首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mycinamicin, composed of a branched lactone and two sugars, desosamine and mycinose, at the C-5 and C-21 positions, is a 16-membered macrolide antibiotic produced by Micromonospora griseorubida A11725, which shows strong antimicrobial activity against Gram-positive bacteria. The nucleotide sequence (62 kb) of the mycinamicin biosynthetic gene cluster, in which there were 22 open reading frames (ORFs), was completely determined. All of the products from the 22 ORFs are responsible for the biosynthesis of mycinamicin II and self-protection against the compounds synthesized. Central to the cluster is a polyketide synthase locus (mycA), which encodes a seven-module system comprised of five multifunctional proteins. Immediately downstream of mycA, there is a set of genes for desosamine biosynthesis (mydA-G and mycB). Moreover, mydH, whose product is responsible for the biosynthesis of mycinose, lies between mydA and B. On the other hand, eight ORFs were detected upstream of the mycinamicin PKS gene. The myrB, mycG, and mycF genes had already been characterized by Inouye et al. The other five ORFs (mycCI, mycCII, mydI, mycE, and mycD) lie between mycA1 and mycF, and these five genes and mycF are responsible for the biosynthesis of mycinose. In the PKS gene, four regions of KS and AT domains in modules 1, 4, 5, and 6 indicated that it does not show the high GC content typical for Streptomyces genes, nor the unusual frame plot patterns for Streptomyces genes. Methylmalonyl-CoA was used as substrate in the functional units of those four modules. The relationship between the substrate and the unusual frame plot pattern of the KS and AT domains was observed in the other PKS genes, and it is suggested that the KS-AT original region was horizontally transferred into the PKS genes on the chromosomal DNA of several actinomycetes strains.  相似文献   

2.
Genetic engineering of post-polyketide synthase-tailoring genes can be used to generate new macrolide analogs through manipulation of the genes involved in their biosynthesis. Rosamicin, a 16-member macrolide antibiotic produced by Micromonospora rosaria IFO13697, contains a formyl group and an epoxide at C-20 and C-12/13 positions which are formed by the cytochrome P450 enzymes RosC and RosD, respectively. The d-mycinose biosynthesis genes in mycinamicin II biosynthesis gene cluster of Micomonospora guriseorubida A11725 were introduced into the rosC and rosD disruption mutants of M. rosaria IFO13697. The resulting engineered strains, M. rosaria TPMA0054 and TPMA0069, produced mycinosyl rosamicin derivatives, IZIV and IZV, respectively. IZIV was identified as a novel mycinosyl rosamicin derivative, 23-O-mycinosyl-20-deoxo-20-dihydrorosamicin.  相似文献   

3.
Some polyketide-derived bioactive compounds contain sugars attached to the aglycone core, and these sugars often enhance or impart specific biological activity to the molecule. Mycinamicin II, a 16-member macrolide antibiotic produced by Micromonospora griseorubida A11725, contains a branched lactone and two different deoxyhexose sugars, d-desosamine and d-mycinose, at the C-5 and C-21 positions, respectively. We previously engineered an expression plasmid pSETmycinose containing the d-mycinose biosynthesis genes from M. griseorubida A11725. This plasmid was introduced into Micromonospora sp. FERM BP-1076 cells, which produce the 16-membered macrolide antibiotic izenamicin. The resulting engineered strain TPMA0041 produced 23-O-mycinosyl-20-deoxy-izenamicin B1 and 22-O-mycinosyl-izenamicin B2. 23-O-mycinosyl-20-deoxy-izenamicin B1 has been produced by the engineered strain M. rosaria TPMA0001 containing pSETmycinose as 23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxyrosamicin (=IZI) in our recent study, and 22-O-mycinosyl-izenamicin B2 has previously been synthesized as a macrolide antibiotic TMC-016 with strong antibacterial activity. The production of 22-O-mycinosyl-izenamicin B2 (=TMC-016) was increased when propionate, a precursor of methylmalonyl-CoA, was added to the culture broth.  相似文献   

