyme. The midpoint concentration of the guanidine hydrochloride denaturation curve, the [D]1/2, was 2.7 M for W64CC65A at pH 3.0 and 25 degrees C, whereas the [D]1/2 for the wild-type h-lysozyme was 2.9 M. These results show that the W64CC65A protein is a compactly folded molecule. Our previous results, using the mutant C81A, indicate that Cys81 is not required for correct folding and activity, whereas Cys65 is indispensable (Taniyama, Y., Yamamoto, Y., Kuroki, R., and Kikuchi, M. (1990) J. Biol. Chem. 65, 7570-7575). Cys64 substituted for Cys65 in W64CC65A, even though the distance between the alpha-carbons at positions 64 and 81 in the wild-type h-lysozyme is not favorable for forming a disulfide bond. Unlike C81A, the mutant W64CC65/81A, which has the additional substitution of Ala for Cys81, did not fold. These results suggest that the absence of both the Cys64-Cys81 bond and the amino acid residue Trp64 caused the misfolding or destabilization of W64CC65/81A in vivo. It is proposed that the formation of the alternative bond, Cys64-Cys81 is important for the folding of W64CC65A in vivo.  相似文献   

10.
Most of the classical physiological effects of the octapeptide angiotensin II (AngII) are produced by activating the AT1 receptor which belongs to the G-protein coupled receptor family (GPCR). Peptidic GPCRs may be functionally divided in three regions: (i) extracellular domains involved in ligand binding; (ii) intracellular domains implicated in agonist-induced coupling to G protein and (iii) seven transmembrane domains (TM) involved in signal transduction. The TM regions of such receptors have peculiar characteristics such as the presence of proline residues. In this project we aimed to investigate the participation of two highly conserved proline residues (Pro82 and Pro162), located in TM II and TM IV, respectively, in AT1 receptor signal transduction. Both mutations did not cause major alterations in AngII affinity. Functional assays indicated that the P162A mutant did not influence the signal transduction. On the other hand, a potent deleterious effect of P82A mutation on signal transduction was observed. We believe that the Pro82 residue is crucial to signal transduction, although it is not possible to say yet if this is due to a direct participation or if due to a structural rearrangement of TM II. In this last hypothesis, the removal of proline residue might be correlated to a removal of a kink, which in turn can be involved in the correct positioning of residues involved in signal transduction.  相似文献   

11.
A G protein-coupled receptor agonist, angiotensin II (AngII), induces epidermal growth factor (EGF) receptor (EGFR) transactivation possibly through metalloprotease-dependent, heparin-binding EGF (HB-EGF) shedding. Here, we have investigated signal transduction of this process by using COS7 cells expressing an AngII receptor, AT1. In these cells AngII-induced EGFR transactivation was completely inhibited by pretreatment with a selective HB-EGF inhibitor, or with a metalloprotease inhibitor. We also developed a COS7 cell line permanently expressing a HB-EGF construct tagged with alkaline phosphatase, which enabled us to measure HB-EGF shedding quantitatively. In the COS7 cell line AngII stimulated release of HB-EGF. This effect was mimicked by treatment either with a phospholipase C activator, a Ca2+ ionophore, a metalloprotease activator, or H2O2. Conversely, pretreatment with an intracellular Ca2+ antagonist or an antioxidant blocked AngII-induced HB-EGF shedding. Moreover, infection of an adenovirus encoding an inhibitor of G(q) markedly reduced EGFR transactivation and HB-EGF shedding through AT1. In this regard, AngII-stimulated HB-EGF shedding was abolished in an AT1 mutant that lacks G(q) protein coupling. However, in cells expressing AT1 mutants that retain G(q) protein coupling, AngII is still able to induce HB-EGF shedding. Finally, the AngII-induced EGFR transactivation was attenuated in COS7 cells overexpressing a catalytically inactive mutant of ADAM17. From these data we conclude that AngII stimulates a metalloprotease ADAM17-dependent HB-EGF shedding through AT1/G(q)/phospholipase C-mediated elevation of intracellular Ca2+ and reactive oxygen species production, representing a key mechanism indispensable for EGFR transactivation.  相似文献   

12.
The renin angiotensin system (RAS) is involved in blood pressure control and water/sodium metabolism. The genes encoding the proteins of this system are candidate genes for essential hypertension. The RAS involves four main molecules: angiotensinogen, renin, angiotensin I-converting enzyme, and the angiotensin II type 1 receptor (encoded by the genes AGT, REN, DCP1, and AGTR1, respectively). We performed a molecular screening over 17,037 bp of the coding and 5' and 3' untranslated regions of these genes, from three to six common chimpanzees. We identified 44 single-nucleotide polymorphisms (SNPs) in chimpanzee samples, including 18 coding-region SNPs, 5 of which led to an amino acid replacement. We observed common and different features at various sites (synonymous, nonsynonymous, and noncoding) within and between the four chimpanzee genes: (1) the nucleotide diversity at noncoding sites was similar; (2) the nucleotide diversity at nonsynonymous sites was low, probably reflecting purifying selection, except for the AGT gene; (3) the nucleotide diversity at synonymous sites, which was dependent on the G+C content at the third position of the codon, was high, except for the AGTR1 gene. Comparison of the chimpanzee SNPs with those previously reported for humans identified 119 sites with fixed differences (including 62 coding sites, 17 of which resulted in amino acid differences between the species). Analysis of polymorphism within species and divergence between species shed light on the evolutionary constraints on these genes. In particular, comparison of the pattern of mutation at polymorphic and fixed sites between humans and chimpanzees suggested that the high G+C content of the DCP1 gene was maintained by positive selection at its silent sites. Finally, we propose 68 ancestral alleles for the human RAS genes and discuss the implications for their use in future hypertension-susceptibility association studies.  相似文献   

13.
A complementary DNA for the angiotensin II (AngII) type 1 (AT(1)) receptor from Mustela putorius furo (ferret) was isolated from a ferret atria cDNA library. The cDNA encodes a protein (fAT(1)) of 359 amino acids having high homologies (93-99%) to other mammalian AT(1) receptor counterparts. When fAT(1) was expressed in COS-7 cells and photoaffinity labeled with the photoactive analogue (125)I-?Sar(1), Bpa(8)AngII, a protein of 100 kDa was detected by autoradiography. The formation of this complex was specific since it was abolished in the presence of the AT(1) non-peptidic antagonist L-158,809. Functional analysis indicated that the fAT(1) receptor efficiently coupled to phospholipase C as demonstrated by an increase in inositol phosphate production following stimulation with AngII. Binding studies revealed that the fAT(1) receptor had a high affinity for the peptide antagonist ?Sar(1), Ile(8)AngII (K(d) of 5. 8+/-1.4 nM) but a low affinity for the AT(1) selective non-peptidic antagonist DuP 753 (K(d) of 91+/-15.6 nM). Interestingly, when we substituted Thr(163) with an Ala residue, which occupies this position in many mammalian AT(1) receptors, we restored the high affinity of this receptor for Dup 753 (11.7+/-5.13 nM). These results suggest that position 163 of the AT(1) receptor does not contribute to the overall binding of peptidic ligands but that certain non-peptidic antagonists such as Dup 753 are clearly dependent on this position for efficient binding.  相似文献   

14.
In cultured vascular smooth muscle cells, the angiotensin II (AngII) type-1 (AT(1)) receptor generates growth-promoting signals via the epidermal growth factor (EGF) receptor system. This 'transactivation' mechanism now appears to be utilized by a variety of G-protein-coupled receptors in many cells. The AngII-induced EGF receptor transactivation leads to activation of downstream signaling molecules including Ras, ERK, c-fos, Akt/protein kinase B, and p70 S6 kinase. We propose three possible mechanisms may be involved in the transactivation, (i) an upstream tyrosine kinase, (ii) reactive oxygen species, and (iii) a juxtacrine activation of the EGF receptor ligand. Whether the EGF receptor signal transduction induced by AngII plays an essential role in cardiovascular remodeling remains to be investigated.  相似文献   