4.
Some of the polyketide-derived bioactive compounds contain sugars attached to the aglycone core, and these sugars often impart specific biological activity to the molecule or enhance this activity. Mycinamicin II, a 16-member macrolide antibiotic produced by Micromonospora griseorubida A11725, contains a branched lactone and two different deoxyhexose sugars, d-desosamine and d-mycinose, at the C-5 and C-21 positions, respectively. The d-mycinose biosynthesis genes, mycCI, mycCII, mycD, mycE, mycF, mydH, and mydI, present in the M. griseorubida A11725 chromosome were introduced into pSET152 under the regulation of the promoter of the apramycin-resistance gene aac(3)IV. The resulting plasmid pSETmycinose was introduced into Micromonospora rosaria IFO13697 cells, which produce the 16-membered macrolide antibiotic rosamicin containing a branched lactone and d-desosamine at the C-5 position. Although the M. rosaria TPMA0001 transconjugant exhibited low rosamicin productivity, two new compounds, IZI and IZII, were detected in the ethylacetate extract from the culture broth. IZI was identified as a mycinosyl rosamicin derivative, 23-O-mycinosyl-20-deoxo-20-dihydro-12,13-deepoxyrosamicin (MW 741), which has previously been synthesized by a bioconversion technique. This is the first report on production of mycinosyl rosamicin-derivatives by a engineered biosynthesis approach. The integration site ΦC31attB was identified on M. rosaria IFO13697 chromosome, and the site lay within an ORF coding a pirin homolog protein. The pSETmycinose could be useful for stimulating the production of “unnatural” natural mycinosyl compounds by various actinomycete strains using the bacteriophage ΦC31 att/int system.  相似文献   

5.
MycG is a multifunctional P450 monooxygenase that catalyzes sequential hydroxylation and epoxidation or a single epoxidation in mycinamicin biosynthesis. In the mycinamicin-producing strain Micromonospora griseorubida A11725, very low-level accumulation of mycinamicin V generated by the initial C-14 allylic hydroxylation of MycG is observed due to its subsequent epoxidation to generate mycinamicin II, the terminal metabolite in this pathway. Herein, we investigated whether MycG can be engineered for production of the mycinamicin II intermediate as the predominant metabolite. Thus, mycG was subject to random mutagenesis and screening was conducted in Escherichia coli whole-cell assays. This enabled efficient identification of amino acid residues involved in reaction profile alterations, which included MycG R111Q/V358L, W44R, and V135G/E355K with enhanced monohydroxylation to accumulate mycinamicin V. The MycG V135G/E355K mutant generated 40-fold higher levels of mycinamicin V compared to wild-type M. griseorubida A11725. In addition, the E355K mutation showed improved ability to catalyze sequential hydroxylation and epoxidation with minimal mono-epoxidation product mycinamicin I compared to the wild-type enzyme. These approaches demonstrate the ability to selectively coordinate the catalytic activity of multifunctional P450s and efficiently produce the desired compounds.  相似文献   

6.
Production of macrolide antibiotic mycinamicin was greatly increased by addition of sulfate ion into the culture medium of Micromonospora griseorubida. An O-sulfate ester compound, also produced by the strain, was shown to be dotriacolide. In an M. griseorubida dotriacolide non-producing strain, the production level of mycinamicin remained low, but increased to the level of dotriacolide producing strain by the addition of dotriacolide. Dotriacolide enhanced mycinamicin production in M. griseorubida by the formation of micelles with mycinamicin. As a result, dotriacolide played a critical role in mycinamicin production in M. griseorubida.  相似文献   

7.
The majority of characterized cytochrome P450 enzymes in actinomycete secondary metabolic pathways are strictly substrate-, regio-, and stereo-specific. Examples of multifunctional biosynthetic cytochromes P450 with broader substrate and regio-specificity are growing in number and are of particular interest for biosynthetic and chemoenzymatic applications. MycG is among the first P450 monooxygenases characterized that catalyzes both hydroxylation and epoxidation reactions in the final biosynthetic steps, leading to oxidative tailoring of the 16-membered ring macrolide antibiotic mycinamicin II in the actinomycete Micromonospora griseorubida. The ordering of steps to complete the biosynthetic process involves a complex substrate recognition pattern by the enzyme and interplay between three tailoring modifications as follows: glycosylation, methylation, and oxidation. To understand the catalytic properties of MycG, we structurally characterized the ligand-free enzyme and its complexes with three native metabolites. These include substrates mycinamicin IV and V and their biosynthetic precursor mycinamicin III, which carries the monomethoxy sugar javose instead of the dimethoxylated sugar mycinose. The two methoxy groups of mycinose serve as sensors that mediate initial recognition to discriminate between closely related substrates in the post-polyketide oxidative tailoring of mycinamicin metabolites. Because x-ray structures alone did not explain the mechanisms of macrolide hydroxylation and epoxidation, paramagnetic NMR relaxation measurements were conducted. Molecular modeling based on these data indicates that in solution substrate may penetrate the active site sufficiently to place the abstracted hydrogen atom of mycinamicin IV within 6 Å of the heme iron and ∼4 Å of the oxygen of iron-ligated water.  相似文献   

8.
9.
A gene encoding the macrolide modification enzyme 3-O-acyltransferase (acyA) was cloned by chromosome walking onto the carbomycin biosynthetic region in Streptomyces thermotolerans TH475, with the 3' region of the gene encoding the macrolide modification enzyme 4"-O-acyltransferase (acyB1) as a probe. A shortened fragment (1.8 kb) containing acyA was subcloned with pIJ350. A high-level tylosin producer, Streptomyces fradiae MBBF, transformed with the plasmid could produce a hybrid macrolide, 3-O-acetyltylosin, most efficiently.  相似文献   

10.
The biosynthesis of saframycin A, a heterocyclic quinone antitumor antibiotic isolated from Streptomyces lavendulae 314, was studied by feeding experiments with 14C and 13C precursors. Highly increased production of saframycin A and prolongation of the maximum production period of saframycin A were attained by constant pH control of the culture and by addition of chloramphenicol to the culture. The biosynthetic origin of the quinone skeleton common to the saframycin group was confirmed to be two tyrosine molecules which condense to generate the basic ring system of saframycin A. Feeding experiments with [1-13C]tyrosine showed specific labeling of C-11 and C-21 carbons of saframycin A, and the enrichment of the carbons was 40-fold over natural abundance. Two O- and two C-methyl and one N-methyl carbons arose directly from methionine, and alanine and glycine were the precursors for the pyruvoyl amide side chain of saframycin A.  相似文献   

11.
A cell suspension culture of Tabernaemontana elegans lost its ability to produce alkaloids after a prolonged period of subculture. To determine whether it was still capable of performing the later steps of the alkaloid biosynthetic pathway, the culture was fed with tryptamine and loganin. The precursors and alkaloids were determined in the biomass and in the medium during a growth cycle. In this culture, an increase in the amount of serotonin was found in the biomass after feeding of tryptamine and loganin. Secologanin was detected in small amounts but strictosidine was not. Therefore, a limitation in alkaloid formation in this T. elegans cell line occured in the formation of secologanin from loganin. After feeding of secologanin alone, strictosidine, 10-hydroxy strictosidine, strictosidinic acid and two other indole alkaloids, as yet unidentified, were formed. However, the alkaloids originally produced by this cell line were not found. As the biosynthesis is impaired at several steps, it seems that the loss of productivity is more likely to be to a change on the level of the regulation of the pathway, than due to the loss of the capacity to express an individual biosynthetic gene of the pathway.  相似文献   

12.
13.
Genetic modification of large DNA fragments(gene clusters) is of great importance in synthetic biology and combinatorial biosynthesis as it facilitates rational design and modification of natural products to increase their value and productivity.In this study,we developed a method for scarless and precise modification of large gene clusters by using RecET/RED-mediated polymerase chain reaction(PCR) targeting combined with Gibson assembly.In this strategy,the biosynthetic genes for peptidyl moieties(HPHT) in the nikkomycin biosynthetic gene cluster were replaced with those for carbamoylpolyoxamic acid(CPOAA)from the polyoxin biosynthetic gene cluster to generate a~40 kb hybrid gene cluster in Escherichia coli with a reusable targeting cassette.The reconstructed cluster was introduced into Streptomyces lividans TK23 for heterologous expression and the expected hybrid antibiotic,polynik A,was obtained and verified.This study provides an efficient strategy for gene cluster reconstruction and modification that could be applied in synthetic biology and combinatory biosynthesis to synthesize novel bioactive metabolites or to improve antibiotic production.  相似文献   