15.
The human angiotensin II type 1 receptor (hAT(1)) was photolabeled with a high-affinity radiolabeled photoreactive analogue of AngII, (125)I-[Sar(1), Val(5), p-Benzoyl-L-phenylalanine(8)]AngII ((125)I-[Sar(1),Bpa(8)]AngII). Chemical cleavage with CNBr produced a 7 kDa fragment (285-334) of the C-terminal portion of the hAT(1). Manual Edman radiosequencing of photolabeled, per-acetylated, and CNBr-fragmented receptor showed that ligand incorporation occurred through Phe(293) and Asn(294) within the seventh transmembrane domain of the hAT(1). Receptor mutants with Met introduced at the presumed contact residues, F293M and N294M, were photolabeled and then digested with CNBr. SDS-PAGE analysis of those digested mutant receptors confirmed the contact positions 293 and 294 through ligand release induced by CNBr digestion. Additional receptor mutants with Met residues introduced into the N- and C-terminal proximity of those residues 293 and 294 of the hAT(1) produced, upon photolabeling and CNBr digestion, fragmentation patterns compatible only with the above contact residues. These data indicate that the C-terminal residue of AngII interacts with residues 293 and 294 of the seventh transmembrane domain of the human AT(1) receptor. Taking into account a second receptor-ligand contact at the second extracellular loop and residue 3 of AngII (Boucard, A. A., Wilkes, B. C., Laporte, S. A., Escher, E., Guillemette, G., and Leduc, R. (2000) Biochemistry 39, 9662-70) the Ang II molecule must adopt an extended structure in the AngII binding pocket.  相似文献   

16.
G protein-coupled receptors are thought to isomerize between distinct inactive and active conformations, an idea supported by receptor mutations that induce constitutive (agonist-independent) activation. The agonist-promoted active state initiates signaling and, presumably, is then phosphorylated and internalized to terminate the signal. In this study, we examined the phosphorylation and internalization of wild type and constitutively active mutants (N111A and N111G) of the type 1 (AT(1A)) angiotensin II receptor. Cells expressing these receptors were stimulated with angiotensin II (AngII) and [Sar(1),Ile(4),Ile(8)]AngII, an analog that only activates signaling through the constitutive receptors. Wild type AT(1A) receptors displayed a basal level of phosphorylation, which was stimulated by AngII. Unexpectedly, the constitutively active AT(1A) receptors did not exhibit an increase in basal phosphorylation nor was phosphorylation enhanced by AngII stimulation. Phosphorylation of the constitutively active receptors was unaffected by pretreatment with the non-peptide AT(1) receptor inverse agonist, EXP3174, and was not stimulated by the selective ligand, [Sar(1),Ile(4),Ile(8)]AngII. Paradoxically, [Sar(1),Ile(4), Ile(8)]AngII produced a robust ( approximately 85% of AngII), dose-dependent phosphorylation of the wild type AT(1A) receptor at sites in the carboxyl terminus similar to those phosphorylated by AngII. Moreover, internalization of both wild type and constitutive receptors was induced by AngII, but not [Sar(1),Ile(4),Ile(8)]AngII, providing a differentiation between the phosphorylated and internalized states. These data suggest that the AT(1A) receptor can attain a conformation for phosphorylation without going through the conformation required for inositol phosphate signaling and provide evidence for a transition of the receptor through multiple states, each associated with separate stages of receptor activation and regulation. Separate transition states may be a common paradigm for G protein-coupled receptors.  相似文献   

17.
Animal microRNAs (miRNAs) regulate gene expression through base pairing to their targets within the 3' untranslated region (UTR) of protein-coding genes. Single-nucleotide polymorphisms (SNPs) located within such target sites can affect miRNA regulation. We mapped annotated SNPs onto a collection of experimentally supported human miRNA targets. Of the 143 experimentally supported human target sites, 9 contain 12 SNPs. We further experimentally investigated one of these target sites for hsa-miR-155, within the 3' UTR of the human AGTR1 gene that contains SNP rs5186. Using reporter silencing assays, we show that hsa-miR-155 down-regulates the expression of only the 1166A, and not the 1166C, allele of rs5186. Remarkably, the 1166C allele has been associated with hypertension in many studies. Thus, the 1166C allele may be functionally associated with hypertension by abrogating regulation by hsa-miR-155, thereby elevating AGTR1 levels. Since hsa-miR-155 is on chromosome 21, we hypothesize that the observed lower blood pressure in trisomy 21 is partially caused by the overexpression of hsa-miR-155 leading to allele-specific underexpression of AGTR1. Indeed, we have shown in fibroblasts from monozygotic twins discordant for trisomy 21 that levels of AGTR1 protein are lower in trisomy 21.  相似文献   

18.
Earlier studies with Mas protooncogene, a member of the G-protein-coupled receptor family, have proposed this gene to code for a functional AngII receptor, however further results did not confirm this assumption. In this work we investigated the hypothesis that a heterodimeration AT(1)/Mas could result in a functional interaction between both receptors. For this purpose, CHO or COS-7 cells were transfected with the wild-type AT(1) receptor, a non-functional AT(1) receptor double mutant (C18F-K20A) and Mas or with WT/Mas and C18F-K20A/Mas. Cells single-expressing Mas or C18F/K20A did not show any binding for AngII. The co-expression of the wild-type AT(1) receptor and Mas showed a binding profile similar to that observed for the wild-type AT(1) expressed alone. Surprisingly, the co-expression of the double mutant C18F/K20A and Mas evoked a total recovery of the binding affinity for AngII to a level similar to that obtained for the wild-type AT(1). Functional measurements using inositol phosphate and extracellular acidification rate assays also showed a clear recovery of activity for AngII on cells co-expressing the mutant C18F/K20A and Mas. In addition, immunofluorescence analysis localized the AT(1) receptor mainly at the plasma membrane and the mutant C18F-K20A exclusively inside the cells. However, the co-expression of C18F-K20A mutant with the Mas changed the distribution pattern of the mutant, with intense signals at the plasma membrane, comparable to those observed in cells expressing the wild-type AT(1) receptor. These results support the hypothesis that Mas is able to rescue binding and functionality of the defective C18F-K20A mutant by dimerization.  相似文献   

19.
Evaluating the potential genetic components of complex disease will likely be aided through the use of dense polymorphism maps. Previously, we reported evidence for linkage with diabetic nephropathy on chromosome 3q in a region encompassing the type 1 angiotensin II receptor (AGTR1) gene. To further investigate any role for this gene in disease onset, we set out to design a dense polymorphism map spanning the AGTR1 locus for the purpose of association studies. Toward this goal, we have developed a technique for rapid identification of polymorphisms in long stretches of genomic DNA. This approach uses long-range PCR, DNA pooling, and transposon-based DNA sequencing. Using this technique, we efficiently validated and genotyped 18 polymorphisms spanning the 60.5-kb AGTR1 locus. Our panel of polymorphisms has an average spacing of 3.2 kb and an average minor allele frequency of 24%.  相似文献   

20.
Whether gestational protein restriction affects the renin-angiotensin system (RAS) in uterine artery remains unknown. In this study, we hypothesized that gestational protein restriction alters the expression of RAS components in uterine artery. In study one, time-scheduled pregnant Sprague Dawley rats were fed a normal or low-protein (LP) diet from Day 3 of pregnancy until they were killed at Days 19 and 22. The uterine arteries were collected and used for gene expression of Ace, Ace2, Agtr1a, Agtr1b, Agtr2, Esr1, and Esr2 by quantitative real-time PCR and/or Western blotting. LP increased plasma levels of angiotensin II in pregnant rats. In the uterine artery, the expressions of Agtr1a, Agtr1b, and Esr1 were increased by LP at Days 19 and 22 of pregnancy, whereas the abundance of AGTR1 and AGTR2 was increased by LP at Day 19 of pregnancy. The expression of Ace2 was not detectable in rat uterine artery. In study two, virgin female rats were ovariectomized and implanted with either 17beta-estradiol (E2), progesterone (P4), both E2 and P4, or placebo pellets until they were killed 7 days later. In rat uterine artery, E2 and P4 reduced the expression of Agtr1a, and E2 increased the expression of Agtr1b and Agtr2, but neither E2 nor P4 regulated the expression of Ace. These results indicate that gestational protein restriction induces an increase in Agtr1 expression in uterine artery, and thus may exacerbate the vasoconstriction to elevated angiotensin II present in maternal circulation, and that female sex hormones also play a role in this process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号