14.
Elloramycin and oleandomycin are two polyketide compounds produced by Streptomyces olivaceus Tü2353 and Streptomyces antibioticus ATCC11891, respectively. Elloramycin is an anthracycline-like antitumor drug and oleandomycin a macrolide antibiotic. Expression in S. albus of a cosmid (cos16F4) containing part of the elloramycin biosynthetic gene cluster produced the elloramycin non-glycosylated intermediate 8-demethyl-tetracenomycin C. Several plasmid constructs harboring different gene combinations of L-oleandrose (neutral 2,6-dideoxyhexose attached to the macrolide antibiotic oleandomycin) biosynthetic genes of S. antibioticus that direct the biosynthesis of L-olivose, L-oleandrose and L-rhamnose were coexpressed with cos16F4 in S. albus. Three new hybrid elloramycin analogs were produced by these recombinant strains through combinatorial biosynthesis, containing elloramycinone or 12a-demethyl-elloramycinone (= 8-demethyl-tetracenomycin C) as aglycone moiety encoded by S. olivaceus genes and different sugar moieties, coded by the S. antibioticus genes. Among them is L-olivose, which is here described for the first time as a sugar moiety of a natural product.  相似文献   

15.
Wu K  Chung L  Revill WP  Katz L  Reeves CD 《Gene》2000,251(1):81-90
FK520 (ascomycin) is a macrolide produced by Streptomyces hygroscopicus var. ascomyceticus (ATCC 14891) that has immunosuppressive, neurotrophic and antifungal activities. To further elucidate the biosynthesis of this and related macrolides, we cloned and sequenced an 80kb region encompassing the FK520 gene cluster. Genes encoding the three polyketide synthase (PKS) subunits (fkbB, fkbC and fkbA), the peptide synthetase (fkbP), the 31-O-methyltransferase (fkbM), the C-9 hydroxylase (fkbD) and the 9-hydroxyl oxidase (fkbO) had the same organization as the genes reported in the FK506 gene cluster of Streptomyces sp. MA6548 (Motamedi, H., Shafiee, A., 1998. The biosynthetic gene cluster for the macrolactone ring of the immunosuppressant FK506. Eur. J. Biochem. 256, 528-534). Disruption of a PKS gene in the cluster using the φC31 phage vector, KC515, led to antibiotic non-producing strains, proving the identity of the cluster. Previous labeling data have indicated that FK520 biosynthesis uses novel polyketide extender units (Byrne, K.M., Shafiee, A., Nielson, J., Arison, B., Monaghan, R.L., Kaplan, L., 1993. The biosynthesis and enzymology of an immunosuppressant, immunomycin, produced by Streptomyces hygroscopicus var, ascomyceticus. Dev. Ind. Microbiol. 32, 29-45). Genes in the flanking regions of the FK520 cluster were identified that appear to be involved in synthesis of these extender units. All but two of these genes were homologous to genes with known function. In addition to a crotonyl-CoA reductase gene (fkbS), at least two other genes are proposed to be involved in biosynthesis of the atypical PKS extender unit ethylmalonyl-CoA, which accounts for the ethyl side chain on C-21 of FK520. A set of five contiguous genes (fkbGHIJK) is proposed to be involved in biosynthesis of an unusual PKS extender unit bearing an oxygen on the alpha-carbon, and leading to the 13- and 15-methoxy side chains. These putative precursor synthesis genes in the flanking regions of the FK520 cluster are not found in the flanking regions of the rapamycin cluster (Molnár, I., Aparicio, J.F., Haydock, S.F., Khaw, L.E., Schwecke, T., K?nig, A., Staunton, J., Leadlay, P.F., 1996. Organisation of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of genes flanking the polyketide synthase. Gene 169, 1-7), consistent with labeling data showing that rapamycin biosynthesis uses only malonyl and methylmalonyl extender units.  相似文献   

16.
We have reported that the gene mph(C) (formally referred to as 'mphBM') is located on plasmid pMS97 342 bp downstream of the msr(A) gene. msr(A) specifies resistance to macrolides by ABC-transporter-mediated efflux, and mph(C) has 49% identity to the amino acid sequence of MPH(2')II, which encodes a phosphotransferase that inactivates some macrolide antibiotics. A strain of Staphylococcus aureus NCTC8325 containing plasmid pMS97 inactivated unlabeled and (14)C-labeled erythromycin when tested by bioautographic and radioautographic techniques. In addition to erythromycin, other 14-membered ring macrolides (except for ketolides), 15-membered ring macrolides and 16-membered ring macrolides, mycinamicin, rosamicin and YM133, were inactivated by the strain. Erythromycin inactivation products produced by the strain carrying pMS97 were completely different from those produced by Escherichia coli BM694 bearing plasmid pAT63, which contains the ereA gene encoding an esterase that hydrolyzes macrolide lactones. Constructs formed with the msr(A) and mph(C) genes, and with the msr(A), mph(C) and erm(Y) genes, showed erythromycin-inactivating activity, but another construct built with the mph(C) gene alone failed to show such activity. This result suggests that any region of the msr(A) gene is needed for the expression of mph(C).  相似文献   

17.
Rosamicin is one of the important macrolide antibiotics that has clinical efficacy and broad-spectrum antibacterial activity. Using a mutant strain of Micromonospora rosaria (NRRL 3718), a chemically defined medium was developed, and some fermentation conditions that are important to rosamicin biosynthesis were optimized to achieve rosamicin productivity of 230 mug/ml. Soluble starch and l-asparagine were found to be the best carbon and nitrogen sources, and a stimulative effect of magnesium and zinc ions was also found. The medium developed contains: soluble starch, 4%; l-asparagine, 0.15%; K(2)HPO(4), 0.075%; CaCO(3), 0.6%; MgSO(4) . 7H(2)O, 0.05%; FeSO(4) . 7H(2)O, 10 M; CuSO(4) . 5H(2)O, 10 M; ZnSO(4) . 7H(2)O, 10 M; and MnSO(4) . (4-6)H(2)O, 10 M. The required air supply was about 40 mmol of O(2) liter . h . atm, and the favorable culture temperature was 28 to 29 degrees C.  相似文献   

18.
A cluster encoding genes for the biosynthesis of meilingmycin, a macrolide antibiotic structurally similar to avermectin and milbemycin 11, was identified among seven uncharacterized polyketide synthase gene clusters isolated from Streptomyces nanchangensis NS3226 by hybridization with PCR products using primers derived from the sequences of aveE, aveF and a thioesterase domain of the avermectin biosynthetic gene cluster. Introduction of a 24.1-kb deletion by targeted gene replacement resulted in a loss of meilingmycin production, confirming that the gene cluster encodes biosynthesis of this important anthelminthic antibiotic compound. A sequenced 8.6-kb fragment had aveC and aveE homologues (meiC and meiE) linked together, as in the avermectin gene cluster, but the arrangement of aveF (meiF) and the thioesterase homologues differed. The results should pave the way to producing novel insecticidal compounds by generating hybrids between the two pathways.  相似文献   

19.
多杀菌素的生物合成   总被引:11,自引:1,他引:10  
多杀菌素是一种新颖大环内酯类杀虫剂,具有对害虫高效、对环境安全、对哺乳动物低毒的优异特点。介绍了多杀菌素生物合成的步骤,及参与这些合成步骤的有关酶系统和基因簇。通过对刺糖多孢菌中多杀菌素合成基因的克隆鉴定与分析,已基本了解多杀菌素生物合成的限速步骤及相关控制基因,从而可通过遗传工程的办法改造刺糖多孢菌,提高多杀菌素的产量 。  相似文献   

20.
The biosynthetic pathway to 4-hydroxybenzoate (4HB), a precursor of the naphthoquinone pigment shikonin, was modified in Lithospermum erythrorhizon hairy root cultures by introduction of the bacterial gene ubiC. This gene of Escherichia coli encodes chorismate pyruvate-lyase (CPL), an enzyme that converts chorismate into 4HB and is not normally present in plants. The ubiC gene was fused to the sequence for a chloroplast transit peptide and placed under control of a constitutive plant promoter. This construct was introduced into L. erythrorhizon by Agrobacterium rhizogenes-mediated transformation.The resulting hairy root cultures showed high CPL activity. 4HB produced by the CPL reaction was utilized for shikonin biosynthesis, as shown by in vivo inhibition of the native pathway to 4HB with 2-aminoindan-2-phosphonic acid (AIP), an inhibitor of phenylalanine ammonia-lyase. A feeding experiment with [1,7-13C2]shikimate showed that in the absence of AIP the artificially introduced CPL reaction contributed ca. 20% of the overall 4HB biosynthesis in the transgenic cultures. ubiC transformation did not lead to a statistically significant increase of shikonin formation, but to a 5-fold increase of the accumulation of menisdaurin, a nitrile glucoside which is presumably related to aromatic amino acid metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号